JPH0124742B2 - - Google Patents

Info

Publication number
JPH0124742B2
JPH0124742B2 JP58000243A JP24383A JPH0124742B2 JP H0124742 B2 JPH0124742 B2 JP H0124742B2 JP 58000243 A JP58000243 A JP 58000243A JP 24383 A JP24383 A JP 24383A JP H0124742 B2 JPH0124742 B2 JP H0124742B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
high alumina
polycrystalline high
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58000243A
Other languages
Japanese (ja)
Other versions
JPS59124840A (en
Inventor
Toshihiro Minaki
Koichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP24383A priority Critical patent/JPS59124840A/en
Publication of JPS59124840A publication Critical patent/JPS59124840A/en
Publication of JPH0124742B2 publication Critical patent/JPH0124742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 本発明は、セラミツク繊維を原料とする耐熱性
成形体の製造法に関するものである。 近年、種々のセラミツク繊維が比較的安価に入
手できるようになるにつれて、セラミツク繊維を
主原料とする耐熱性成形体の製造が試みられ、一
部商品化されたものもある。セラミツク繊維質の
耐熱性成形体は、軽量で断熱性が良く、蓄熱量も
少ないから、省エネルギー効果の大きい断熱材と
して、高温加熱炉の炉材等に広く使用されるよう
になつた。その中で、現在もつともすぐれた耐熱
性を示すものの一つにアルミノシリケート質セラ
ミツク繊維と多結晶高アルミナ質繊維との混合物
を原料として作られた成形体があり、最高1600℃
の温度に耐えるとされている。しかしながら、本
発明者らの研究によれば、この成形体は、湿式抄
造成形工程において繊維がパルパーやビーターで
開繊された際の衝撃でもろい多結晶高アルミナ質
繊維が細かく切断されているため、比較的柔軟な
アルミノシリケート質セラミツク繊維のみを用い
たものに比べると密度が高くなりがちであり、ま
た耐屈曲性が劣り、亀裂を生じ易く、耐熱性の点
でも多結晶高アルミナ質繊維の性能が充分発揮さ
れにくいものであつた。 そこで本発明者らは、開繊処理による多結晶高
アルミナ質繊維の切断を最小限度に抑え、該繊維
の性能を充分生かした耐熱性成形体を製造するこ
とを目的として研究を重ねた結果、以下に詳述す
るような本発明を完成するに至つたのである。 本発明による耐熱性成形体の製造法は、アルミ
ノシリケート質セラミツク繊維と多結晶高アルミ
ナ質繊維との混合物を結合剤と共に抄造し、次い
で結合剤を硬化させることにより繊維質の耐熱性
成形体を製造するに当り、抄造用の繊維分散液の
調製を、 (イ) アルミノシリケート質セラミツク繊維のみを
まず水中に投入して該繊維が細断されるまで開
繊処理し、 (ロ) 得られたアルミノシリケート質セラミツク繊
維分散液にカチオン界面活性剤および多結晶高
アルミナ質繊維を添加し、アルミノシリケート
質セラミツク繊維と多結晶高アルミナ質繊維と
が均一に混合されるまで開繊処理し、 (ハ) 次いで、または上記(ロ)の処理と並行して、繊
維分散液に結合剤を添加し分散させる ことにより行うことを特徴とする。 本発明においてアルミノシリケート質繊維のみ
をまず開繊処理するのは、この繊維は充分細断す
るが多結晶高アルミナ質繊維はなるべく切断しな
いことが、後者の高い耐熱性を生かした高性能成
形体を得るのに必要だからである。したがつて、
多結晶高アルミナ質繊維を添加した後の開繊処理
は、アルミノシリケート質繊維と多結晶高アルミ
ナ質繊維とを均一に混合するために行うものであ
り、後者の細断を目的とするものではない。この
場合、繊維分散液が単なる水を分散媒とするもの
であると、上記2種類の繊維の混合のために最低
限度の開繊処理においても、もろい多結晶高アル
ミナ質繊維の切断が相当程度おこるのが避けられ
ないが、分散液にカチオン界面活性剤を添加して
おくと、その作用機構はまだ解明されていないけ
れども、多結晶高アルミナ質繊維の切断が抑制さ
れて微細なアルミノシリケート質繊維と長い多結
晶高アルミナ質繊維との混合分散液を容易に得る
ことができる。 本発明を実施する場合、繊維の開繊処理は、パ
ルパー、ビーター等、湿式抄造成形に当り原料繊
維の分散液の調製に通常使用される装置を用いて
行うことができるが、多結晶高アルミナ質繊維を
添加した後の開繊処理は、上記本発明の意図する
ところに従い、なるべく繊維を損傷することなく
混合のみを行い得る装置および処理条件で行うこ
とが望ましいこと、いうまでもない。 分散液に添加するカチオン界面活性剤として
は、オクタデシルアミン酢酸塩、テトラデシルア
ミン酢酸塩などの脂肪酸アミン塩;長鎖アルキル
トリメチルアンモニウムクロライド(例えばオク
デシルトリメチルアンモニウムクロライド)など
の第4級アンモニウム塩型のものなどが、最も効
果が大であり好ましい。その使用量は、多結晶高
アルミナ質繊維に対して約0.05〜1.00重量%で適
当である。カチオン界面活性剤は、多結晶高アル
ミナ質繊維が開繊処理を受ける前に分散液中に溶
解しておかなければならない。このためには、ア
ルミノシリケート質繊維の開繊処理の末期にカチ
オン界面活性剤またはその希釈液を繊維分散液中
に注入すればよいが、分散液に投入する前の多結
晶高アルミナ質繊維にカチオン界面活性剤の溶液
を噴霧するか含浸させておいてもよい。 上述のような開繊方法を採用することに基づく
本発明の効果は、多結晶高アルミナ質繊維とアル
ミノシリケート質繊維との混合比が5:95ないし
約100:約0の広い範囲で認められるが、1600℃
以上の高温に耐える耐熱性と良好な機械的性質と
を併せ持つ成形体を得るためには、上記混合比を
50:50ないし90:10とすることが望ましい。 抄造物の形状を固定するための結合剤として
は、コロイダシルリカ、アルミナゾル等の無機質
結合剤、あるいはデンプン、アクリルラテツクス
等の有機質結合剤など、この種の繊維質成形物の
形状固定に通常使用されるものをいずれも使用す
ることができる。結合剤は、その役割から明らか
なように、開繊処理を終つた繊維分散液に対して
抄造前に混入すればよいが、開繊処理中の繊維分
散液に添加し混合しても差支えない。 、繊維分散液の抄造および乾燥等その後の処理
も、この種のの繊維質成形体製造の常法に従つて
行えばよいが、有機質結合剤を使用した場合、特
にその使用量が多いときは、乾燥後さらに温度を
約500℃まで上げて焼成することが望ましい。 以上のような本発明の製法によつて得られる成
形体は、微細なアルミノシリケート質繊維が長く
且つ耐熱性のよい多結晶高アルミナ質繊維により
形成された骨格構造の隙間にあつて上記骨格を架
橋しているものであるから、1400〜1600℃という
超高温域においても、該アルミノシリケート質繊
維の結晶化にともなう収縮が成形体の収縮となつ
て現われにくく、すぐれた寸法安定性を示す。そ
してもろく繊維間のからみ合いが弱いという多結
晶高アルミナ質繊維の欠点は、上述のように充填
されたアルミノシリケート質繊維の補強作用によ
り、成形体の欠点としては現われない。 このように、本発明の製法によれば、2種類の
原料繊維がそれぞれの長所を発揮し互に欠点を補
い合うことにより高性能を示す成形体を容易に製
造することができる。 以下実施例および比較例を示して本発明を説明
する。 比較例 1 パルパーに水3000重量部およびアルミノシリケ
ート質セラミツク繊維・フアインフレツクス1300
(ニチアス株式会社製品)42重量部を入れ、5分
間開繊処理した。この処理により、20〜50mmであ
つた上記繊維の平均繊維長は5〜10mmになつた。
次いでここに繊維長約20〜100mmの多結晶高アル
ミナ質繊維・サフイルフアイバー(英国ICI社製
品)18重量部を投入して1分間繊し、両繊維が均
一に混合されたスラリー状分散液を得た。この状
態で、多結晶アルミナ質繊維は2〜3mmに細断さ
れていた。得られたスラリーに更にアクリルラテ
ツクス3重量部および凝集剤(硫酸アルミニウ
ム)1.2重量部を添加して1分間混合し、均一な
スラリーを得た。 このスラリーを抄造機にて38mm×600mm×900mm
の板状に抄造し、次いで105℃で16時間乾燥した。
得られた繊維質成形体の性能を表1に示す。 実施例 1 アルミノシリケート質セラミツク繊維の開繊終
了後、第4級アンモニウム塩型カチオン界面活性
剤・ニツサンカチオンFB(日本油脂株式会社製
品)0.013重量部を添加し溶解してから多結晶高
アルミナ質繊維の開繊を行なつたほかは比較例1
と同様にして、板状成形体を製造した。解繊後の
多結晶高アルミナ質繊維の繊維長は5〜10mmであ
つた。得られた成形体の性能を表1に示す。 実施例 2 カチオン界面活性剤の添加量を0.13重量部に変
更したほかは実施例1と同様にして、板状成形体
を製造した。解繊後の多結晶高アルミナ質繊維の
繊維長は5〜10mmであつた。得られた成形体の性
能を表1に示す。 実施例 3 アルミノシリケート質セラミツク繊維の量を51
重量部に、また多結晶高アルミナ質繊維の量を9
重量部に、それぞれ変更したほかは実施例2と同
様にして、板状成形体を製造した。解繊後の多結
晶高アルミナ質繊維の繊維長は5〜10mmであつ
た。得られた成形体の性能を表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-resistant molded article using ceramic fiber as a raw material. In recent years, as various ceramic fibers have become available at relatively low prices, attempts have been made to produce heat-resistant molded articles using ceramic fibers as the main raw material, and some have even been commercialized. Heat-resistant molded bodies made of ceramic fibers are lightweight, have good heat insulation properties, and have a small amount of heat storage, so they have come to be widely used as heat insulating materials for high-temperature heating furnaces, etc., with a large energy-saving effect. Among them, one of the products that currently exhibits excellent heat resistance is a molded product made from a mixture of aluminosilicate ceramic fiber and polycrystalline high alumina fiber, which can withstand temperatures up to 1600℃.
It is said to withstand temperatures of However, according to the research of the present inventors, this molded body is produced because the brittle polycrystalline high alumina fibers are cut into small pieces by the impact when the fibers are opened with a pulper or beater during the wet paper forming process. Compared to fibers made only of relatively flexible aluminosilicate ceramic fibers, they tend to be denser, have poorer bending resistance and are more prone to cracking, and are superior to polycrystalline high alumina fibers in terms of heat resistance. It was difficult to fully demonstrate its performance. Therefore, the present inventors conducted repeated research with the aim of minimizing the cutting of polycrystalline high alumina fibers during the opening process and producing a heat-resistant molded product that fully utilizes the performance of the fibers. This led to the completion of the present invention as detailed below. The method for producing a heat-resistant molded article according to the present invention involves forming a mixture of aluminosilicate ceramic fibers and polycrystalline high alumina fibers together with a binder, and then hardening the binder to produce a fibrous heat-resistant molded article. During production, a fiber dispersion for papermaking is prepared by (a) first putting only aluminosilicate ceramic fibers into water and opening the fibers until they are shredded; A cationic surfactant and polycrystalline high alumina fibers are added to the aluminosilicate ceramic fiber dispersion, and the fibers are opened until the aluminosilicate ceramic fibers and the polycrystalline high alumina fibers are uniformly mixed. ) Next, or in parallel with the treatment in (b) above, a binder is added to the fiber dispersion and dispersed. In the present invention, the reason why only the aluminosilicate fibers are first opened is that these fibers are sufficiently shredded, but the polycrystalline high alumina fibers are not cut as much as possible, which makes it possible to create a high-performance molded product that takes advantage of the latter's high heat resistance. This is because it is necessary to obtain. Therefore,
The opening process after adding the polycrystalline high alumina fiber is performed to uniformly mix the aluminosilicate fiber and the polycrystalline high alumina fiber, and is not intended to shred the latter. do not have. In this case, if the fiber dispersion liquid simply uses water as a dispersion medium, the brittle polycrystalline high alumina fibers will be cut to a considerable degree even in the minimum opening treatment for mixing the two types of fibers mentioned above. This is unavoidable, but if a cationic surfactant is added to the dispersion, the cutting of polycrystalline high alumina fibers will be suppressed and fine aluminosilicate fibers will be formed, although the mechanism of action has not yet been elucidated. A mixed dispersion of fibers and long polycrystalline high alumina fibers can be easily obtained. When carrying out the present invention, the opening treatment of the fibers can be carried out using equipment such as a pulper or a beater that is normally used for preparing a dispersion of raw material fibers in wet paper forming. It goes without saying that the opening treatment after adding the quality fibers is desirably carried out in accordance with the above-mentioned intention of the present invention using an apparatus and processing conditions that allow only mixing without damaging the fibers. Examples of the cationic surfactant to be added to the dispersion include fatty acid amine salts such as octadecylamine acetate and tetradecylamine acetate; quaternary ammonium salts such as long-chain alkyltrimethylammonium chloride (e.g. ocdecyltrimethylammonium chloride); These are the most effective and preferred. The amount used is approximately 0.05 to 1.00% by weight based on the polycrystalline high alumina fiber. The cationic surfactant must be dissolved in the dispersion before the polycrystalline high alumina fibers are subjected to the opening process. To this end, a cationic surfactant or its diluted solution may be injected into the fiber dispersion at the final stage of the opening process of the aluminosilicate fibers, but the polycrystalline high alumina fibers before being added to the dispersion may be It may also be sprayed or impregnated with a solution of cationic surfactant. The effects of the present invention based on the use of the above-described opening method can be observed over a wide range of mixing ratios of polycrystalline high alumina fibers and aluminosilicate fibers of 5:95 to about 100:0. But 1600℃
In order to obtain a molded product that has both heat resistance that can withstand high temperatures and good mechanical properties, the above mixing ratio must be adjusted.
A ratio of 50:50 to 90:10 is preferable. Binders for fixing the shape of paper products include inorganic binders such as colloidal silica and alumina sol, or organic binders such as starch and acrylic latex, which are commonly used to fix the shape of this type of fibrous molding. You can use any of the following. As is clear from its role, the binder can be mixed into the fiber dispersion after the opening process before papermaking, but it may also be added to and mixed with the fiber dispersion during the opening process. . The subsequent processing such as paper-making and drying of the fiber dispersion may be carried out in accordance with the conventional method for producing this type of fibrous molded article. However, when an organic binder is used, especially when the amount used is large, After drying, it is desirable to further raise the temperature to about 500°C and fire. The molded article obtained by the production method of the present invention as described above has fine aluminosilicate fibers in the gaps between the skeleton structure formed by long polycrystalline high alumina fibers with good heat resistance. Since it is cross-linked, even in the ultra-high temperature range of 1400 to 1600°C, shrinkage due to crystallization of the aluminosilicate fibers is unlikely to appear as shrinkage of the molded product, and it exhibits excellent dimensional stability. The drawbacks of polycrystalline high alumina fibers, such as brittleness and weak intertwining between fibers, do not appear as defects in the molded product due to the reinforcing action of the filled aluminosilicate fibers as described above. As described above, according to the production method of the present invention, a molded article exhibiting high performance can be easily produced by allowing two types of raw material fibers to exhibit their respective strengths and compensate for each other's deficiencies. The present invention will be explained below with reference to Examples and Comparative Examples. Comparative Example 1 Pulper with 3000 parts by weight of water and 1300 parts by weight of aluminosilicate ceramic fiber/Fine Flex
(Product from NICHIAS Co., Ltd.) 42 parts by weight was added and opened for 5 minutes. By this treatment, the average fiber length of the above fibers, which was 20 to 50 mm, became 5 to 10 mm.
Next, 18 parts by weight of polycrystalline high alumina fibers with a fiber length of about 20 to 100 mm, Saffil Fiber (product of ICI, UK), was added and fiberized for 1 minute to form a slurry-like dispersion in which both fibers were uniformly mixed. I got it. In this state, the polycrystalline alumina fibers were chopped into pieces of 2 to 3 mm. Further, 3 parts by weight of acrylic latex and 1.2 parts by weight of a flocculant (aluminum sulfate) were added to the obtained slurry and mixed for 1 minute to obtain a uniform slurry. This slurry is made into a paper making machine of 38mm x 600mm x 900mm.
It was made into a plate shape and then dried at 105°C for 16 hours.
Table 1 shows the performance of the obtained fibrous molded product. Example 1 After opening the aluminosilicate ceramic fiber, 0.013 parts by weight of a quaternary ammonium salt type cationic surfactant, Nitsusan Cation FB (product of NOF Corporation) was added and dissolved, and then polycrystalline high alumina was added. Comparative Example 1 except that the quality fiber was opened.
A plate-shaped molded body was produced in the same manner as above. The fiber length of the polycrystalline high alumina fiber after defibration was 5 to 10 mm. Table 1 shows the performance of the obtained molded product. Example 2 A plate-shaped molded article was produced in the same manner as in Example 1, except that the amount of cationic surfactant added was changed to 0.13 parts by weight. The fiber length of the polycrystalline high alumina fiber after defibration was 5 to 10 mm. Table 1 shows the performance of the obtained molded product. Example 3 The amount of aluminosilicate ceramic fiber was 51
parts by weight, and the amount of polycrystalline high alumina fibers is 9.
A plate-shaped molded body was produced in the same manner as in Example 2 except that the parts by weight were changed. The fiber length of the polycrystalline high alumina fiber after defibration was 5 to 10 mm. Table 1 shows the performance of the obtained molded product. 【table】

Claims (1)

【特許請求の範囲】 1 アルミノシリケート質セラミツク繊維と多結
晶高アルミナ質繊維との混合物を結合剤と共に抄
造し、次いで結合剤を硬化させることにより繊維
質の耐熱性成形体を製造するに当り、抄造用の繊
維分散液の調製を、 (イ) アルミノシリケート質セラミツク繊維のみを
まず水中に投入して該繊維が細断されるまで開
繊処理し、 (ロ) 得られたアルミノシリケート質セラミツク繊
維分散液にカチオン界面活性剤および多結晶高
アルミナ質繊維を添加し、アルミノシリケート
質セラミツク繊維と多結晶高アルミナ質繊維と
が均一に混合されるまで開繊処理し、 (ハ) 次いで、または上記(ロ)の処理と並行して、繊
維分散液に結合剤を添加し分散させる ことにより行うことを特徴とする耐熱性成形体の
製造法。 2 カチオン界面活性剤が脂肪酸のアミン塩また
は第4級アンモニウム塩である特許請求の範囲第
1項記載の製造法。 3 カチオン界面活性剤の添加量が多結晶高アル
ミナ質繊維に対して0.05〜1.00重量%である特許
請求の範囲第1項記載の製造法。
[Claims] 1. In producing a fibrous heat-resistant molded article by forming a mixture of aluminosilicate ceramic fiber and polycrystalline high alumina fiber together with a binder and then curing the binder, Preparation of a fiber dispersion for papermaking is carried out by (a) first putting only aluminosilicate ceramic fibers into water and opening the fibers until they are shredded; (b) the obtained aluminosilicate ceramic fibers; A cationic surfactant and polycrystalline high alumina fibers are added to the dispersion, and the fibers are opened until the aluminosilicate ceramic fibers and the polycrystalline high alumina fibers are uniformly mixed; A method for producing a heat-resistant molded article, which is carried out by adding and dispersing a binder to a fiber dispersion liquid in parallel with the treatment in (b). 2. The production method according to claim 1, wherein the cationic surfactant is an amine salt or a quaternary ammonium salt of a fatty acid. 3. The manufacturing method according to claim 1, wherein the amount of the cationic surfactant added is 0.05 to 1.00% by weight based on the polycrystalline high alumina fiber.
JP24383A 1983-01-06 1983-01-06 Manufacture of heat resistant molding Granted JPS59124840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24383A JPS59124840A (en) 1983-01-06 1983-01-06 Manufacture of heat resistant molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24383A JPS59124840A (en) 1983-01-06 1983-01-06 Manufacture of heat resistant molding

Publications (2)

Publication Number Publication Date
JPS59124840A JPS59124840A (en) 1984-07-19
JPH0124742B2 true JPH0124742B2 (en) 1989-05-12

Family

ID=11468512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24383A Granted JPS59124840A (en) 1983-01-06 1983-01-06 Manufacture of heat resistant molding

Country Status (1)

Country Link
JP (1) JPS59124840A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085606A (en) * 2020-11-27 2022-06-08 ニチアス株式会社 Shaped body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571684A (en) * 1978-11-24 1980-05-29 Isolite Babcock Refractories Ceramic fiber felt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571684A (en) * 1978-11-24 1980-05-29 Isolite Babcock Refractories Ceramic fiber felt

Also Published As

Publication number Publication date
JPS59124840A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
JPH04265278A (en) Insulating product containing inorganic fiber as base material and method of manufacture thereof
JPS632849A (en) Mixture composition for manufacturing fiber-containing hydraulic formed body and manufacture of same body
JPS6062598A (en) Manufacture of heat exchanging element
US4659386A (en) Process for producing lightweight calcium silicate articles
CN107986744B (en) High-temperature-resistant aerogel composite heat-insulating felt and preparation method thereof
US6869475B1 (en) Calcium silicate insulating material containing blast furnace slag cement
US4334931A (en) Method for producing asbestos free machinable calcium silicate high heat-resistant material
CN112573933B (en) Ceramic fiber board and preparation method thereof
US4389282A (en) Ceramic fiber board
JPH0124742B2 (en)
CN110746199A (en) Method for manufacturing multi-cavity-hole ceramic composite heat-insulating material
CN106565251A (en) High-strength lightweight refractory fiber and preparation method thereof
JPS6353145B2 (en)
RU2796591C1 (en) Solid fiber burner brick and method for its production
CN112759270B (en) Glass fiber
JP2990320B2 (en) Insulation material and its manufacturing method
SU1724638A1 (en) Composition for producing heat insulating refractory material
SU1169963A1 (en) Raw mixture for manufacturing heat-insulating articles
RU1794922C (en) Mixture for manufacturing fire-proof heat-insulating material
JPS6213300B2 (en)
SU1373701A1 (en) Raw mixture for producing building articles
CN110845216A (en) Ceramic fiber insulation board
JPH02212369A (en) Refractory board
JP2819352B2 (en) Manufacturing method of low-density insulation structure
JPS5832081A (en) Composite material and manufacture