JPH01247598A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH01247598A
JPH01247598A JP63077767A JP7776788A JPH01247598A JP H01247598 A JPH01247598 A JP H01247598A JP 63077767 A JP63077767 A JP 63077767A JP 7776788 A JP7776788 A JP 7776788A JP H01247598 A JPH01247598 A JP H01247598A
Authority
JP
Japan
Prior art keywords
superconducting
base material
layer
electrodeposition
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63077767A
Other languages
Japanese (ja)
Inventor
Koichi Saruwatari
猿渡 光一
Seiju Maejima
正受 前嶋
Yutaka Osanai
裕 小山内
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63077767A priority Critical patent/JPH01247598A/en
Publication of JPH01247598A publication Critical patent/JPH01247598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To develop the title oxide-based superconducting material having a high critical temp. by using a metal or a ceramic base material having a metal layer on its surface as a cathode, applying a current between the cathode and an anode in an electrodeposition soln. wherein oxide-based superconducting powder having a specified composition is dispersed to deposit the superconducting powder, and then heat- treating the product. CONSTITUTION:An electrodeposition soln. 3 obtained by dispersing 1-500g/l of the powder of an A-B-Cu-O based oxide superconductor (where A is >=1 kind among group IIIa elements of the periodic table and B is >=1 kind among group IIa elements) in a solvent such as methyl ethyl ketone and acetone is charged in a vessel 2. A high-melting-point metal having excellent oxidation resistance or a ceramic base material 1 electroless-plated with Ag, Ni, etc., is used as the cathode, and a current is applied between the cathode and an anode 6 such as Pt in the soln. to deposit the power layer 4 of the surface superconducting material on the surface of the base material 1 by electrophoresis. The product is pulled up from the vessel 2, and heated to 800-1000 deg.C in the atmosphere to sinter the powder layer 4. As a result, a superconducting material A having the superconductor layer 7 having a high critical temp. is produced. A protective layer 8 of metal or synthetic resin is provided, as required, to prevent the aging deterioration of superconductivity.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、磁気浮上列車、核融合炉、単結晶引上装置、
磁気分離装置、医療装置、磁気推進船等に用いられる超
電導マグネットコイルや電力輸送用等に使用される超電
導線、ジョセフソン素子などの超電導回路材、磁気シー
ルド等に用いられる酸化物超電導付の製造方法に関する
Detailed Description of the Invention "Field of Industrial Application" The present invention is applicable to magnetic levitation trains, nuclear fusion reactors, single crystal pulling devices,
Manufacture of superconducting magnet coils used in magnetic separation devices, medical devices, magnetic propulsion ships, etc., superconducting wires used for power transport, superconducting circuit materials such as Josephson elements, and oxide superconductors used in magnetic shields, etc. Regarding the method.

「従来の技術」 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度を超える値を示す酸化物
超電導体が種々発見されている。この種の酸化物超電導
体は、一般式A −B −Cu−0(ただし、AはY、
Sc、La、Yb、Er、Eu、Ho、Dy等の周期律
表IIIa族元素の1種以上を示し、BはBe。
"Prior Art" Recently, various oxide superconductors have been discovered whose critical temperature (Tc) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature. This type of oxide superconductor has the general formula A -B -Cu-0 (where A is Y,
It represents one or more elements of group IIIa of the periodic table, such as Sc, La, Yb, Er, Eu, Ho, Dy, etc., and B is Be.

Mg、Ca、Br、Ba等の周期律表IIa族元素の1
種以上を示す)で示される酸化物であり、液体ヘリウム
で冷却することが必要であった従来の合金系あるいは金
属間化合物系の超電導体と比較して格段に有利な冷却条
件で使用できることから、実用上極めて有望な超電導材
料として研究がなされている。
1 of group IIa elements of the periodic table such as Mg, Ca, Br, Ba, etc.
This is because it can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium. , is being researched as a highly promising superconducting material for practical use.

ところで従来、金属やセラミックスの基材上に上記酸化
物超電導体からなる厚膜を形成する方法としては、酸化
物超電導粉末にパインオイルなどの適宜な溶剤や有機バ
インダーを加えて印刷用材料を作成し、この印刷用材料
を基材上にスクリーン印刷する方法が考えられている。
By the way, the conventional method for forming a thick film made of the above-mentioned oxide superconductor on a metal or ceramic substrate is to create a printing material by adding an appropriate solvent such as pine oil or an organic binder to oxide superconducting powder. However, a method of screen printing this printing material onto a substrate has been considered.

また、この印刷用材料と同様に作成した塗装液を基材表
面にスプレー塗装する方法や、この塗装液中に基材を浸
漬して引き上げ、その表面に塗装膜を形成する方法が考
えられている。
In addition, methods of spray painting the surface of the substrate with a coating liquid prepared in the same way as this printing material, or methods of immersing the substrate in this coating liquid and pulling it up to form a coating film on the surface have been considered. There is.

さらに、スパッタリング法や蒸着法などの薄膜形成方法
を用いて基材の表面に酸化物超電導体層を成膜する方法
が考えられている。
Furthermore, a method of forming an oxide superconductor layer on the surface of a base material using a thin film forming method such as a sputtering method or a vapor deposition method has been considered.

「発明が解決しようとする課題」 しかしながら、上記スクリーン印刷法においては、基材
の形状が平板や円筒などの単純な形状の基材にのみ適用
され、線材やテープを含め複雑な形状の基材に適用させ
ることができない問題があった。また、このスクリーン
印刷法では、膜厚が200μm以上の超電導厚膜の形成
が困難な問題があった。
``Problems to be Solved by the Invention'' However, in the screen printing method described above, the shape of the base material is only applied to base materials with simple shapes such as flat plates and cylinders, and it is applicable only to base materials with complex shapes such as wire rods and tapes. There was a problem that it could not be applied. Further, this screen printing method has a problem in that it is difficult to form a superconducting thick film having a thickness of 200 μm or more.

また、上記塗装法および浸漬法にあっては、複雑な形状
の基材に適用できない問題があった。また、基材表面に
均一な膜厚の酸化物超電導体を形成できない問題があっ
た。さらに、基材表面に塗装層を形成した後、熱処理を
施して塗装層に含まれる酸化物超電導体の焼結を行う際
、塗装層中に含まれるバインダーなどの樹脂の燃焼とと
もに、酸化物超電導体が剥離し易い問題があった。
Moreover, the above-mentioned painting method and dipping method have a problem that they cannot be applied to substrates with complicated shapes. Further, there was a problem that an oxide superconductor having a uniform thickness could not be formed on the surface of the base material. Furthermore, after forming a paint layer on the surface of the base material, when performing heat treatment to sinter the oxide superconductor contained in the paint layer, the resin such as the binder contained in the paint layer is burned, and the oxide superconductor There was a problem that the body easily peeled off.

また、上記スパッタリング法などの薄膜形成方法におい
ては、形成される膜厚が数μm程度であるために、膜厚
が200μm以上の酸化物超電導厚膜の形成が困難な問
題があった。また、真空中などの特定の雰囲気中で成膜
を行うために、基材の大きさが製造装置内に収容可能な
ものに限定され、大面積の基材に適用できない問題があ
った。
Further, in the thin film forming method such as the sputtering method, the thickness of the formed film is approximately several μm, so there is a problem that it is difficult to form a thick oxide superconducting film having a thickness of 200 μm or more. Furthermore, since the film is formed in a specific atmosphere such as a vacuum, the size of the base material is limited to what can be accommodated in the manufacturing equipment, and there is a problem that the method cannot be applied to a large-area base material.

さらに、成膜速度が低いために、比較的厚い酸化物超電
導層を形成する場合には成膜に長時間を要する問題があ
った。
Furthermore, since the film formation rate is low, there is a problem in that it takes a long time to form a relatively thick oxide superconducting layer.

本発明は、上記問題に鑑みてなされたもので、基材の表
面に緻密な厚膜状の酸化物超電導体を短時間で形成する
ことができ、臨界電流密度などの超電導特性が優れ、か
つ機械強度が高い酸化物超電導付を効率よく製造する方
法の提供を目的とする。
The present invention has been made in view of the above-mentioned problems, and is capable of forming a dense thick film of oxide superconductor on the surface of a base material in a short time, has excellent superconducting properties such as critical current density, and The purpose of this invention is to provide a method for efficiently manufacturing an oxide superconductor with high mechanical strength.

1課題を解決するための手段」 」−記目的を達成するために、本発明の酸化物超電導体
の製造方法においては、A −13−Cu−0系(ただ
し、AはY、Sc、La、Yb、Er、Eu、Ho、D
y等の周期律表llTa族元素の1種以上を示し、Bは
Be、Mg、Ca、S r、Ba等の周期律表IIa族
元素の1種以上を示す。)の酸化物超電導体を具備して
なる酸化物超電導付の製造方法において、−上記酸化物
超電導体の粉末または酸化物超電導体の前駆体粉末をメ
チルエチルケトン中に分散させた電着液中で、少なくと
も表面部分に導電性を存する基材を陰極として電気泳動
電着を行って、該基材の表面に酸化物超電導体を構成す
る元素を含む電着層を形成し、この後熱処理を施すもの
である。
In order to achieve the above object, the method for producing an oxide superconductor of the present invention is based on A-13-Cu-0 (where A is Y, Sc, La , Yb, Er, Eu, Ho, D
B represents one or more elements of Group IITa of the periodic table, such as y, and B represents one or more elements of group IIa of the periodic table, such as Be, Mg, Ca, Sr, Ba, etc. ) in a method for manufacturing an oxide superconductor comprising an oxide superconductor, - in an electrodeposition liquid in which the powder of the oxide superconductor or the precursor powder of the oxide superconductor is dispersed in methyl ethyl ketone; Electrophoretic electrodeposition is performed using a base material that is electrically conductive at least in its surface portion as a cathode to form an electrodeposited layer containing the elements constituting the oxide superconductor on the surface of the base material, followed by heat treatment. It is.

また、上記メチルエチルケトンに代えてアセトンを用い
ても良い。
Moreover, acetone may be used instead of the above-mentioned methyl ethyl ketone.

「作用」 基材の表面に、電気泳動電着により酸化物超電導体の粉
末または酸化物超電導体の前駆体粉末を電着して酸化物
超電導体を構成する元素を含む電着層を形成し、この後
熱処理を施すことにより、基材の表面に緻密な超電導体
層が均一な状態で形成される。
"Operation" An electrodeposited layer containing the elements constituting the oxide superconductor is formed by electrodepositing oxide superconductor powder or oxide superconductor precursor powder on the surface of the base material by electrophoretic electrodeposition. By subsequently performing heat treatment, a dense superconductor layer is uniformly formed on the surface of the base material.

「実施例」 第1図ないし第4図は、本発明の製造方法をY−B a
−Cu−0系超電導材の製造方法に適用した例を説明す
るための図である。この例による超電導材の製造方法で
は、まず丸線状の基材lを、電着槽2に収容された電着
液3中に挿入し、電気泳動電着を行って、その表面に電
着層4を形成して超電導素材5を作成する。
"Example" Figures 1 to 4 show the manufacturing method of the present invention in Y-B a
It is a figure for explaining the example applied to the manufacturing method of -Cu-0 type|system|group superconducting material. In the method for manufacturing a superconducting material according to this example, first, a round wire-shaped base material l is inserted into an electrodeposition liquid 3 contained in an electrodeposition tank 2, and electrophoretic electrodeposition is performed to deposit the electrodeposition on the surface of the base material l. Layer 4 is formed to create superconducting material 5.

この例において使用される基材1としては、融点800
℃以上でかつ耐酸化性の良好な、貴金属、TilTa%
Zr、1lfSV、Nb5W、Cu等の単体金属やCu
−Ni合金、Cu−A I系合金、N i−A I系合
金、Ti−V系合金、モネルメタル、ステンレス、クロ
メル、アロメル、カンタルなどの金属基材や、石英ガラ
ス、ノルコニア(Y S Zも含む)、アルミナ(サフ
ァイアも含む)、チタン酸ストロンチウムなどのチタン
酸化合物、マグネシア、酸化チタン等のセラミックス基
材の表面に、無電解メツキ法、スパッタリング法、イオ
ンブレーティング法、真空蒸着法などの薄膜形成手段を
用いてAg、Ni、Cuなどの金属被覆を施した基材が
好適に使用される。
The base material 1 used in this example has a melting point of 800
TilTa%, a noble metal with good oxidation resistance at temperatures above ℃
Simple metals such as Zr, 1lfSV, Nb5W, Cu and Cu
- Metal base materials such as Ni alloy, Cu-AI alloy, Ni-AI alloy, Ti-V alloy, monel metal, stainless steel, chromel, allomel, kanthal, silica glass, norconia (Y S Z ), alumina (including sapphire), titanic acid compounds such as strontium titanate, magnesia, titanium oxide, etc. A base material coated with a metal such as Ag, Ni, or Cu using a thin film forming means is preferably used.

上記電着液3は、Y +B atc u30 ?−Xな
る組成比の超電導粉末を、メチルエチルケトンまたはア
セトンのいずれか一方の分散媒に分散させたものが使用
される。この分散媒2中の超電導粉末の濃度は1〜50
0gの範囲とすることが望ましい。
The electrodeposition liquid 3 has Y + B atc u30? A superconducting powder having a composition ratio of -X dispersed in a dispersion medium of either methyl ethyl ketone or acetone is used. The concentration of superconducting powder in this dispersion medium 2 is 1 to 50
It is desirable to set it in the range of 0g.

超電導粉末の濃度を50097Q以上とすると、基材表
面に超電導粉末が緻密かつ均一な状態で電着されなくな
り、また超電導粉末の濃度を19/Q以下とするとII
X着効卓効率くなる。また分散媒中に超電導粉末を分散
させるには、超音波撹拌を行うことが望ましく、更に分
散媒中に少量の水、ゼラチン、デンプン、電解質などを
添加して撹拌操作を行っても良い。このとき、分散媒と
して用いるメチルエチルケトンまたはアセトン中に含ま
れる水分量は3vo1.%以下に設定する必要がある。
If the concentration of superconducting powder is 50097Q or more, the superconducting powder will not be electrodeposited on the surface of the substrate in a dense and uniform state, and if the concentration of superconducting powder is 19/Q or less, II
X-effect table becomes more efficient. Further, in order to disperse the superconducting powder in the dispersion medium, it is desirable to perform ultrasonic stirring, and furthermore, a small amount of water, gelatin, starch, electrolyte, etc. may be added to the dispersion medium and the stirring operation may be performed. At this time, the amount of water contained in methyl ethyl ketone or acetone used as a dispersion medium is 3 vol. Must be set to % or less.

該分散媒中の水分量が3vo1.%以下であると、水の
電解によるガスの発生が起こらず、また超電導粉末の分
散状態も良好となる。水分量か3vo1.%以上である
と、超電導粉末の凝集が起こり、分散媒中に超電導粉末
を均一に分散させることができなくなる。なお、電着液
3には、必要に応じて酸化チタン等の酸化物超電導体の
焼結助剤となる材料が添加される。
The amount of water in the dispersion medium is 3vol. % or less, no gas is generated due to water electrolysis, and the superconducting powder is well dispersed. The water content is 3vol. % or more, agglomeration of the superconducting powder occurs and it becomes impossible to uniformly disperse the superconducting powder in the dispersion medium. Note that, if necessary, a material such as titanium oxide, which serves as a sintering aid for the oxide superconductor, is added to the electrodeposition liquid 3.

この超電導粉末は、粒径50μm以下のものが使用され
、特に粉末粒子の沈降を防止し、均一に分散させるため
に粒径30μm以下の粉末が好適に使用される。この超
電導粉末を作成する方法としては、例えば、Y、03と
、B a CO3と、CuOの各原料粉末を、Y :B
a:Cu= I :2 +3 (モル比)となるように
均一に混合して混合粉末とし、次いでこの混合粉末を大
気中あるいは酸素雰囲気中、500〜1000℃で1〜
数十時間仮焼して仮焼粉末とし、次いでこの仮焼粉末に
、圧粉成形−加熱一扮砕の一連の操作を1回あるいは2
回以上繰り返し行って、Y −B a−Cu−0系超電
導粉末を作成する粉末混合法が好適である。この仮焼粉
末成形後に行う加熱は、酸素雰囲気中、800〜100
0℃で1−数十時間とするのが望ましい。また粉砕処理
は自動乳鉢、ボールミルなど一般の粉砕処理装置を用い
て行うことができ、更にメチルエチルケトンまたはアセ
トンを加えてボールミル粉砕を行う湿式粉砕処理を用い
てら良い。なお、超電導粉末の作成方法は上記粉末、係
合法に限定されろことなく、共沈法やゾルゲル法を用い
ても良い。
This superconducting powder has a particle size of 50 μm or less, and in particular, powder with a particle size of 30 μm or less is preferably used in order to prevent the powder particles from settling and to disperse them uniformly. As a method for creating this superconducting powder, for example, raw material powders of Y, 03, B a CO3, and CuO are mixed into Y:B
A:Cu=I:2+3 (molar ratio) is uniformly mixed to obtain a mixed powder, and then this mixed powder is heated at 500 to 1000°C in air or oxygen atmosphere for 1 to 10 minutes.
The calcined powder is calcined for several tens of hours, and then the calcined powder is subjected to a series of operations of compaction, heating, and crushing once or twice.
A powder mixing method in which Y-B a-Cu-0-based superconducting powder is created by repeating the mixing several times or more is preferred. The heating performed after this calcined powder molding is performed in an oxygen atmosphere at a temperature of 800 to 100
Preferably, the heating time is 1 to several tens of hours at 0°C. Further, the pulverization process can be carried out using a general pulverization apparatus such as an automatic mortar or a ball mill, and a wet pulverization process in which methyl ethyl ketone or acetone is added and ball mill pulverization is performed may be used. Note that the method for producing the superconducting powder is not limited to the powder and engagement method described above, and a coprecipitation method or a sol-gel method may also be used.

また、電着液3中の超電導粉末の代わりに、−L述の仮
焼粉末を用いてら良い。
Further, instead of the superconducting powder in the electrodeposition liquid 3, the calcined powder described in -L may be used.

そして、第1図に示す電気泳動装置によって基材lの表
面に電着層4を形成するには、基材Iを電着液3内に挿
入するとともに、この基材lを陰極とし、この基材lと
電着槽2内に配設された陽極6との間に電圧を印加する
。この電気泳動電着では定電圧法、定電流法のいずれも
可能であり、さらに電流波形は直流の他、基材lが一時
的にせよ陰極となるようなパルス、交直重畳、断続など
の電流波形とすることが可能である。定電圧法を用いる
場合には17以上の電圧を印加すれば良く、また定電流
密度法を用いる場合には電流密度を1〜500 mA/
 cI112の範囲とするのが望ましい。なお、陽極6
としては、白金板、ステンレス板、炭素電極など通常の
電極材料を使用することができる。またこの陽極6の表
面積は、基材lの表面積よりも大きくすることが望まし
い。
In order to form an electrodeposition layer 4 on the surface of the base material 1 using the electrophoresis apparatus shown in FIG. A voltage is applied between the base material 1 and an anode 6 disposed in the electrodeposition tank 2. In this electrophoretic electrodeposition, both the constant voltage method and the constant current method are possible, and in addition to direct current, the current waveform can be pulsed, AC/DC superimposed, or intermittent currents in which the substrate 1 temporarily becomes a cathode. It is possible to have a waveform. When using the constant voltage method, it is sufficient to apply a voltage of 17 or more, and when using the constant current density method, the current density should be 1 to 500 mA/
It is desirable to set it as cI112 range. In addition, the anode 6
For this purpose, ordinary electrode materials such as platinum plates, stainless steel plates, and carbon electrodes can be used. Further, it is desirable that the surface area of the anode 6 be larger than the surface area of the base material l.

上記のように、陰極となる基材lと陽極6間に電圧を印
加することにより、電着tL3中に分散している超ia
*粉末はプラスに帯電し、陰極である基材lの表面に電
着される。そして基材1の表面には超電導粉末からなる
緻密な電着層4が形成され、第2図に示す超電導素材5
となる。電符槽2内で所定の厚さの電着層4か形成され
た超電導素材5は、電着槽2から引き上げられ、次いて
熱風による乾燥処理を行って、表面部分に残留するメチ
ルエチルケトンまたはアセトンを除去する。
As mentioned above, by applying a voltage between the base material l serving as the cathode and the anode 6, the super ia dispersed in the electrodeposited tL3 is
*The powder is positively charged and electrodeposited on the surface of the base material l, which is the cathode. A dense electrodeposition layer 4 made of superconducting powder is formed on the surface of the base material 1, and a superconducting material 5 shown in FIG.
becomes. The superconducting material 5 on which the electrodeposited layer 4 of a predetermined thickness has been formed in the electrodeposition tank 2 is pulled up from the electrodeposition tank 2 and then dried with hot air to remove methyl ethyl ketone or acetone remaining on the surface. remove.

次に、この超電導素材5に熱処理を施す。この熱処理は
、超電導素材5を大気中あるいは酸素雰囲気中、800
〜1000°Cで数十分〜数十時間加熱した後、室温ま
で徐冷することによって行われる。なおここで、徐冷処
理の途中に400〜600℃の温度範囲で所定時間保持
する処理を行って、酸化物超電導体の結晶構造が正方品
から斜方晶に変態するのを促進するようにしてし良い。
Next, this superconducting material 5 is subjected to heat treatment. This heat treatment is performed by heating the superconducting material 5 in air or oxygen atmosphere for 800 min.
This is carried out by heating at ~1000°C for several tens of minutes to several tens of hours, and then slowly cooling to room temperature. Note that during the slow cooling process, a treatment is performed in which the temperature is maintained in a temperature range of 400 to 600 °C for a predetermined period of time to promote the transformation of the crystal structure of the oxide superconductor from a tetragonal product to an orthorhombic one. That's good.

この熱処理により、基材lの表面に形成された電着層4
は焼結され、この部分に Y + B ay CuiO
t−xなる組成比の超電導体R7が形成される。
Through this heat treatment, an electrodeposition layer 4 formed on the surface of the base material 1
is sintered, and Y + B ay CuiO is added to this part.
A superconductor R7 having a composition ratio of t-x is formed.

以上の各操作により、第3図に示すように基材1の表面
に超電導体層7が形成された超電導材Aカ(得られる。
Through each of the above operations, a superconducting material A is obtained in which a superconducting layer 7 is formed on the surface of the base material 1 as shown in FIG.

そして、このようにして得られた超電導材Aの表面には
、必要に応じて被覆層8が形成される。
Then, a coating layer 8 is formed on the surface of the superconducting material A obtained in this way, if necessary.

この被覆層8の材料としてはA gSCu−A l s
 N i %Cu−Niなどの金属やポリイミドやポリ
ウレタン、ポリエステル、アミドイミドなどの合成樹脂
が好適に用いられる。超電導体層7の表面に被覆層8が
形成された第4図に示す超電導材Bは、被覆層8により
超電導体層7が保護されて、長期にわたって超電導特性
の劣化を防止することができるとともに、超電導体層7
の剥離やクラックの発生を防いで、機械強度の高いもの
となる。
The material of this coating layer 8 is AgSCu-Als
Metals such as N i % Cu-Ni and synthetic resins such as polyimide, polyurethane, polyester, and amide-imide are preferably used. In the superconducting material B shown in FIG. 4 in which the coating layer 8 is formed on the surface of the superconductor layer 7, the superconductor layer 7 is protected by the coating layer 8, and deterioration of superconducting properties can be prevented over a long period of time. , superconductor layer 7
This prevents peeling and cracking, resulting in high mechanical strength.

上述の超電導材Aの製造方法では、基材1の表面に、電
気泳動電着によりY +B atCuso 7−Xなる
組成比の酸化物超電導粉末を電着して緻密な電着層4を
形成し、この後熱処理を施すことにより、基材1の表面
に緻密な超電導体層7を生成することができるので、超
電導体層7に亀裂などの不良を生じることがなく、高臨
界電流密度(Jc)を有する高性能の超電導材Aを製造
することができる。
In the method for producing the superconducting material A described above, an oxide superconducting powder having a composition ratio of Y + BatCuso 7-X is electrodeposited on the surface of the base material 1 by electrophoretic electrodeposition to form a dense electrodeposited layer 4. By subsequently performing heat treatment, a dense superconductor layer 7 can be generated on the surface of the base material 1, so defects such as cracks do not occur in the superconductor layer 7, and high critical current density (Jc ) can be produced.

また、上述の超電導材Aは、基材1の表面に、電気泳動
電着により緻密な電着層4を形成し、この後熱処理を施
して超電導体層7を生成するので、超電導体層7は基材
1に対して密着性が良好となり、可撓性に優れ、機械強
度の高い超電導材へを製造することができる。
Further, in the above-mentioned superconducting material A, a dense electrodeposition layer 4 is formed on the surface of the base material 1 by electrophoretic electrodeposition, and then heat treatment is performed to generate the superconductor layer 7. has good adhesion to the base material 1, making it possible to produce a superconducting material with excellent flexibility and high mechanical strength.

さらに、基材lの表面に、電気泳動電着で超電導粉末か
らなる電着層4を形成するので、超電導体層7の厚さを
正確に制御することができろ。
Furthermore, since the electrodeposition layer 4 made of superconducting powder is formed on the surface of the base material 1 by electrophoretic electrodeposition, the thickness of the superconductor layer 7 can be accurately controlled.

また、電気泳動電着によって電着層4を形成するので、
200μm以上の比較的厚い電着層4を短時間の電着操
作で形成することができ、超電導材Aの製造効率を向上
させることができる。
Furthermore, since the electrodeposition layer 4 is formed by electrophoretic electrodeposition,
A relatively thick electrodeposition layer 4 of 200 μm or more can be formed in a short time by electrodeposition, and the manufacturing efficiency of the superconducting material A can be improved.

また、基Htの表面に厚い電着層4を形成すれば、熱処
理の際に基材l中の元素が超電導体層7中に浸透しても
、この不純元素の混入により超電導特性が劣化してしま
う部分の割合を小さくすることができ、したがって高性
能の超電導材Aを製造することができる。
Furthermore, if a thick electrodeposited layer 4 is formed on the surface of the base Ht, even if the elements in the base material l penetrate into the superconductor layer 7 during heat treatment, the superconducting properties will not deteriorate due to the incorporation of these impurity elements. It is possible to reduce the proportion of the portion that is damaged, and therefore, a high-performance superconducting material A can be manufactured.

なお、先の例では、基材として丸線状の基材lを用いた
が、基材の形状はこれに限定されることなく、板状、箔
状、柱状、リボン状、凹凸部や孔を有する複雑形状など
種々の形状の基材を使用することができる。本発明によ
る製造方法では、電気泳動電着により基材表面に超電導
粉末からなる緻密な電着層4を形成するので、つき回り
性が良く、基材表面に凹凸があってら、この凹凸に沿っ
て均一な厚さの電着層4が形成される。
In the previous example, a round wire-shaped base material l was used as the base material, but the shape of the base material is not limited to this, and may be plate-shaped, foil-shaped, columnar, ribbon-shaped, uneven parts, or holes. Base materials of various shapes can be used, such as complex shapes having. In the manufacturing method according to the present invention, a dense electrodeposited layer 4 made of superconducting powder is formed on the surface of the substrate by electrophoretic electrodeposition, so that it has good throwing power, and even if the surface of the substrate is uneven, it can be easily adhered to. As a result, an electrodeposited layer 4 having a uniform thickness is formed.

また、基材としてセラミックス基材を用いる場合には、
その表面に金属被覆を施す代わりにスクリーン印刷法に
より導電性ペーストを印刷塗布し、これを焼結さけるな
どの方法により、セラミックス基材の表面に導電性塗装
を施したらのを用いても良い。さらにまた、上記金属被
覆や導電性塗装などの導電性表面処理は基材の全面に施
される池、例えば回路基板や電磁ンールドなどを作成ず
ろ場合には、通常のマスキング法等を用いて導電性部分
のみに導電性表面処理を施して回路パターンを形成し、
この回路パターン上に超電導体層を形成してら良い。
In addition, when using a ceramic base material as a base material,
Instead of applying a metal coating to the surface, a conductive paste may be applied by screen printing and then sintered, or the surface of the ceramic base material may be coated with a conductive coating. Furthermore, conductive surface treatments such as metal coatings and conductive coatings can be applied to the entire surface of the base material, such as circuit boards or electromagnetic molds, by using ordinary masking methods. A circuit pattern is formed by applying conductive surface treatment only to the conductive parts.
A superconductor layer may be formed on this circuit pattern.

また、超電導素材5を焼結する際に、基材を燃焼消滅さ
せたり、溶融流出させることにより超電導体部分のみを
残す用途に適用させるために、低融点金属や、高分子有
機物からなる糸やノートなどの種々の成形物に導電性表
面処理を施したしのを基材に用いても良い。
In addition, when sintering the superconducting material 5, in order to apply it to applications in which only the superconducting portion is left by burning or extinguishing the base material or melting it out, threads made of low-melting point metals or high-molecular organic substances, etc. Various molded articles such as notebooks which have been subjected to conductive surface treatment may be used as the base material.

次に、本発明の製造方法を長尺のY −B a−Cu−
0超電導線材の製造方法に適用させた例を説明する。
Next, the manufacturing method of the present invention was applied to a long Y-B a-Cu-
An example in which the present invention is applied to a method for manufacturing a zero superconducting wire will be described.

第5図は超電導線材の製造に好適に使用される電気泳動
装置の例を示す図であって、符号11は基材として用い
る線材、12は1を着槽である。なお、この電着槽12
内には先の例で用いたものと同様の電着液3が収容され
ている。この例による超電導線材の製造方法では、まず
線材1を、電着槽12に収容されたTi電着液3中連続
的に通過させつつ電気泳動電着を行って、その表面に電
着層を形成し、超電導素線13を作成する。
FIG. 5 is a diagram showing an example of an electrophoresis apparatus suitably used for manufacturing a superconducting wire, in which reference numeral 11 indicates a wire used as a base material, and 12 indicates a deposition tank. In addition, this electrodeposition bath 12
An electrodeposition liquid 3 similar to that used in the previous example is contained therein. In the method for manufacturing a superconducting wire according to this example, first, the wire 1 is subjected to electrophoretic electrodeposition while continuously passing through a Ti electrodeposition liquid 3 contained in an electrodeposition tank 12, thereby forming an electrodeposition layer on the surface of the wire. Then, a superconducting wire 13 is produced.

この例において好適に使用される線材11としては、先
の例と同様の融点800℃以上でかつ耐□酸化性の良好
な金属材料で作られた金属線材、石英ガラス、サファイ
アなどのセラミックスファイバーの表面にAgなどの金
属被覆を施した複合線材、炭素繊維等が好適に使用され
る。
The wire 11 preferably used in this example is a metal wire made of a metal material with a melting point of 800°C or higher and good oxidation resistance, as in the previous example, or a ceramic fiber such as quartz glass or sapphire. Composite wires whose surfaces are coated with metal such as Ag, carbon fibers, etc. are preferably used.

そして、第5図に示す電気泳動装置によって線材11の
表面に電着層を形成するには、線材11を図中矢印で示
すように電着槽12に収容された電着液3中を一定の速
度で移動させつつ、この線材11を陰極とし、この線材
11と電着槽12内に配設された陽極14との間に電圧
を印加する。
In order to form an electrodeposition layer on the surface of the wire 11 using the electrophoresis apparatus shown in FIG. While moving at a speed of , a voltage is applied between the wire 11 and an anode 14 disposed in the electrodeposition bath 12, using the wire 11 as a cathode.

この電圧の印加条件は先の例と同、様に、定電圧法、定
電流密度法のいずれも可能であり、さらに電流波形は直
流の他、パルス、交直重畳、断続などに設定することが
できる。また、陽極14は、先の例で用いた陽極6と同
様のものを使用することができる。また、電着液3中の
超電導粉末の濃度は電着操作の進行にともなって低下し
てくるため、電着操作の進行にともなって、電着槽12
中の電着液3に超電導粉末を直接供給するか、所定濃度
の電着液3を供給するのが望ましい。
As in the previous example, the conditions for applying this voltage can be either the constant voltage method or the constant current density method, and the current waveform can be set to DC, pulse, AC/DC superimposition, intermittent, etc. can. Further, as the anode 14, the same one as the anode 6 used in the previous example can be used. In addition, since the concentration of superconducting powder in the electrodeposition liquid 3 decreases as the electrodeposition operation progresses, the concentration of the superconducting powder in the electrodeposition bath 1
It is preferable to directly supply the superconducting powder to the electrodeposition liquid 3 in the container, or to supply the electrodeposition liquid 3 at a predetermined concentration.

電着槽12内で所定の厚さの電着層が形成された超電導
素線13は、第5図の図中矢印で示すように電着1’f
f+2から引き出され、次いで熱風による乾燥処理を行
って、表面部分に残留するメチルエヂルケトンまたはア
セトンを除去ずろ。
The superconducting wire 13 on which an electrodeposited layer of a predetermined thickness has been formed in the electrodeposition bath 12 is deposited in the electrodeposited layer 1'f as shown by the arrow in FIG.
f+2 and then dried with hot air to remove methyl ether ketone or acetone remaining on the surface.

次に、この超電導素線13に熱処理を施す。この熱処理
は、先の例と同様に、酸素雰囲気中、800〜l000
℃で数十分〜数十時間加熱した後、室温まで徐冷する条
件に設定するのが望ましい。
Next, this superconducting wire 13 is subjected to heat treatment. This heat treatment is performed in an oxygen atmosphere at a temperature of 800 to 1000 ml, as in the previous example.
It is desirable to set conditions such that after heating at a temperature of several tens of minutes to several tens of hours, the temperature is gradually cooled to room temperature.

なお、この熱処理時に、所定速度で移動する超電導素線
I3を連続的に加熱、徐冷できるような加熱手段、例え
ば長尺のトンネル形の加熱炉などを用いても良く、さら
にこのような加熱炉を上述の電気泳動装置と組み合イつ
仕て、線材11に電気泳動電着−乾燥−熱処理の各処理
を連続的に施すように構成してら良い。
Note that during this heat treatment, a heating means that can continuously heat and slowly cool the superconducting wire I3 moving at a predetermined speed, such as a long tunnel-shaped heating furnace, may be used; The furnace may be combined with the above-mentioned electrophoresis apparatus, and the wire rod 11 may be constructed to be successively subjected to the following treatments: electrophoretic electrodeposition, drying, and heat treatment.

以」二の各処理により、線材11の表面に、Y。Through the following two treatments, Y is formed on the surface of the wire rod 11.

B atc u30 ?−Xなる組成比の緻密な超電導
体層が形成された長尺の超電導線材が製造される。なお
、得られた超電導線材の表面には、先の例と同様に被覆
層を形成しても良い。
B atc u30? A long superconducting wire in which a dense superconductor layer having a composition ratio of -X is formed is manufactured. Note that a coating layer may be formed on the surface of the obtained superconducting wire as in the previous example.

この例による超電導線材の製造方法は、先の例による超
電導材の製造方法とほぼ同様の効果が得られる他、線材
11の表面に電着層を形成し、この後熱処理を施す一連
の操作を連続的に実施することが容易であり、長尺の超
電導線材の製造を自動化することができ、超電導線材の
製造効率を向上させろことができる。
The method for manufacturing a superconducting wire according to this example provides almost the same effect as the method for manufacturing a superconducting material according to the previous example, and also includes a series of operations in which an electrodeposited layer is formed on the surface of the wire 11 and then heat treatment is performed. It is easy to carry out continuously, the production of long superconducting wires can be automated, and the production efficiency of superconducting wires can be improved.

なお、上述の6例では、超電導体としてY−Ba−Cu
−0系超電導体を用いたが、本発明方法はこれに限定さ
れることなく、例えばYの代わりにSc、La、Yb、
Er、Eu、Ho、Dy等の周期律表ma族元素の1種
以上を用い、またBaの代わりにBe。
In addition, in the above six examples, Y-Ba-Cu is used as the superconductor.
-0 series superconductor was used, but the method of the present invention is not limited to this, for example, instead of Y, Sc, La, Yb,
One or more elements of Group Ma of the periodic table such as Er, Eu, Ho, Dy, etc. are used, and Be is used instead of Ba.

Mg、Ca、Sr等の周期律表■a族元素の1種以上を
用いても良い。
One or more elements of group IV a of the periodic table, such as Mg, Ca, and Sr, may be used.

また、上述の6例では、1回の電気泳動電着操作により
電着層を形成したか、この電気泳動電着操作は2回以上
繰り返し行っても良い。
Further, in the six examples described above, the electrodeposition layer was formed by one electrophoretic electrodeposition operation, but this electrophoretic electrodeposition operation may be repeated two or more times.

(実験例1) Y、03と、B a CO3と、CuOの各原料粉末を
、Y :Ba:Cu= I :2 :3 (モル比)と
なるように均一に混合して混合粉末とし、次いでこの混
合粉末を酸素気流中、900℃で24時間仮焼して仮焼
粉末とし、更にこの仮焼粉末を酸素気流中、950℃で
24時間加熱した後、ボールミルによる粉砕処理を行っ
て、Y +B a、c uaoヮーXなる組成比の超電
導粉末を作成した。得られた超電導粉末の平均粒径は8
.5μmであった。
(Experimental Example 1) Raw material powders of Y, 03, Ba CO3, and CuO were uniformly mixed to give a ratio of Y:Ba:Cu=I:2:3 (mole ratio) to form a mixed powder. Next, this mixed powder was calcined in an oxygen stream at 900°C for 24 hours to obtain a calcined powder, and this calcined powder was further heated in an oxygen stream at 950°C for 24 hours, and then pulverized using a ball mill. A superconducting powder having a composition ratio of Y+B a and CUAOW-X was prepared. The average particle size of the obtained superconducting powder was 8
.. It was 5 μm.

次いでこの超電導粉末を300m1のメチルエヂルケト
ン中に509/Qの濃度となるように加え、超音波撹拌
を行って超電導粉末を均一に分散させて電着液とした。
Next, this superconducting powder was added to 300 ml of methyl edyl ketone at a concentration of 509/Q, and ultrasonic stirring was performed to uniformly disperse the superconducting powder to prepare an electrodeposition liquid.

この電着液を第1図に示す乙のと同等構成の電気泳動装
置の電着Iff(容fi350ml)内に入れ、この電
着液中に陽極とするステンレス板(SUS 304、厚
さ1mm、幅50 m m %長さlQOmm)と基材
を挿入し、ステンレス板(陽極)と基材(陰極)に50
〜1500Vの直流定電圧を印加して、2分間の電気泳
動電着を行った。基材としては、Z「、Ni5Agの各
金属を材料とする直径1ml11、長さ5cmの丸線材
を用いた。
This electrodeposition liquid was placed in the electrodeposition Iff (volume: 350 ml) of an electrophoresis apparatus having the same configuration as shown in Fig. 1, and a stainless steel plate (SUS 304, 1 mm thick, Insert the base material (width 50 mm % length lQO mm) and the stainless steel plate (anode) and the base material (cathode).
Electrophoretic electrodeposition was performed for 2 minutes by applying a DC constant voltage of ~1500V. As the base material, round wire rods with a diameter of 1 ml and a length of 5 cm made of metals Z" and Ni5Ag were used.

これらの基材は使用前にエタノール中で超音波洗浄を施
した。
These substrates were ultrasonically cleaned in ethanol before use.

続いて上記電気泳動電着を終えた各々の基材を200℃
で10分間熱風乾燥した後、酸素気流中において950
℃、2時間の加熱を行い、−400℃/時間で室温まで
徐冷して、超電導材を得た。
Subsequently, each base material after the electrophoretic electrodeposition described above was heated to 200°C.
After drying with hot air for 10 minutes at
C. for 2 hours and slowly cooled to room temperature at -400.degree. C./hour to obtain a superconducting material.

そして基材と処理′m圧の異なる複数の超電導材を作成
し、これらの超電導材の膜厚を顕微鏡を用いて測定した
。またこれらの超電導材の臨界温度(T c)を4端子
法で測定した。
A plurality of superconducting materials having different base materials and different processing pressures were prepared, and the film thicknesses of these superconducting materials were measured using a microscope. In addition, the critical temperature (T c ) of these superconducting materials was measured using a four-probe method.

これ、らの測定結果を表1に示す。The measurement results are shown in Table 1.

表  1 表!に示すように、基材として用いたZr、Ni。Table 1 table! As shown in , Zr and Ni were used as base materials.

Agの各金属材料による差はほとんど認められず、いず
れら高い臨界温度を示す超電導体層を形成することがで
きた。また、各超電導材において超電導体層の剥離やク
ラック発生は認められなかった。
Almost no difference was observed among the Ag metal materials, and it was possible to form a superconductor layer exhibiting a high critical temperature with any of the metal materials. Furthermore, no peeling or cracking of the superconductor layer was observed in each superconductor material.

なお、電気泳動電着の際の電流密度は電圧を1500V
とした場合でも30 μA/ca+’と非常に小さかっ
た。
In addition, the current density during electrophoretic electrodeposition is a voltage of 1500V.
Even in the case of 30 μA/ca+', it was very small.

(実験例2 ) 幅10mm、長さ20mm、厚さ1mmのジルコニア(
YSZ)板およびチタン酸ストロンヂウム(Sr’l’
10z)板の表面を、塩化スズ、塩化パラノウム水溶液
による萌処理を施した後、無電解メツキ法により厚さ約
2μmのN1メツキ層を形成し、基材とした。
(Experiment Example 2) Zirconia (width 10 mm, length 20 mm, thickness 1 mm)
YSZ) plate and strondium titanate (Sr'l'
10z) After the surface of the plate was subjected to a plating treatment using an aqueous solution of tin chloride and paranoum chloride, an N1 plating layer with a thickness of about 2 μm was formed by an electroless plating method, and this was used as a base material.

これらの基材を用いて上記実験例Iと同等の条件で電気
泳動電着および熱処理を行って、基材と処理電圧の異な
る複数の超電導材を作成し、実験例1と同様にこれらの
超電導材の膜厚および臨界温度(Tc)を測定した。
Using these base materials, electrophoretic electrodeposition and heat treatment were performed under the same conditions as in Experimental Example I above to create multiple superconducting materials with different base materials and processing voltages. The film thickness and critical temperature (Tc) of the material were measured.

これらの測定結果を表2に示す。The results of these measurements are shown in Table 2.

表2 表2に示すように、上記各基材による差はほとんど認め
られず、いずれも高い臨界温度を示す超電導体層を形成
することができた。また、各超電導材において超電導体
層の剥離やクラック発生は認められなかった。
Table 2 As shown in Table 2, almost no difference was observed among the above-mentioned base materials, and a superconductor layer exhibiting a high critical temperature could be formed in all of them. Furthermore, no peeling or cracking of the superconductor layer was observed in each superconductor material.

(実験例3 ) 実験例1で用いたものと同等の超電導粉末を、アセトン
中に50ip/12の濃度となるように加え、超音波撹
拌を行って均一に分散させて電着液を作成した。
(Experimental Example 3) Superconducting powder equivalent to that used in Experimental Example 1 was added to acetone at a concentration of 50 ip/12, and ultrasonic stirring was performed to uniformly disperse it to create an electrodeposition liquid. .

そしてこの電着液および実験例1で用いたものと同等の
Zr、Ni、Agの各基材を用いて、実験例Iと同等の
電気泳動電着および熱処理を行って超電導材を得た。
Then, using this electrodeposition solution and base materials of Zr, Ni, and Ag equivalent to those used in Experimental Example 1, electrophoretic electrodeposition and heat treatment equivalent to those in Experimental Example I were performed to obtain a superconducting material.

そして実験例Iと同様に基材と処理電圧の異なる複数の
超電導材を作成し、これらの超電導材の膜厚および臨界
温度(’re)を測定した。
Then, as in Experimental Example I, a plurality of superconducting materials having different base materials and processing voltages were created, and the film thicknesses and critical temperatures ('re) of these superconducting materials were measured.

これらの測定結果を表3に示す。The results of these measurements are shown in Table 3.

表  3 表3に示すように、基材として用いたZr、Ni、Ag
の各金属材料による差はほとんど認められず、いずれも
高い臨界温度を示す超電導体層を形成することができた
。また、各超電導材において超電導体層の剥離やクラッ
ク発生は認められなかった。
Table 3 As shown in Table 3, Zr, Ni, Ag used as the base material
There was almost no difference between the metal materials, and it was possible to form a superconductor layer showing a high critical temperature in all cases. Furthermore, no peeling or cracking of the superconductor layer was observed in each superconductor material.

(実験例4 ) 実験例2で用いたものと同様の基材、すなわちジルコニ
ア(YSZ)板およびチタン酸ストロンチウム(S r
T io 3)板の表面に面処理を施した後、無電解メ
ツキ法により厚さ約2μlのNiメツキ層を形成したも
のを基材として用い、かつ上記実験例3で用いたものと
同様の電着液を用いて、実験例Iと同等の電気泳動電着
および熱処理を行って超電導材を得た。
(Experimental Example 4) The same base materials as those used in Experimental Example 2, namely a zirconia (YSZ) plate and strontium titanate (S r
3) After performing surface treatment on the surface of the plate, a Ni plating layer with a thickness of approximately 2 μl was formed using the electroless plating method as the base material, and a plate similar to that used in Experimental Example 3 above was used. A superconducting material was obtained by performing electrophoretic electrodeposition and heat treatment in the same manner as in Experimental Example I using an electrodeposition solution.

そして実験例1と同様に基材と処理電圧の異なる複数の
超電導材を作成し、これらの超電導材の膜厚および臨界
温度(Tc)を測定した。
Then, as in Experimental Example 1, a plurality of superconducting materials having different base materials and processing voltages were created, and the film thickness and critical temperature (Tc) of these superconducting materials were measured.

これ、らの測定結果を表4に示す。The measurement results are shown in Table 4.

表4 表4に示すように、上記各基材による差はほとんど認め
られず、いずれも高い臨界温度を示す超電導体層を形成
することができた。また、各超電導材において超電導体
層の剥離やクラック発生は認められなかった。
Table 4 As shown in Table 4, almost no difference was observed among the above-mentioned base materials, and a superconductor layer exhibiting a high critical temperature could be formed in all of them. Furthermore, no peeling or cracking of the superconductor layer was observed in each superconductor material.

(実験例5 ) 本発明方法と比較するために、メチルエチルケトンおよ
びアセトン以外の有機溶媒を分散媒に用いて超電導材の
製造を実施した。
(Experimental Example 5) In order to compare with the method of the present invention, a superconducting material was manufactured using an organic solvent other than methyl ethyl ketone and acetone as a dispersion medium.

エタノール、I・ルエン、キシレンを分散媒として用い
、これらの分散媒中に実験例1で用いた乙のと同等の超
電導粉末を50y/&の濃度となるように加えて分散さ
せて各種の電着液を作成し、これらの電着液と実験例I
および実験例2で用いた乙のと同様の基材を用いて、実
験例Iと同等条件の電気泳動電着を行った。その結果、
分散媒としてエタノールを用いたしのでは、基材の表面
に電着層か全く形成されず、トルエンおよびキシレンを
用いたしのでは、基材の表面に少壜の電着層が形成され
たものの、基材との密着性か悪く、緻密に形成されない
ために基材を電着液から引き上げる際に剥がれ落ちてし
まった。
Ethanol, I-luene, and xylene were used as dispersion media, and superconducting powder equivalent to that used in Experimental Example 1 was added to these dispersion media to a concentration of 50y/& to disperse various types of electric current. Prepare the electrodeposition liquid and use these electrodeposition liquids and Experimental Example I
Using the same base material as that used in Experimental Example 2, electrophoretic electrodeposition was performed under the same conditions as Experimental Example I. the result,
When ethanol was used as a dispersion medium, no electrodeposited layer was formed on the surface of the substrate, and when toluene and xylene were used, a small amount of electrodeposited layer was formed on the surface of the substrate. The adhesion to the base material was poor, and because it was not formed densely, it peeled off when the base material was pulled up from the electrodeposition solution.

「発明の効果」 以上説明したように、本発明による酸化物超電導付の製
造方法では、基材の表面に、電気泳動電着により酸化物
超電導粉末を電着して緻密な電着層を形成し、この後熱
処理を施すことにより、基材の表面に緻密な超電導体層
を生成することかできるので、超電導体層に亀裂などの
不良を生じることがなく、高臨界電流密度(Jc)を有
する高性能の酸化物超電導付を製造することかできろ。
"Effects of the Invention" As explained above, in the method for producing an oxide superconductor according to the present invention, an oxide superconductor powder is electrodeposited on the surface of a base material by electrophoretic electrodeposition to form a dense electrodeposition layer. However, by applying heat treatment after this, it is possible to generate a dense superconductor layer on the surface of the base material, so defects such as cracks do not occur in the superconductor layer, and high critical current density (Jc) can be maintained. Is it possible to manufacture a high-performance oxide superconductor with high performance?

また基材の表面に、電気泳動電着により緻密な電着層を
形成し、この後熱処理を施して超電導体層を生、成する
ので、超電導体層は基材に対して密着性が良好となり、
可撓性に優れ、機械強度の高い超電導材を製造すること
ができる。
In addition, a dense electrodeposition layer is formed on the surface of the base material by electrophoretic electrodeposition, and then heat treatment is performed to form a superconductor layer, so the superconductor layer has good adhesion to the base material. Then,
Superconducting materials with excellent flexibility and high mechanical strength can be manufactured.

さらに、基材の表面に、電気泳動電着で超電導粉末から
なる電着層を形成するので、超電導体層の厚さを正確に
制御することができる。
Furthermore, since the electrodeposition layer made of superconducting powder is formed on the surface of the base material by electrophoretic electrodeposition, the thickness of the superconductor layer can be accurately controlled.

また、電気泳動電着によって電着層を形成するので、2
00μm以上の比較的厚い電着層を短時間の電着操作で
形成することができ、超電導材の製造効率を向上させる
ことができる。
In addition, since the electrodeposition layer is formed by electrophoretic electrodeposition, 2
A relatively thick electrodeposited layer of 00 μm or more can be formed in a short time by electrodeposition, and the production efficiency of superconducting materials can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の酸化物超電導付製造方法
の1例を説明するためのものであって、第1図は電気泳
動装置の概略構成図、第2図は超電導素材の断面図、第
3図は超電導材の断面図、第4図は第3図に示す超電導
材に被覆を施した例を示す超電導材の断面図、第5図は
本発明の酸化物超電導付の製造方法により超電導線材を
製造するに好適に使用される電気泳動装置の概略構成図
である。 1・・・基材、3・・・電着液、4・・・電着層、A・
・・超電導材、11・・・線材(基材)。
1 to 4 are for explaining one example of the method for manufacturing oxide superconductors of the present invention, in which FIG. 1 is a schematic diagram of an electrophoresis device, and FIG. 2 is a cross-sectional view of a superconducting material. 3 is a sectional view of a superconducting material, FIG. 4 is a sectional view of a superconducting material showing an example of coating the superconducting material shown in FIG. 3, and FIG. 5 is a fabrication of an oxide superconductor according to the present invention FIG. 1 is a schematic configuration diagram of an electrophoresis device suitably used for manufacturing a superconducting wire by the method. DESCRIPTION OF SYMBOLS 1... Base material, 3... Electrodeposition liquid, 4... Electrodeposition layer, A.
...Superconducting material, 11...Wire rod (base material).

Claims (2)

【特許請求の範囲】[Claims] (1)A−B−Cu−O系 (ただし、AはY、Sc、La、Yb、Er、Eu、H
o、Dy等の周期律表IIIa族元素の1種以上を示し、
BはBe、Mg、Ca、Br、Ba等の周期律表IIa族
元素の1種以上を示す。) の酸化物超電導体を具備してなる酸化物超電導材の製造
方法において、 上記酸化物超電導体の粉末または酸化物超電導体の前駆
体粉末をメチルエチルケトン中に分散させた電着液中で
、少なくとも表面部分に導電性を有する基材を陰極とし
て電気泳動電着を行って、該基材の表面に酸化物超電導
体を構成する元素を含む電着層を形成し、この後熱処理
を施すことを特徴とする酸化物超電導材の製造方法。
(1) A-B-Cu-O system (A is Y, Sc, La, Yb, Er, Eu, H
o, represents one or more elements of group IIIa of the periodic table such as Dy,
B represents one or more elements of group IIa of the periodic table, such as Be, Mg, Ca, Br, and Ba. ) in an electrodeposition liquid in which the powder of the oxide superconductor or the precursor powder of the oxide superconductor is dispersed in methyl ethyl ketone, at least Electrophoretic electrodeposition is performed using a base material whose surface portion is conductive as a cathode to form an electrodeposited layer containing elements constituting an oxide superconductor on the surface of the base material, and then heat treatment is performed. A method for producing a characteristic oxide superconducting material.
(2)請求項1記載の酸化物超電導付の製造方法におい
て、メチルエチルケトンに代えてアセトンを用いた酸化
物超電導材の製造方法。
(2) A method for producing an oxide superconductor according to claim 1, in which acetone is used in place of methyl ethyl ketone.
JP63077767A 1988-03-30 1988-03-30 Production of oxide superconducting material Pending JPH01247598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077767A JPH01247598A (en) 1988-03-30 1988-03-30 Production of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63077767A JPH01247598A (en) 1988-03-30 1988-03-30 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH01247598A true JPH01247598A (en) 1989-10-03

Family

ID=13643094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077767A Pending JPH01247598A (en) 1988-03-30 1988-03-30 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH01247598A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156497A (en) * 1987-11-09 1989-06-20 Ametek Inc Method forming superconductive article by electrodeposition method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156497A (en) * 1987-11-09 1989-06-20 Ametek Inc Method forming superconductive article by electrodeposition method

Similar Documents

Publication Publication Date Title
Chu et al. Fabrication of YBa2Cu3O7− y superconducting coatings by electrophoretic deposition
KR920009993B1 (en) Process for preparing superconductor
EP0293981A2 (en) Processes for the manufacture of superconducting inorganic compounds and the products of such processes
Mizuguchi et al. Characterization of YBa2Cu3 O 7− x Layers Prepared by Electrophoretic Deposition
JPH01247598A (en) Production of oxide superconducting material
JPH01247600A (en) Production of oxide superconducting material
Pawar et al. Electrodeposition of Dy Ba Cu alloyed films from aqueous bath
JPH01247599A (en) Production of oxide superconducting material
JP2595274B2 (en) Method of forming oxide-based superconductor layer
JPH01246395A (en) Production of oxide superconducting material
JP2583577B2 (en) Method for producing Bi-based oxide superconducting material
JP2551624B2 (en) Manufacturing method of oxide superconducting material
JP2595273B2 (en) Method of forming superconductor layer
Casañ-Pastor et al. YBa2Cu3O7− δ wires by electrodeposition of metallic elements and by electrophoresis
JP2901243B2 (en) Method for producing oxide-based superconducting wire
JPH01287297A (en) Production of bi-containing oxide superconducting material
JP2502682B2 (en) Method for producing superconducting ceramic-metal composite coating
JP2583576B2 (en) Manufacturing method of oxide superconducting material
JPH01287296A (en) Production of oxide superconducting material
Maiti et al. Coating of superconducting. 123 compound on silver substrate by electrophoretic technique
KR930008460B1 (en) Method for manufacturing superconductive tape
KR940003439B1 (en) Manufacturing method of superconductor meterial
JPH01230405A (en) Production of oxide superconducting thick film
JPH01283714A (en) Manufacture of superconductive material
JPH0244011A (en) Production of superconducting member