JPH01247088A - Method for supporting biocatalyst with polymer membrane - Google Patents

Method for supporting biocatalyst with polymer membrane

Info

Publication number
JPH01247088A
JPH01247088A JP63075160A JP7516088A JPH01247088A JP H01247088 A JPH01247088 A JP H01247088A JP 63075160 A JP63075160 A JP 63075160A JP 7516088 A JP7516088 A JP 7516088A JP H01247088 A JPH01247088 A JP H01247088A
Authority
JP
Japan
Prior art keywords
bag
biocatalyst
membrane
immobilized
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63075160A
Other languages
Japanese (ja)
Other versions
JPH082302B2 (en
Inventor
Hitoshi Masuda
等 増田
Yutaka Ishigami
裕 石上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63075160A priority Critical patent/JPH082302B2/en
Publication of JPH01247088A publication Critical patent/JPH01247088A/en
Publication of JPH082302B2 publication Critical patent/JPH082302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To supply sufficient nutrient and oxygen to a biocatalyst and to enable the repeated use of the catalyst over a long period in the production of a substance with an immobilized biocatalyst, by supporting a biocatalyst on a wall membrane composed of a polymer membrane having a pore diameter of <=2mum. CONSTITUTION:A piece of nonwoven cloth of 45mm in length and 35mm in width is put into a bag of 50mm in length and 40mm in width, made of e.g., Duraguard 3201 (pore diameter; 0.4X0.04mum) and sealed at three sides and the bag is immersed in an N/1000 aqueous solution of hydrochloric acid for >=1hr. Microbial cells are put into the bag and the opening of the bag is sealed. The bag is put into a wide-mouthed bottle containing an unsterilized medium and the microorganism is cultured under aeration. The microbial cells are attached to both surfaces of the nonwoven cloth in the form of films by this culture process. There is not proliferation of sundry germs in the culture liquid outside of the membrane. The immobilized catalyst has high durability and productivity and can be used without sterilizing the culture liquid or necessitating the troublesome operation of the gel preparation because the microorganisms are present in the membrane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 酵素活性を安定化し、また水溶性であるにもかかわらず
くり返して使用を可能にするために、酵素を物理的また
は化学的手法で水に不溶化して固体触媒の形で使用する
技術が開発され、L−アミノ酸、異性化糖、6−アミノ
ペニシラン酸及びリンゴ酸等の工業生産に利用されてい
る6さらに固定化酵素の手法を進めて酵素を包含したま
まの微生物菌体(固定化微生物)を利用すれば、抽出精
製操作を省ける、固定化または操作時の安定性がよい、
多階段酵素系の利用に有利、補酵素やATPなどの供給
が可能、などの利点がある。また、二次代謝産物の生産
のために生菌体の固定化法を用いることができ、さらに
固定化増殖微生物を用いて収量を向上させることも可能
である。
[Detailed Description of the Invention] [Industrial Application Field] In order to stabilize enzyme activity and enable repeated use despite being water-soluble, enzymes are immersed in water by physical or chemical methods. A technology to insolubilize and use in the form of a solid catalyst has been developed, and is used in the industrial production of L-amino acids, high-fructose sugar, 6-aminopenicillanic acid, malic acid, etc.6 Furthermore, the method of immobilized enzymes has been advanced. By using microbial cells that still contain enzymes (immobilized microorganisms), extraction and purification operations can be omitted, and stability during immobilization or manipulation is good.
It has advantages such as being advantageous in using a multi-step enzyme system and being able to supply coenzymes, ATP, etc. Furthermore, a method of immobilizing living microorganisms can be used to produce secondary metabolites, and it is also possible to improve the yield by using immobilized growing microorganisms.

上記のために固定化技術の確立は基本的に重要であるが
、担体結合法、橋かけ法及び包括法など道、PPM、N
o、6.28 (1987)、福井三部編著、「生体触
媒としての微生物」共立出版(1979)。
For the above reasons, the establishment of immobilization technology is fundamentally important, but methods such as carrier binding method, crosslinking method, and comprehensive method, PPM, N
o, 6.28 (1987), Fukui Sanbe (ed.), “Microorganisms as biocatalysts”, Kyoritsu Shuppan (1979).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

好気性菌の発酵生産技術において栄養源及び酸素の拡散
速度が目的とする生産物の生産速度に影響を及ぼす。一
般に栄養源の利用効率は低く、また菌体の増殖や生産物
の生成により培養液の粘性が増大して生合成反応が阻害
され目的とする生産物の生産速度が低下する。糸状菌の
場合特に三次元網目構造を有する画境の生成や培養液の
増粘による栄養分や酸素の不足が起こりやすい。また、
培養液から生産物を分離するのに手間がかかるなど改良
の余地が大きい。
In aerobic fermentation production technology, the rate of diffusion of nutrients and oxygen influences the rate of production of the desired product. In general, the utilization efficiency of nutrient sources is low, and the viscosity of the culture solution increases due to bacterial cell proliferation and product production, inhibiting biosynthetic reactions and reducing the production rate of the desired product. In the case of filamentous fungi, shortages of nutrients and oxygen are particularly likely to occur due to the formation of borders with a three-dimensional network structure and thickening of the culture solution. Also,
There is a lot of room for improvement, as it takes time and effort to separate the products from the culture solution.

つぎに、ゲル内に固定化した菌体・増殖菌体のバイオリ
アクターへの応用技術が開発され、アルさらにそのため
の培養液との混濁による生産物の回収の困難さが生じる
Next, a technology was developed to apply bacterial cells and proliferating bacterial cells immobilized in gel to bioreactors, but it became difficult to recover the product due to turbidity with the alkaline medium and the culture solution used for this purpose.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは発酵生産及び固定化生体触媒(酵素及び微
生物)における物質生産において安価、耐久性、プロセ
スや操作の簡略化、生産性の向上及び安定性の高い固定
化法について鋭意研究を重ねた結果、高分子膜を用いて
生体触媒を担持することにより、表面積が大きく菌体の
過密な成育やそれに伴う画境の生成がないので栄養物や
酸素の供給が充足し、耐久性があってくり返し長期の使
用が可能であり、また増殖菌体だけでなく、休止菌体の
使用も可能であるため生産性が高く、さらに膜内に菌体
があるため培養液の滅菌が不要で且つ煩雑なゲル調製操
作を必要としないことを見出し、この知見に基づき本発
明を完成するに至った。
The present inventors have conducted extensive research into immobilization methods that are inexpensive, durable, simplify processes and operations, improve productivity, and are highly stable in fermentation production and substance production using immobilized biocatalysts (enzymes and microorganisms). As a result, by using a polymer membrane to support a biocatalyst, the surface area is large, and there is no dense growth of bacterial cells or the formation of boundaries, so nutrients and oxygen are supplied sufficiently, and it is durable. It can be used repeatedly for a long period of time, and it is highly productive as it is possible to use not only proliferating cells but also resting cells.Furthermore, since the cells are inside the membrane, sterilization of the culture solution is unnecessary and complicated. It was discovered that no extensive gel preparation operation was required, and based on this finding, the present invention was completed.

ジュラガード3201 (孔径0.4X0.04μm)
製の縦50.横40mmの三方が閉鎖された袋の中に縦
45、横35mmの不織布(1%T wean80水溶
液に浸漬乾燥したもの)1枚を入れた後、N/1000
塩酸水溶液に1時間以上浸漬した。
Duraguard 3201 (pore diameter 0.4x0.04μm)
Made of length 50. After putting a piece of non-woven fabric (dipped in 1% T wean 80 aqueous solution and dried) with a length of 45 mm and a width of 35 mm into a bag with a width of 40 mm and closed on three sides, N/1000
It was immersed in an aqueous hydrochloric acid solution for over 1 hour.

この後、Penicllium spiculispo
rum LehLIlanNolO−1の菌体約100
mgを袋の中に入れ、シーラーを用いて加熱し袋の入口
を封じた。こうして作った袋10枚を、下記の組成の滅
菌しない培地300m1の入ったIQ容広ロポリビンに
入れ、アルミホイルで口を覆い、通気しながら往復励振
とう培養器(振幅70mm、120回/分往復)にセッ
トして30℃にて6日間培養した。発酵の進行とともに
培養液は著しく発泡した。培養後、袋を切り開いてみる
と不織布の両面にわたって厚さ約0.5++mの菌体が
フィルム状に付着し重量は1゜)また、膜外への培養菌
体の漏出は認められなかった。培養液中のブドウ糖量は
グルコースメーターによると2.4%であった。粘度は
調製時の培養液の粘度10cpから変化がなかった。さ
らに発酵液にエタノールを加えIN水酸化ナトリウム1
00mQを加えて中和後IN塩酸100mQを加えて中
和しクロロホルムにてスピクリスポール酸(4,5−ジ
カルボキシ−4−ペンタデカノリド)の開環体(1,3
,4−テトラデカントリカルボン酸)が培養液IQ当り
1.3g生成した。
After this, Penicllium spiculispo
Approximately 100 bacterial cells of rum LehLIlanNolO-1
mg was placed in a bag, and the entrance of the bag was sealed by heating using a sealer. The 10 bags thus made were placed in an IQ wide-capacity Ropoly bottle containing 300 ml of unsterilized medium with the following composition, the mouth was covered with aluminum foil, and the reciprocating excitation incubator (amplitude 70 mm, 120 reciprocating cycles/min) was used while ventilating. ) and cultured at 30°C for 6 days. As fermentation progressed, the culture solution foamed significantly. After culturing, when the bag was cut open, bacterial cells with a thickness of about 0.5++ m were adhered to both sides of the nonwoven fabric in a film shape (weighing 1°), and no leakage of cultured bacterial cells to the outside of the membrane was observed. The amount of glucose in the culture solution was 2.4% according to a glucose meter. The viscosity did not change from the viscosity of the culture solution at the time of preparation, which was 10 cp. Furthermore, add ethanol to the fermentation liquid and IN sodium hydroxide 1
After neutralizing by adding 00 mQ of IN hydrochloric acid, the ring-opened form (1,3
, 4-tetradecanetricarboxylic acid) was produced in an amount of 1.3 g per IQ culture solution.

培地組成(水IQ当り) ブドウ糖  (無水)        100gNH,
C11,Og KH,PO41,0g MgSO4・7H,00,5g 次に表1により高分子膜担持による実験経過を示した。
Medium composition (per water IQ) Glucose (anhydrous) 100gNH,
C11, Og KH, PO4 1,0 g MgSO4.7H, 00,5 g Next, Table 1 shows the progress of the experiment with polymer membrane support.

実施例2 実施例1と同じジュラガード3501 (0,4X0゜
04 μm)に不織布を挟んだ袋の中にPenicll
ium spicurisporum Lehman 
No1O−1を100mgを入れて封じたものを3袋用
意した。培養液300wMを入れたIQ容広口瓶にこれ
らの3袋を入れ、アルミホイルで口を覆い、30℃にて
実施例1と同様にして培養した。実施結果は表1の実験
No、2スポール酸の生産効率が低下した。
Example 2 Penicll was placed in a bag with a nonwoven fabric sandwiched between the same Duragard 3501 (0.4×0°04 μm) as in Example 1.
ium spiculisporum Lehman
Three sealed bags containing 100 mg of No1O-1 were prepared. These three bags were placed in an IQ wide mouth bottle containing 300 wM of culture solution, the mouth was covered with aluminum foil, and cultured at 30° C. in the same manner as in Example 1. The implementation results were Experiment No. 2 in Table 1, in which the production efficiency of 2-sporic acid decreased.

実施例3 実施例1と同じジュラガード3501 (0,4X0゜
04μff1)の50X40mmの袋を作り、不織布を
入れずに菌体100mgを袋の中に封じた。6日後開封
すると培養開始時とほぼ同量の菌体量であった。
Example 3 A 50 x 40 mm bag made of the same Duragard 3501 (0.4 x 0° 04 μff1) as in Example 1 was made, and 100 mg of bacterial cells was sealed in the bag without inserting a nonwoven fabric. When opened after 6 days, the amount of bacterial cells was almost the same as at the start of culture.

それ故、菌体を担持し増殖させるために不織布を袋の中
に入れることが必要であることがわかった。
Therefore, it has been found that it is necessary to insert a nonwoven fabric into the bag in order to support and propagate the bacterial cells.

実施例4 実施例1と3の比較から分かるようにジュラガード製の
袋の中に不織布のような菌体の支持体を置くことが好ま
しい。不織布の代わりにアルギン酸カルシウムゲルを用
いてPenicillium spiculispor
umの菌体を担持することも可能であった。すなわち、
0.8%アルギン酸水溶液またはPen1ci11iu
、m spiculisporumの菌体を懸濁した0
、8%ルはそのままジュラガードの袋に入れ、また空の
ビーズは菌体とともにジュラガードの袋に入れて封をし
た後、実施例1と同様にして培養を行った。
Example 4 As can be seen from the comparison of Examples 1 and 3, it is preferable to place a bacterial support such as a nonwoven fabric in a Duraguard bag. Penicillium spiculispor using calcium alginate gel instead of non-woven fabric
It was also possible to carry um bacterial cells. That is,
0.8% alginic acid aqueous solution or Pen1ci11iu
, m spiculisporum cells suspended in 0
, 8% Le were placed directly in a Duraguard bag, and the empty beads were placed in a Duraguard bag along with the bacterial cells and sealed, and then cultured in the same manner as in Example 1.

6日後菌体の増殖が見られ、ゲルが菌体の支持に有用で
あることが示された。さらに、支持体としてポリウレタ
ンフォームを用いてもよく、菌体を接種して6日後菌体
量は3倍に増殖した。
After 6 days, bacterial cell proliferation was observed, indicating that the gel was useful for supporting bacterial cells. Furthermore, polyurethane foam may be used as a support, and 6 days after inoculating the cells, the amount of cells increased three times.

実施例5 実施例1により得られた菌体を成育させ不織布上に固定
化した高分子膜バッグ10袋を取り出し、ガラスロート
上に置いて培養液を自然に滴下させて除いた後水洗いを
くり返した。これらのバッグ内に固定化された菌糸体の
酵素系を利用して、基質を含む下表の培地300mQを
入れたIQ容広ロポリ瓶を用いてスピクリスポール酸の
生合成(バイオコンバージョン)を行った。30℃にて
6日間往復励振とう培養器(振幅70mm、120(1
: 1)液に溶解した。ベンゼンを展開液として3相ク
ロマトグラフィーを行い、スピクリスポール酸の生成を
確認した。
Example 5 Ten polymer membrane bags in which the bacterial cells obtained in Example 1 were grown and immobilized on a non-woven fabric were taken out and placed on a glass funnel to allow the culture solution to drip naturally and removed, followed by repeated washing with water. Ta. Utilizing the enzyme system of the mycelia immobilized in these bags, biosynthesis (bioconversion) of spicrysporic acid was carried out using an IQ wide-capacity bottle filled with 300 mQ of the medium shown in the table below containing the substrate. Ta. Reciprocating excitation incubator (amplitude 70 mm, 120 (1
: 1) Dissolved in liquid. Three-phase chromatography was performed using benzene as a developing solution, and the production of spicrisporic acid was confirmed.

培地組成(水IQ当り) NH,C11,0g K H2P O−1−Og MgSO4・7H200,5g コーンスチープリ力−  1.0g ラウリン酸      12.8g α−ケトグルタル酸    7.3g pH4,2、滅菌せずそのまま使用。Medium composition (per water IQ) NH,C11,0g K H2P O-1-Og MgSO4・7H200.5g Corn steeple force - 1.0g Lauric acid 12.8g α-ketoglutaric acid 7.3g pH 4.2, used as is without sterilization.

ることにより、ソホロリピッド:7−L−((2’−0
−β−D−グルコピラノシルーβ−D−グルコピラノシ
ル)オキソ〕オクタデセン酸−1,4”−ラクトン類を
主成分とし、その関連化合物からなる同族体を生産する
ことが知られている(N、Kosaric et、 a
l、、J、am、OilChem、Soc、、61.1
735(1984))。実施例1と同じ手法により菌体
を高分子膜内に担持させた袋を5袋。
By doing so, the sophorolipid: 7-L-((2'-0
-β-D-glucopyranosyl-β-D-glucopyranosyl)oxo]octadecenoic acid-1,4”-lactones are the main components, and it is known to produce homologs consisting of related compounds (N , Kosaric et, a.
l,,J,am,OilChem,Soc,,61.1
735 (1984)). Five bags were prepared in which bacterial cells were supported in a polymer membrane using the same method as in Example 1.

無滅菌の培養液300mQの入ったIQ広ロポリ瓶中に
入れて30℃で6日間通気しながら振とうして培養した
。菌体量は接種時(100mg)の8倍に増殖していた
The cells were placed in an IQ wide polypropylene bottle containing 300 mQ of non-sterile culture solution and cultured at 30° C. for 6 days with aeration and shaking. The amount of bacterial cells had grown eight times that at the time of inoculation (100 mg).

培地組成(水IQ当り) ブドウM         100 gイーストエキス
     Log 尿素           1g
Medium composition (per water IQ) Grape M 100 g Yeast extract Log Urea 1 g

Claims (1)

【特許請求の範囲】[Claims] (1)孔径が2μm以下の高分子膜を壁膜として有する
生体触媒の担持方法。
(1) A method for supporting a biocatalyst having a polymer membrane with a pore size of 2 μm or less as a wall membrane.
JP63075160A 1988-03-29 1988-03-29 Cell culture member and cell culture method using the same Expired - Lifetime JPH082302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075160A JPH082302B2 (en) 1988-03-29 1988-03-29 Cell culture member and cell culture method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63075160A JPH082302B2 (en) 1988-03-29 1988-03-29 Cell culture member and cell culture method using the same

Publications (2)

Publication Number Publication Date
JPH01247088A true JPH01247088A (en) 1989-10-02
JPH082302B2 JPH082302B2 (en) 1996-01-17

Family

ID=13568174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075160A Expired - Lifetime JPH082302B2 (en) 1988-03-29 1988-03-29 Cell culture member and cell culture method using the same

Country Status (1)

Country Link
JP (1) JPH082302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377696A (en) * 2021-11-12 2022-04-22 天俱时工程科技集团有限公司 Biomembrane-based BiOClxBr(1-x)/Au/MnO2Composite material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213389A (en) * 1983-05-17 1984-12-03 Nissin Electric Co Ltd Preparation of microbial membrane
JPS6027699U (en) * 1983-07-25 1985-02-25 日東電工株式会社 Immobilized enzyme container
JPS62171672A (en) * 1985-10-24 1987-07-28 Oosakashi Bioreactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213389A (en) * 1983-05-17 1984-12-03 Nissin Electric Co Ltd Preparation of microbial membrane
JPS6027699U (en) * 1983-07-25 1985-02-25 日東電工株式会社 Immobilized enzyme container
JPS62171672A (en) * 1985-10-24 1987-07-28 Oosakashi Bioreactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377696A (en) * 2021-11-12 2022-04-22 天俱时工程科技集团有限公司 Biomembrane-based BiOClxBr(1-x)/Au/MnO2Composite material and preparation method and application thereof
CN114377696B (en) * 2021-11-12 2023-08-11 天俱时工程科技集团有限公司 Biofilm-based BiOCl x Br (1-x) /Au/MnO 2 Composite material, preparation method and application thereof

Also Published As

Publication number Publication date
JPH082302B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
Bezbradica et al. Immobilization of yeast cells in PVA particles for beer fermentation
EA015861B1 (en) A method for industrial production of biocatalysts in the form of enzymes or microorganisms immobilized in polyvinyl alcohol gel, their use and devices for their production
CN103409476B (en) A kind of fermentation of L isoleucines and isolation and purification method
JPS6137919B2 (en)
Vincenzini et al. Hydrogen production by immobilized cells—II. H2-photoevolution and waste-water treatment by agar-entrapped cells of Rhodopseudomonas palustris and Rhodospirillum molischianum
JPS6215198B2 (en)
Bohmann et al. Performance of a membrane-dialysis bioreactor with a radial-flow fixed bed for the cultivation of a hybridoma cell line
CN105671115B (en) A method of building microbial co culture system produces bacteria cellulose
JPH01247088A (en) Method for supporting biocatalyst with polymer membrane
CN113604515A (en) Method for synthesizing phenyllactic acid by using semi-hydrophobic crystal gum base whole-cell catalyst in bioreactor
JPH01225487A (en) Method for utilizing cellulose in bioreactor carrier aiming at production of citric or gluconic acid with aspergillus niger
JPS61209596A (en) Production of organic acid by immobilized microorganism
JPH05123182A (en) Production of microbial cellulose by standing culture and apparatus therefor
RU2085212C1 (en) Method of preparing the common brucellosis antigen for pa, pck and pdck
Wang et al. Immobilization of Anabaena azollae in hallow fibre photobioreactors for ammonia production
JPH0279974A (en) Biocatalyst and bioreactor using the same
JPH01273599A (en) Production of microbial cellulose
KR930001381B1 (en) Process for the preparation of vinegar by immobilised microorganism
CN107502598A (en) A kind of preparation method of immobilized glucose oxidase
US4752584A (en) Process for the production of inoculum for anaerobic fermentation of coenzyme B12
CA1210719A (en) Method of immobilizing enzymes
CN101824407A (en) Method of building new high-efficiency biocatalyst based on tissue engineering method
JPS5840093A (en) Production of dextrorotatory lactic acid by means of sporogenous bacterium
RU2327738C1 (en) Method of immobilised beta-fructofuranozidase
SU1622392A1 (en) Method of producing protein yeast biomass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term