JPH01248511A - Formation of polycrystal film - Google Patents

Formation of polycrystal film

Info

Publication number
JPH01248511A
JPH01248511A JP7475588A JP7475588A JPH01248511A JP H01248511 A JPH01248511 A JP H01248511A JP 7475588 A JP7475588 A JP 7475588A JP 7475588 A JP7475588 A JP 7475588A JP H01248511 A JPH01248511 A JP H01248511A
Authority
JP
Japan
Prior art keywords
film
dimensional
recrystallized
amorphous
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7475588A
Other languages
Japanese (ja)
Other versions
JP2743370B2 (en
Inventor
Makoto Uchiyama
誠 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63074755A priority Critical patent/JP2743370B2/en
Publication of JPH01248511A publication Critical patent/JPH01248511A/en
Application granted granted Critical
Publication of JP2743370B2 publication Critical patent/JP2743370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable a polycrystal film to be of large grain and homogeneous by recrystallizing a crystallite formed on a substrate by annealing treatment, by accumulating non-crystal film on this already recrystallized crystallite, and by recrystallizing non-crystal film as a core by annealing treatment. CONSTITUTION:An oxidation film 2 is formed as an insulation film on the mirror surface of a substrate 1. A two-dimensional core group 3 which becomes the core for recrystallization is formed on the surface of this oxidation film 2 in a specified density or is adjusted to a specified density by performing etching treatment, etc., to the two-dimensional core group 3 which was formed once. A two-dimensional core group 30 thus obtained is recrystallized by thermal annealing and an amorphous film 4 is accumulated and thermal annealing is provided to this amorphous film 4. By providing this kind of thermal annealing treatment, the amorphous film 4 is recrystallized with the thermally annealed two-dimensional core group 300 as a crystallite, thus enabling a silicon homogeneous polycrystal film 5 consisting of a large grain diameter measuring several mum or more to be formed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、多結晶膜を形成する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for forming a polycrystalline film.

(従来の技術) これまで知られている多結晶膜の形成方法としては、絶
縁基板上に非晶質膜あるいは多結晶膜を形成し、熱アニ
ールすることにより比較的大きな粒径の多結晶膜を得る
方法などが試みられている(J、 Electroch
em、 Soc、 Vol、 134  Nα7   
p1771  1987)。
(Prior art) As a method of forming a polycrystalline film known so far, an amorphous film or a polycrystalline film is formed on an insulating substrate, and a polycrystalline film with a relatively large grain size is formed by thermal annealing. (J, Electroch.
em, Soc, Vol, 134 Nα7
p1771 1987).

また、レーザ光、電子ビームなどを用いるレーザアニー
ル、ビームアニールなどによって、絶縁基板上に形成し
た非晶質膜あるいは多結晶膜を再結晶化させ、粒界が低
減化された多結晶膜を得るようにした方法も発表されて
いる(応用物理、Vol、54.P1274 1985
)。
In addition, a polycrystalline film with reduced grain boundaries is obtained by recrystallizing an amorphous or polycrystalline film formed on an insulating substrate by laser annealing or beam annealing using laser light, electron beam, etc. A method has also been published (Applied Physics, Vol. 54. P1274 1985
).

(発明が解決しようとする課題) しかしながら、前者の結晶形成方法においては、成膜時
に形成される多結晶膜の粒径を大きくすることに限界が
あるとともに、粒界の複雑に入った結晶性の良くない結
晶しか得られなかった。
(Problems to be Solved by the Invention) However, in the former crystal formation method, there is a limit to increasing the grain size of the polycrystalline film formed during film formation, and crystallinity with complicated grain boundaries Only poor crystals were obtained.

また、後者のレーザ光や電子ビームを照射する方法にお
いても、形成される結晶は均質でない亜粒界が導入され
るため結晶性が悪かった。
Furthermore, even in the latter method of irradiating with laser light or electron beam, the formed crystals had poor crystallinity because non-uniform sub-grain boundaries were introduced.

この発明はこのような課題を解決するためになされたも
のであり、大粒径化と均質化を図ることができる多結晶
膜の形成方法を提供することを目的とするものである。
The present invention has been made to solve these problems, and it is an object of the present invention to provide a method for forming a polycrystalline film that can increase the grain size and make the grains homogeneous.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は上記目的を達成するために、基板上に結晶子
を所定の密度で形成し、この結晶子をアニール処理によ
り再結晶化し、この再結晶化済みの結晶子の上に非晶質
膜を堆積し、アニール処理により前記結晶子を核として
非晶質膜を再結晶化するようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention forms crystallites at a predetermined density on a substrate, recrystallizes the crystallites by annealing treatment, and An amorphous film is deposited on crystallites, and the amorphous film is recrystallized using the crystallites as nuclei through annealing treatment.

(作用) 上記多結晶膜の形成方法によれば、予め行われたアニー
ル処理よる再結晶化で結晶子は単結晶に近い状態になる
。この結晶子の上に堆積した非晶質膜にアニール処理を
施すと結晶子は核として非晶質膜の再結晶化をスムーズ
に進めるため、適切な密度で均一に結晶子を形成するこ
とにより多結晶の大粒径化と均質化を図ることができる
(Function) According to the above method for forming a polycrystalline film, the crystallites are brought into a state close to a single crystal by recrystallization by an annealing treatment performed in advance. When the amorphous film deposited on the crystallites is annealed, the crystallites serve as nuclei and smoothly recrystallize the amorphous film. It is possible to increase the grain size and homogenize polycrystals.

(実施例) 以下、この発明の実施例を第1図(a)〜(f)を基に
説明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1(a) to (f).

最初に、例えばシリコンの基板1をCVD装置(図示せ
ず)内にセントし、0□のみまたは水蒸気とともに02
を供給した中で1000°Cで加熱し、基板1の鏡面上
に第1図(a)に示すように絶縁膜として酸化膜2を約
5000人形成する。
First, a substrate 1 made of silicon, for example, is placed in a CVD apparatus (not shown), and 0□ alone or with water vapor is added.
The oxide film 2 is heated at 1000° C. in a supply of water to form an oxide film 2 as an insulating film on the mirror surface of the substrate 1 as shown in FIG. 1(a).

次に、基板1をCVD装置内で1000°Cに保持した
まま、HclガスとSiH,ガスをそれぞれガス分圧T
、2 X 10−3b a r、 7.3 X 10−
’barで10秒間供給してCVD反応を行わせる。
Next, while holding the substrate 1 at 1000°C in the CVD apparatus, HCl gas and SiH gas are heated at a gas partial pressure of T.
, 2 X 10-3b a r, 7.3 X 10-
'bar for 10 seconds to carry out the CVD reaction.

このCVD反応により、第1図(b)に示すように前記
酸化膜2の表面上に、例えば約1000〜数1000人
径のシリコンの2次元核群3が形成密度約104〜10
5個/c′INで微小島状に形成される。なお、上記反
応温度より低温の例えば560°Cにおいて、S iH
a系のガスを例えは0.8 T 。
As a result of this CVD reaction, as shown in FIG. 1(b), two-dimensional silicon nuclei 3 having a diameter of approximately 1000 to several 1000 persons are formed on the surface of the oxide film 2 at a density of approximately 104 to 10
5 pieces/c'IN are formed in the shape of micro islands. In addition, at a temperature lower than the above reaction temperature, for example, 560°C, SiH
For example, a-type gas is 0.8 T.

rr等の低圧で短時間供給し、2次元核群3を形成する
ようにしてもよい。
The two-dimensional nucleus group 3 may be formed by supplying for a short time at a low pressure such as rr.

このように形成された2次元核群3に対し、Hclガス
をガス分圧7.2X 10−’b a rで供給しなが
ら1000°Cでエツチング処理する。このエツチング
反応により微小な2次元核群3は除去されるとともに、
第1図(c)に示すように2次元核群3の核種は例えば
数10〜数100人、形成密度は102〜103個/d
となり、エツチング反応以前に比べて核種で1/10.
形成密度で1/100程に低減される。このようにエツ
チング処理により核種および形成密度が適切に制御され
た2次元核群30を結晶子として後述する非晶質膜の再
結晶を行うことにより、結晶子が多すぎることによる粒
界の増大を防ぎ、大粒径化を促進することができる。な
お、上述のCVDの段階で核種および形成密度が制御さ
れた2次元核群3を形成することにより、エツチング処
理せずに2次元核群3の上に後述する非晶質膜を堆積す
るようにしてもよい。
The two-dimensional nucleus group 3 thus formed is subjected to an etching process at 1000° C. while supplying HCl gas at a gas partial pressure of 7.2×10 −’bar. Through this etching reaction, the minute two-dimensional nuclei group 3 is removed, and
As shown in Fig. 1(c), the number of nuclides in the two-dimensional nuclear group 3 is, for example, several tens to several hundreds, and the formation density is 102 to 103 pieces/d.
This means that the number of nuclides is 1/10 compared to before the etching reaction.
The formation density is reduced to about 1/100. By recrystallizing the amorphous film, which will be described later, using the two-dimensional nucleus groups 30 whose nuclides and formation density have been appropriately controlled by the etching process as crystallites, it is possible to eliminate the increase in grain boundaries due to too many crystallites. can be prevented and the increase in particle size can be promoted. Note that by forming the two-dimensional nucleus group 3 with controlled nuclides and formation density in the above-mentioned CVD step, it is possible to deposit an amorphous film, which will be described later, on the two-dimensional nucleus group 3 without etching. You may also do so.

次に、同−CVD装置内にHeガス、N2ガス等の不活
性ガスを供給しながら、2次元核群30に対して120
0°Cで5時間の加熱処理を行う。
Next, while supplying an inert gas such as He gas or N2 gas into the same CVD apparatus, the two-dimensional nucleus group 30 is
Heat treatment is performed at 0°C for 5 hours.

この熱アニール処理により、2次元核群30は再結晶化
され、単結晶に近い状態となる。なお、この熱アニール
処理を施した直後に、上述のエツチング処理を行うよう
にしてもよい。
Through this thermal annealing treatment, the two-dimensional nucleus group 30 is recrystallized and becomes close to a single crystal. Note that the above-described etching process may be performed immediately after this thermal annealing process.

次に、熱アニール処理された2次元核群300に対し、
温度を560℃に低下させるとともに1.20%Heガ
ス希釈されたSiH,ガスを0.8Torrで供給する
ことにより、第1図(e)に示すように、例えば約20
00人のシリコンの非晶質膜4を形成する。なお、この
ように非晶質膜4を形成する以前の2次元核群300に
対しては、あるいはエツチング処理を行わない場合はC
VDで形成された2次元核群3に対しても、それぞれ酸
素や水蒸気および空気等の酸性ガスとの接触を極力さけ
るようにしなければならない、すなわち、熱アニールに
より再結晶化され単結晶に近(なったと考えられる2次
元核群3000表面が酸化膜に覆われていると、その上
に堆積された非晶質膜4の結晶子として再結晶化に関与
する際に、この非晶質に面方位等の結晶化情報を伝達で
きなくなってしまうためである。
Next, for the thermally annealed two-dimensional nucleus group 300,
By lowering the temperature to 560°C and supplying SiH gas diluted with 1.20% He gas at 0.8 Torr, as shown in FIG.
An amorphous film 4 of 0.000 silicon is formed. Note that the two-dimensional nucleus group 300 before forming the amorphous film 4 in this way, or when no etching process is performed, C
For the two-dimensional nuclei group 3 formed by VD, contact with acidic gases such as oxygen, water vapor, and air must be avoided as much as possible. In other words, they are recrystallized by thermal annealing and become close to single crystals. (If the surface of the two-dimensional nucleus group 3000 that is thought to have become This is because crystallization information such as plane orientation cannot be transmitted.

次に、Heガス、Ntガス等の不活性ガスの中で、非晶
質膜4で覆われた基板1を560 ”Cで5時間、60
0°Cで10時間、1000°Cで10時間、1200
°Cで6時間加熱処理する。このような熱アニール処理
を施すことにより、前記熱アニール処理された2次元績
群300を結晶子として非晶質膜4が再結晶化され、例
えば数μm以上の大粒径からなるシリコンの多結晶膜5
が形成される。
Next, in an inert gas such as He gas or Nt gas, the substrate 1 covered with the amorphous film 4 was heated at 560"C for 5 hours at 60°C.
10 hours at 0°C, 10 hours at 1000°C, 1200
Heat treatment at °C for 6 hours. By performing such thermal annealing treatment, the amorphous film 4 is recrystallized using the two-dimensional grain group 300 subjected to the thermal annealing treatment as crystallites, and a silicon polyamide film having a large grain size of, for example, several μm or more is recrystallized. Crystal film 5
is formed.

以上実施例によれば、酸化膜2の表面に再結晶化のため
の核となる2次元績群3を所要の密度で形成するか、あ
るいは一端形成された2次元績群3にエッチラグ処理等
を施すことにより所要の密度に調節し、このようにして
得られた2次元績群30を熱アニールにより再結晶化た
上に非晶質膜4を堆積し、この非晶質膜4に熱アニール
を行い、前記熱アニールにより単結晶に近い状態となっ
た2次元績群300を結晶子として非晶質膜4の再結晶
化をスムーズに進め、大粒径で均質化が図られた多結晶
膜5を得ている。また、レーザ光や電子ビームを用いた
形成方法のようにビーム径によって再結晶される領域が
限定されることがなく、用いるCVD装置を選定するこ
とにより多数の大面積基板を処理することが可能である
ため、結晶性が良好な多結晶膜5を安価に形成すること
ができる。
According to the embodiments described above, the two-dimensional grain groups 3 that serve as nuclei for recrystallization are formed on the surface of the oxide film 2 at a required density, or the once-formed two-dimensional grain groups 3 are subjected to an etch lag treatment, etc. The two-dimensional crystal group 30 obtained in this way is recrystallized by thermal annealing, and an amorphous film 4 is deposited on the amorphous film 4. Annealing is performed, and recrystallization of the amorphous film 4 is smoothly proceeded by using the two-dimensional grain group 300, which has become close to a single crystal due to the thermal annealing, as crystallites, and the amorphous film 4 is homogenized with a large grain size. A crystal film 5 is obtained. In addition, unlike forming methods using laser light or electron beams, the area to be recrystallized is not limited by the beam diameter, and it is possible to process a large number of large-area substrates by selecting the CVD equipment to be used. Therefore, the polycrystalline film 5 with good crystallinity can be formed at low cost.

なお、上記実施例においては、2次元績群3を減圧CV
Dで形成しているが、その他プラズマCVD、MOCV
D、光CVD、スパッタ法、蒸着法、ECRプラズマC
VD法などの一般に非晶質半導体もしくは多結晶半導体
を得るために行われている方法を用いてもよい。
In addition, in the above embodiment, the two-dimensional performance group 3 is
Although it is formed using D, other methods such as plasma CVD and MOCV
D, photo CVD, sputtering method, vapor deposition method, ECR plasma C
A method generally used to obtain an amorphous semiconductor or a polycrystalline semiconductor, such as the VD method, may be used.

また上記実施例においては、熱酸化により形成した酸化
膜2の上に2次元績群を堆積するようにしているが、熱
酸化による酸化膜2以外にCVDによる酸化膜、窒化膜
あるいは炭化膜や、A1゜03 、S iC,ガラス基
板等であってもよい。
Further, in the above embodiment, a two-dimensional film is deposited on the oxide film 2 formed by thermal oxidation, but in addition to the oxide film 2 formed by thermal oxidation, an oxide film, a nitride film, or a carbide film formed by CVD is deposited. , A1°03, SiC, glass substrate, etc. may be used.

また上記実施例においては、シリコンの基板1に酸化膜
2を形成し、この酸化膜2の上にシリコンの多結晶膜5
を形成するというシリコン半導体の形成プロセスを取り
上げているが、ゲルマニウム半導体やガリウムひ素手導
体等の形成プロセスにも応用できることはいうまでもな
い。
Further, in the above embodiment, an oxide film 2 is formed on a silicon substrate 1, and a silicon polycrystalline film 5 is formed on this oxide film 2.
The present invention deals with the process of forming silicon semiconductors, but it goes without saying that it can also be applied to the process of forming germanium semiconductors, gallium arsenide conductors, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の多結晶膜の形成方法によれ
ば、基板上に結晶子を所定の密度で形成し、この結晶子
をアニール処理により再結晶化し、この結晶子の上に非
晶質膜を堆積し、アニール処理により結晶子を核として
非晶質膜の再結晶化をスムーズに進めるようにしている
ため、適切な密度で均一に結晶子を形成することにより
、大粒径化と均質化を図ることができる。
As explained above, according to the method for forming a polycrystalline film of the present invention, crystallites are formed on a substrate at a predetermined density, the crystallites are recrystallized by annealing treatment, and amorphous crystallites are formed on the crystallites. This method uses crystallites as nuclei to smoothly recrystallize the amorphous film by depositing a thin film, and by annealing it, the crystallites are formed uniformly at an appropriate density, resulting in large grain size. It is possible to achieve homogenization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は酸化膜を形成した状態を示す基板の部分
断面図、第1図(b)は酸化膜の上にCVDで2次元績
群を形成した状態を示す部分断面図。 第1図(c)はスパッタ処理により2次元績群を低減化
させた状態を示す部分断面図、第1図(d)は熱アニー
ルされた基板の状態を示す部分断面図。 第1図(e)は2次元績群の上に非晶質膜を堆積させた
状態を示す部分断面図、第1図(f)は非晶質膜を熱ア
ニールにより再結晶化した状態を示す部分断面図である
。 1 、、、、基板       2 、、、、酸化膜3
.30,300.、、.2次元績群
FIG. 1(a) is a partial cross-sectional view of a substrate showing a state in which an oxide film is formed, and FIG. 1(b) is a partial cross-sectional view showing a state in which a two-dimensional layer is formed on the oxide film by CVD. FIG. 1(c) is a partial cross-sectional view showing a state in which two-dimensional groups are reduced by sputtering, and FIG. 1(d) is a partial cross-sectional view showing a state of a thermally annealed substrate. Figure 1(e) is a partial cross-sectional view showing the state in which an amorphous film is deposited on a two-dimensional layer, and Figure 1(f) shows the state in which the amorphous film is recrystallized by thermal annealing. FIG. 1. Substrate 2. Oxide film 3
.. 30,300. ,,. 2D performance group

Claims (1)

【特許請求の範囲】[Claims]  非晶質膜再結晶化のための核となる結晶子を基板上に
所定の密度で形成し、この結晶子をアニール処理により
再結晶化し、この結晶子の上に非晶質膜を堆積し、アニ
ール処理によりこの非晶質膜の再結晶化を行うことを特
徴とする多結晶膜の形成方法。
Crystallites that serve as nuclei for recrystallization of an amorphous film are formed on a substrate at a predetermined density, these crystallites are recrystallized by annealing treatment, and an amorphous film is deposited on top of these crystallites. A method for forming a polycrystalline film, characterized in that the amorphous film is recrystallized by an annealing treatment.
JP63074755A 1988-03-30 1988-03-30 Method of forming polycrystalline film Expired - Fee Related JP2743370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074755A JP2743370B2 (en) 1988-03-30 1988-03-30 Method of forming polycrystalline film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074755A JP2743370B2 (en) 1988-03-30 1988-03-30 Method of forming polycrystalline film

Publications (2)

Publication Number Publication Date
JPH01248511A true JPH01248511A (en) 1989-10-04
JP2743370B2 JP2743370B2 (en) 1998-04-22

Family

ID=13556405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074755A Expired - Fee Related JP2743370B2 (en) 1988-03-30 1988-03-30 Method of forming polycrystalline film

Country Status (1)

Country Link
JP (1) JP2743370B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038798A (en) * 1989-06-06 1991-01-16 Sanyo Electric Co Ltd Production of polycrystal silicon film
JPH0370123A (en) * 1989-08-10 1991-03-26 Canon Inc Formation of crystalline semiconductor film
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
KR100270620B1 (en) * 1992-10-19 2000-12-01 윤종용 Manufacturing method of poly crystal silicon layer
KR100494321B1 (en) * 1997-12-31 2005-08-31 주식회사 하이닉스반도체 Polycrystalline Silicon Film Formation Method of Semiconductor Device
US8048773B2 (en) 2009-03-24 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260621A (en) * 1985-05-15 1986-11-18 Matsushita Electric Ind Co Ltd Retreatment for amorphous silicon film or polycrystalline silicon film
JPS6276715A (en) * 1985-09-30 1987-04-08 Sony Corp Forming method for single crystal silicon thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260621A (en) * 1985-05-15 1986-11-18 Matsushita Electric Ind Co Ltd Retreatment for amorphous silicon film or polycrystalline silicon film
JPS6276715A (en) * 1985-09-30 1987-04-08 Sony Corp Forming method for single crystal silicon thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038798A (en) * 1989-06-06 1991-01-16 Sanyo Electric Co Ltd Production of polycrystal silicon film
JPH0370123A (en) * 1989-08-10 1991-03-26 Canon Inc Formation of crystalline semiconductor film
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
KR100270620B1 (en) * 1992-10-19 2000-12-01 윤종용 Manufacturing method of poly crystal silicon layer
KR100494321B1 (en) * 1997-12-31 2005-08-31 주식회사 하이닉스반도체 Polycrystalline Silicon Film Formation Method of Semiconductor Device
US8048773B2 (en) 2009-03-24 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate

Also Published As

Publication number Publication date
JP2743370B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
Liu et al. Selective area crystallization of amorphous silicon films by low‐temperature rapid thermal annealing
JP2001035806A (en) Manufacture of semiconductor thin film
US4147584A (en) Method for providing low cost wafers for use as substrates for integrated circuits
JPH01248511A (en) Formation of polycrystal film
JPH02191320A (en) Crystal product and its manufacture
JPS5918196A (en) Preparation of thin film of single crystal
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPH02295111A (en) Manufacture of semiconductor device having thin film crystal layer
JPH0370123A (en) Formation of crystalline semiconductor film
JPH04298020A (en) Manufacture of silicon thin film crystal
JPH059089A (en) Method for growing crystal
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JP3093762B2 (en) Method for manufacturing semiconductor device
JPH02105517A (en) Manufacture of semiconductor device
JPH0442358B2 (en)
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JP2752164B2 (en) Method for manufacturing polycrystalline silicon film
JP2737152B2 (en) SOI forming method
JP2987163B2 (en) Method for manufacturing semiconductor device
JP2592984B2 (en) Manufacturing method of silicon thin film
JP2580143B2 (en) Method for manufacturing article having heteroepitaxial structure
JP2532252B2 (en) Method for manufacturing SOI substrate
JP2695462B2 (en) Crystalline semiconductor film and method for forming the same
JPS60164316A (en) Formation of semiconductor thin film
JP2680114B2 (en) Method for forming crystalline semiconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees