JPH01246768A - Electrode of fuel cell - Google Patents

Electrode of fuel cell

Info

Publication number
JPH01246768A
JPH01246768A JP63073295A JP7329588A JPH01246768A JP H01246768 A JPH01246768 A JP H01246768A JP 63073295 A JP63073295 A JP 63073295A JP 7329588 A JP7329588 A JP 7329588A JP H01246768 A JPH01246768 A JP H01246768A
Authority
JP
Japan
Prior art keywords
gas
groove
electrode
cell
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073295A
Other languages
Japanese (ja)
Inventor
Toshihiko Takeu
竹生 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63073295A priority Critical patent/JPH01246768A/en
Publication of JPH01246768A publication Critical patent/JPH01246768A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide uniform distribution of the rate of flow in the direction of cell lamination and accomplish high performance and long lifetime by forming the width and height of gas passage for flowing of oxidating gas in specific ranges. CONSTITUTION:That surface of a cathode electrode 3b which is facing a catalyst 2b is provided with a groove 5b for flowing of oxidating gas partitioned by a ring 4b. The width W and height 8 of this groove 5b are set within a range of 0.5-0.8mm. The min. cell voltage presents less variation and better stabilization with smaller dimension of the groove 5b, provided that smaller than 0.5mm results in worse processing accuracy. Accordingly the rate-of-flow distribution in the laminate direction of a cathode electrode can be made uniform in this extent, which prevents drop of the voltage or overheating locally and provides high performance and long life.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、燃料電池に係り、特に、燃料電池の各単位セ
ルに酸化剤ガスを均一に配分し、燃料電池の長寿命化を
図った燃料電池に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell, and in particular, the present invention relates to a fuel cell, and in particular, to uniformly distribute oxidant gas to each unit cell of a fuel cell, and to improve the length of the fuel cell. Concerning fuel cells with extended service life.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気エ
ネルギーに変換する装置として燃料電池が知られている
。この燃料電池は通常、電解質を保持したマトリックス
を挟んで一対の多孔質電極を配置するとともに、一方の
電極の背面に水素等の燃料ガスを接触させ、また他方の
電極の背面に酸素等の酸化剤ガスを接触させ、このとき
起こる′電気化学的反応を利用して、上記電極間から電
気エネルギーを取り出すようにしたものであり、前記燃
料ガスと酸化剤ガスが供給されている限り高い変換効率
で電気エネルギーを取り出すことができるものである。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiched between a matrix holding an electrolyte, a fuel gas such as hydrogen is brought into contact with the back of one electrode, and an oxidizing gas such as oxygen is brought into contact with the back of the other electrode. This system extracts electrical energy from between the electrodes by bringing the oxidant gas into contact and utilizing the electrochemical reaction that occurs at this time.As long as the fuel gas and oxidant gas are supplied, the conversion efficiency is high. It is possible to extract electrical energy.

しかし、上記の様な燃料電池においては、酸化剤ガスの
内消費されるのは酸素のみであるため。
However, in the above-mentioned fuel cell, only oxygen is consumed in the oxidant gas.

電極入口から出口まで酸化剤ガスが移動していくにつれ
て酸化剤ガス中の酸素ガス分圧は漸減する。
As the oxidizing gas moves from the electrode inlet to the electrode outlet, the oxygen gas partial pressure in the oxidizing gas gradually decreases.

一方、電池反応は酸化剤ガス中の酸素分圧が高い程、或
いは酸化剤ガスの流量が多い程速度が大きくなる。従っ
て、入口と出口の間で電池反応を均一に進行させるため
には、酸化剤ガス中の酸素分圧や酸化剤ガスの流量を補
正するなどの処理を取る必要がある。
On the other hand, the speed of the battery reaction increases as the partial pressure of oxygen in the oxidizing gas increases or as the flow rate of the oxidizing gas increases. Therefore, in order to make the cell reaction proceed uniformly between the inlet and the outlet, it is necessary to take steps such as correcting the oxygen partial pressure in the oxidant gas and the flow rate of the oxidant gas.

第8図は、上記原理に基づく特にリン酸を電解質とした
、リブ付き電極型の燃料電池における単位セルの構成例
を縦断面斜視図に示したものである。即ち、電解質とし
てのリン酸をマトリックスに含浸して成る電解質層1を
挟んで、多孔質炭素材から成るアノード電極3a、カソ
ード電極3bが配設され、その電解質層1と接する側に
は、触媒2a。
FIG. 8 is a vertical cross-sectional perspective view showing an example of the structure of a unit cell in a ribbed electrode type fuel cell based on the above principle and using phosphoric acid as an electrolyte. That is, an anode electrode 3a and a cathode electrode 3b made of a porous carbon material are disposed with an electrolyte layer 1 made of a matrix impregnated with phosphoric acid as an electrolyte, and a catalyst is provided on the side in contact with the electrolyte layer 1. 2a.

2bがそれぞれ塗布され、且つ背面側にはリブ4a。2b are applied respectively, and ribs 4a are provided on the back side.

4b及び燃料ガス、酸化剤ガスの流通する溝5a、 5
bが形成されているにこで、燃料ガスの流通する溝5a
と酸化剤ガスの流通する溝5bとは、互いに直交する方
向に規則的に複数本平行に形成されている。この様にし
て単位セルが形成され、この単位セルを緻密な炭素質で
作られたセパレータ6を挟んで複数個積層することによ
り、単位セル積層体が構成されている。
4b, and grooves 5a, 5 through which fuel gas and oxidizing gas flow.
Groove 5a through which fuel gas flows, where b is formed.
A plurality of grooves 5b through which the oxidant gas flows are regularly formed in parallel in directions orthogonal to each other. A unit cell is formed in this manner, and a unit cell laminate is constructed by stacking a plurality of unit cells with separators 6 made of dense carbon interposed therebetween.

また、上記単位セル積層体は、第9図に示した様に、そ
の上下端側に集電板7、絶縁板8、締付板9、端子10
をそれぞれ取付け、適当な締付は圧で上下方向から締付
けるようにしている。さらに。
Further, as shown in FIG. 9, the unit cell laminate has a current collecting plate 7, an insulating plate 8, a clamping plate 9, and a terminal 10 on its upper and lower end sides.
are installed respectively, and the appropriate tightening is done by applying pressure from the top and bottom. moreover.

この様な単位セル積層体の側面側には燃料ガス。Fuel gas is on the side surface of such a unit cell stack.

酸化剤ガスを管11を通して供給及び排出する為の一対
の燃料ガス供給用マニホールド12.排出用マニホール
ド13、及び酸化剤ガス供給用マニホールド14.排出
用マニホールド15がそれぞれ対向して配設され、適当
な圧力で締付は固定することによって、燃料電池が構成
されている。
A pair of fuel gas supply manifolds 12 for supplying and discharging oxidant gas through pipes 11. A discharge manifold 13 and an oxidizing gas supply manifold 14. A fuel cell is constructed by disposing discharge manifolds 15 facing each other and tightening them with appropriate pressure.

(発明が解決しようとするa題) しかしながら、従来の燃料電池においては、酸化剤ガス
マニホールドの供給側14と排出側15における酸化剤
ガスの組成が異なる為、その酸化剤ガスの密度も異なっ
ている。この密度の違いは、発電負荷によっても変化し
、負荷が高い程密度の差が大きくなる。
(Problem A to be Solved by the Invention) However, in conventional fuel cells, since the composition of the oxidant gas on the supply side 14 and the discharge side 15 of the oxidant gas manifold is different, the density of the oxidant gas is also different. There is. This difference in density also changes depending on the power generation load, and the higher the load, the larger the difference in density becomes.

一方、酸素利用率は、酸化剤ガス中の酸素ガス成分が電
池の中を通過する際に、発電によってどれだけ利用され
たかを示すものである6例えば、酸素利用率80%とい
う状態は、酸化剤ガス供給用マニホールド14内の酸化
剤ガス中に、酸素ガスが100100(/Hour)含
まれていたとすれば、電池内部でこの80%、即ち80
(+*oj2/Hour)が水素との化学反応に利用さ
れて発電を行ない、排出用マニホールド15の酸化剤ガ
ス中には、残りの20(moffi/Hour)の酸素
ガスが未利用のまま排出される運転を示している。酸化
剤ガスとして空気を使用する場合。
On the other hand, the oxygen utilization rate indicates how much of the oxygen gas component in the oxidant gas is used for power generation when it passes through the battery.6For example, an oxygen utilization rate of 80% means that the oxygen If the oxidant gas in the oxidant gas supply manifold 14 contains 100100 (/Hour) of oxygen gas, 80% of this, that is, 80%, is contained inside the battery.
(+*oj2/Hour) is used in a chemical reaction with hydrogen to generate electricity, and the remaining 20 (moffi/Hour) of oxygen gas is discharged unused into the oxidant gas in the exhaust manifold 15. It shows the driving that will be done. When using air as the oxidizing gas.

酸素以外のガス成分は主に窒素ガスであり、酸素に比べ
て比重の小さいガスなので、酸化剤ガス中に占める酸素
の割合が減れば、酸化剤ガスの密度は小さくなる。従っ
て、供給用マニホールド14の酸化剤ガスが同一である
場合、酸素利用率が大きい程、排出用マニホールド15
の酸化剤ガスの密度は小さくなる。
The gas component other than oxygen is mainly nitrogen gas, which has a lower specific gravity than oxygen, so if the proportion of oxygen in the oxidizing gas decreases, the density of the oxidizing gas decreases. Therefore, when the oxidant gas in the supply manifold 14 is the same, the higher the oxygen utilization rate, the higher the oxygen utilization rate in the discharge manifold 14.
The density of the oxidant gas becomes smaller.

ところで、この様に酸化剤ガス供給用マニホールド14
と酸化剤ガス排出用マニホールド15間の密度が違うと
、各単位電池への酸化剤ガスの供給が不均一となるとい
う問題が生じていた。
By the way, in this way, the oxidant gas supply manifold 14
If the densities between the oxidizing gas discharge manifold 15 and the oxidizing gas discharge manifold 15 are different, a problem arises in that the oxidizing gas is not uniformly supplied to each unit cell.

この点を以下に説明する。従来の燃料電池(酸化剤ガス
通路の溝寸法:1.6X1.6■)における。
This point will be explained below. In a conventional fuel cell (groove size of oxidant gas passage: 1.6 x 1.6 cm).

酸化剤ガス供給用マニホールド14及び排出用マニホー
ルド15の電池高さ方向の圧力分布を、カソード電極の
入口部の圧力及び出口部の圧力を測定することにより、
第1θ図に示したが、カソード電極の入口部及び出口部
とも、酸化剤ガスの静水圧力、即ち、(ガス密度ρ)×
(重力加速度り)×(高さh)の影響の為に、圧力分布
は直線的であり、電池下部程圧力が高くなる。
The pressure distribution in the cell height direction of the oxidizing gas supply manifold 14 and the discharge manifold 15 is determined by measuring the pressure at the inlet and the outlet of the cathode electrode.
As shown in Fig. 1θ, the hydrostatic pressure of the oxidizing gas is applied to both the inlet and outlet portions of the cathode electrode, that is, (gas density ρ) ×
Due to the influence of (gravitational acceleration) x (height h), the pressure distribution is linear, and the pressure becomes higher toward the bottom of the battery.

しかし、酸化剤ガス供給用マニホールド14と排出用マ
ニホールド15における酸化剤ガスの密度の違いから、
ガス密度の小さい排出用マニホールド15の方が、電池
の上部と下部における圧力の差が供給側より小さくなっ
ている。そのため、カソード電極の入口部と出口部間の
圧力差Δpは、電池上部における圧力差ΔP1の方が、
電池下部における圧力差Δp2より小さくなる。また、
電池セル溝内の酸化剤ガスの流れは、流速が低い為に層
流となり、酸化剤ガス流量と、カソード電極入口部。
However, due to the difference in the density of the oxidant gas between the oxidant gas supply manifold 14 and the discharge manifold 15,
The difference in pressure between the upper and lower parts of the battery is smaller in the discharge manifold 15, which has a lower gas density, than in the supply side. Therefore, the pressure difference Δp between the inlet and outlet of the cathode electrode is smaller than the pressure difference ΔP1 at the top of the battery.
It becomes smaller than the pressure difference Δp2 at the bottom of the battery. Also,
The flow of the oxidant gas in the battery cell groove is laminar because the flow rate is low, and the flow rate of the oxidant gas and the cathode electrode inlet.

出口部間の圧力差はほぼ比例する(但し、酸化剤ガスは
流れていく途中で酸素が利用される為、物性値が刻々と
変化していくので、完全な比例関係ではない。)。その
結果、電池高さ方向の酸化剤ガス流量分率は、第11図
に示した様に、電池下方に多くの燃料ガスが流れ、上方
には平均流量以下の酸化剤ガスしか流れないという不均
一が生じ、酸素利用率の高い運転では酸化剤ガス流量の
少い電池上部において酸素が不足し、酸素分圧の差が生
じる。そのため、上部単位セルにおいて、セル電圧の低
下、ジュール熱の増加に伴う焼損等の不具合があった。
The pressure difference between the outlet parts is almost proportional (however, the oxidant gas uses oxygen as it flows, so the physical properties change every moment, so it is not a perfect proportional relationship). As a result, the oxidizing gas flow rate fraction in the cell height direction is as shown in Fig. 11, with a large amount of fuel gas flowing below the cell and only an oxidizing gas below the average flow rate flowing above. Uniformity occurs, and in operation with a high oxygen utilization rate, oxygen is insufficient in the upper part of the cell where the oxidant gas flow rate is small, and a difference in oxygen partial pressure occurs. Therefore, in the upper unit cell, there were problems such as a decrease in cell voltage and burnout due to an increase in Joule heat.

そこで本発明は、セル積層方向の流量分布を均一化し、
高性能でかつ長寿命化を図った燃料電池を提供すること
を目的とする。
Therefore, the present invention uniformizes the flow rate distribution in the cell stacking direction,
The objective is to provide a fuel cell with high performance and long life.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明は、多孔質基体の一方
の面に触媒層を、この触媒層に対向する他方の面に酸化
剤ガスを流通するガス通路溝を配設した燃料電池の電極
において、ガス通路溝の幅および高さ寸法を0.5〜0
.8園の範囲の値に設定したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a catalyst layer on one side of a porous substrate, and a gas passage through which oxidizing gas flows on the other side opposite to the catalyst layer. In a fuel cell electrode provided with a groove, the width and height of the gas passage groove are set to 0.5 to 0.
.. It is characterized by being set to a value within a range of 8 schools.

(作 用) 上述のように、酸化剤電極のガス通路溝寸法を0.5〜
0.8腸の範囲の値に設定したので、セル積層方向の流
量分布を均一化することができ、電池電圧の低下および
、焼損等を防止することができる。
(Function) As mentioned above, the gas passage groove size of the oxidizer electrode is set to 0.5~
Since the value is set within the range of 0.8 mm, the flow rate distribution in the cell stacking direction can be made uniform, and a decrease in battery voltage and burnout can be prevented.

(実施例) 以下本発明の一実施例について第1図乃至第7図を参照
して説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

第1図はカソード電極を示す断面図であり、このカソー
ド電極3bの触媒2bに対向する面にはリブ4bにより
区画され酸化剤ガスを流通させる溝5bが配設されてい
る。この溝5bの幅Wおよび高さH寸法は0.5〜0.
8mの範囲に設定されている。
FIG. 1 is a sectional view showing the cathode electrode, and a groove 5b defined by ribs 4b and through which oxidizing gas flows is provided on the surface of the cathode electrode 3b facing the catalyst 2b. The width W and height H of this groove 5b are 0.5 to 0.
The range is set to 8m.

次に溝5bの最適寸法は0.5〜0.8mであることの
理由について以下説明する。
Next, the reason why the optimum dimension of the groove 5b is 0.5 to 0.8 m will be explained below.

第2図は酸素利用率に対する単位セル電圧の最低値を示
した線図であり、溝寸法を0.5+m、 0.8m。
Figure 2 is a diagram showing the minimum value of unit cell voltage with respect to oxygen utilization rate, and the groove dimensions are 0.5+m and 0.8m.

1、Onn、1.5nnに変化させたものについて試験
した。
1, Onn, and 1.5nn were tested.

一般に、燃料電池の運転条件の一例である酸素利用率を
低下させる場合には酸素の供給量を増加させるため圧縮
空気発生装置が大形化し、周辺機器コストが上昇するこ
とになる。このため、燃料電池のプラントのトータルコ
ストとのバランスを考慮し、酸素利用率を通常70%、
また、最低でも60%としているのが一般的であり、第
2図より溝寸法は1.Onnより小さいという最低セル
電圧の変化率が小さく、安定したものが得られる。
Generally, when reducing the oxygen utilization rate, which is an example of the operating conditions of a fuel cell, the compressed air generator becomes larger in order to increase the amount of oxygen supplied, which increases the cost of peripheral equipment. For this reason, in consideration of the balance with the total cost of the fuel cell plant, the oxygen utilization rate is normally set at 70%.
In addition, it is common to set it to at least 60%, and as shown in Figure 2, the groove size is 1. The rate of change in the lowest cell voltage, which is smaller than Onn, is small and stable.

一方、溝寸法に対する電圧差(ΔV)、電極製作費用、
加工精度については第3図乃至第5図において説明する
。第3図は単位セル積層体の単位セル平均電圧と各単位
セル電圧の最低値との電圧差(ΔV)を試験した結果で
あり、溝寸法を大きくするとマニホールド出入口間の圧
力差(Δp)が減少するため静水圧力の影響が大きくな
り、電池高さ方向の流量分布が右胸−となる。その結果
、電圧差(Δ■)が増加するため、溝寸法は小さいもの
がよく、0.8m以下が望ましい、また、第4図は寸法
精度一定の条件で溝加工をした場合の電極製作費用を示
したものであり、加工性を考慮すると溝寸法を0.5園
以上とするのが望ましい。さらに、第5図は電極製作費
用を一定とした場合の溝寸法精度を示したものであり、
溝寸法を0.5mm以上とすると一定の寸法精度が得ら
れる。
On the other hand, the voltage difference (ΔV) with respect to the groove dimensions, the electrode manufacturing cost,
Processing accuracy will be explained with reference to FIGS. 3 to 5. Figure 3 shows the results of testing the voltage difference (ΔV) between the unit cell average voltage and the lowest value of each unit cell voltage in the unit cell stack.As the groove size increases, the pressure difference (Δp) between the manifold entrance and exit increases. As the flow rate decreases, the influence of hydrostatic pressure increases, and the flow rate distribution in the battery height direction becomes right-sided. As a result, the voltage difference (Δ■) increases, so the groove size should be small, preferably 0.8 m or less. Also, Figure 4 shows the electrode manufacturing cost when grooves are machined under conditions of constant dimensional accuracy. Considering workability, it is desirable that the groove dimension be 0.5 mm or more. Furthermore, Figure 5 shows the groove dimensional accuracy when the electrode manufacturing cost is constant.
When the groove size is 0.5 mm or more, a certain degree of dimensional accuracy can be obtained.

次に、溝の幅および高さをともに0.8mm とした場
合のカソード電極入口および出口の電池積層方向圧力分
布を第6図に、また酸化剤ガスの電池積層方向圧力分布
を第7図に示す。第6図より、溝寸法は従来のものより
小さくしたので、カソード電極の入口と出口との圧力差
Δpを大きくすることができ、積層高さにより静水圧力
の影響を抑制することができる。その結果第7図に示し
たように、電池積層方向の流量を均一化することが可能
となった。
Next, when the width and height of the groove are both 0.8 mm, the pressure distribution in the battery stacking direction at the cathode electrode inlet and outlet is shown in Figure 6, and the pressure distribution in the battery stacking direction of the oxidant gas is shown in Figure 7. show. From FIG. 6, since the groove dimensions are smaller than the conventional one, the pressure difference Δp between the inlet and outlet of the cathode electrode can be increased, and the influence of hydrostatic pressure can be suppressed by adjusting the stacking height. As a result, as shown in FIG. 7, it became possible to equalize the flow rate in the battery stacking direction.

したがって、この実施例によけば溝寸法を0.5〜0.
8m となるように設定したので、カソード電極の積層
方向流量分布を平均化することができ、電圧低下あるい
は局部的過熱を防止して高性能でかつ長寿命の電極が得
られる。
Therefore, according to this embodiment, the groove size is 0.5 to 0.
8 m 2 , the flow rate distribution in the stacking direction of the cathode electrode can be averaged, voltage drop or local overheating can be prevented, and an electrode with high performance and long life can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、酸化剤の積層方向
流量分布を均一にすることができ、高性能でかつ長寿命
の燃料電池を提供することが可能となる。
As described above, according to the present invention, the flow rate distribution of the oxidant in the stacking direction can be made uniform, and it is possible to provide a fuel cell with high performance and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す燃料電池のカソード側
電極を示す断面図、第2図は第1図の電極を使用した燃
料電池の酸素利用率と最低セル電圧との関係を示す線図
、第3図乃至第5図はそれぞれ第1図に示す電極の溝寸
法と電圧差ΔVとの関係、溝寸法と電極製作費用との関
係、溝寸法と溝寸法精度との関係を示す線図、第6図は
カソード電極の電池積層高さ方向の圧力分布線図、第7
図はカソード電極の電池積層高さ方向の流量分布線図、
第8図は一般的な燃料電池の単セル構成図、第9図は燃
料電池の分解斜視図、第10図は従来のカソード電極の
電池積層高さ方向の圧力分布線図。 第11図は従来のカソード電極の電池積層高さ方向の流
量分布線図である。 2b・・・触 媒、       3b・・・カソード
電極。 4b・・・リ ブ、      5b・・・溝代理人 
弁理士 則 近 憲 佑 同    第子丸   健 b 第1図 第2図 第3図 第451 第5図 第6図 第7図 第8図 第9図 第10図 第11図
FIG. 1 is a sectional view showing the cathode side electrode of a fuel cell showing an embodiment of the present invention, and FIG. 2 shows the relationship between the oxygen utilization rate and the minimum cell voltage of a fuel cell using the electrode shown in FIG. 1. The diagrams and FIGS. 3 to 5 respectively show the relationship between the groove dimensions of the electrode shown in FIG. 1 and the voltage difference ΔV, the relationship between the groove dimensions and the electrode manufacturing cost, and the relationship between the groove dimensions and groove dimensional accuracy. Figure 6 is a pressure distribution diagram of the cathode electrode in the battery stack height direction.
The figure shows the flow distribution diagram of the cathode electrode in the battery stack height direction.
FIG. 8 is a single cell configuration diagram of a typical fuel cell, FIG. 9 is an exploded perspective view of the fuel cell, and FIG. 10 is a pressure distribution diagram of a conventional cathode electrode in the cell stack height direction. FIG. 11 is a flow distribution diagram of a conventional cathode electrode in the battery stack height direction. 2b...Catalyst, 3b...Cathode electrode. 4b...Rib, 5b...Groove agent
Patent Attorney Rule Yudo Ken Chika Ken b Figure 1 Figure 2 Figure 3 Figure 451 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 多孔質基板の一方の面に触媒層を、この触媒層に対向す
る他方の面に酸化剤ガスを流通するガス通路溝を配設し
た燃料電池の電極において、ガス通路溝の幅および高さ
寸法を0.5〜0.8mmの範囲の値に設定したことを
特徴とする燃料電池の電極。
In a fuel cell electrode in which a catalyst layer is disposed on one side of a porous substrate and a gas passage groove through which oxidizing gas flows is arranged on the other side facing the catalyst layer, the width and height dimensions of the gas passage groove are An electrode for a fuel cell, characterized in that the electrode is set to a value in the range of 0.5 to 0.8 mm.
JP63073295A 1988-03-29 1988-03-29 Electrode of fuel cell Pending JPH01246768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073295A JPH01246768A (en) 1988-03-29 1988-03-29 Electrode of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073295A JPH01246768A (en) 1988-03-29 1988-03-29 Electrode of fuel cell

Publications (1)

Publication Number Publication Date
JPH01246768A true JPH01246768A (en) 1989-10-02

Family

ID=13514028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073295A Pending JPH01246768A (en) 1988-03-29 1988-03-29 Electrode of fuel cell

Country Status (1)

Country Link
JP (1) JPH01246768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076315A (en) * 2007-09-20 2009-04-09 Ngk Insulators Ltd Reactor and solid oxide fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157062A (en) * 1982-03-12 1983-09-19 Mitsubishi Electric Corp Layer-built fuel cell
JPS60236460A (en) * 1984-04-09 1985-11-25 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157062A (en) * 1982-03-12 1983-09-19 Mitsubishi Electric Corp Layer-built fuel cell
JPS60236460A (en) * 1984-04-09 1985-11-25 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076315A (en) * 2007-09-20 2009-04-09 Ngk Insulators Ltd Reactor and solid oxide fuel cell

Similar Documents

Publication Publication Date Title
CA2490877C (en) Humidity controlled solid polymer electrolyte fuel cell assembly
CA2353637C (en) Fuel cell
US7491459B2 (en) Polymer electrolyte fuel cell
JP6263638B2 (en) Assembly method and arrangement for cell system
JP2774496B2 (en) Fuel cell voltage distribution control method
JPH01281682A (en) Fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
US20040157111A1 (en) Fuel cell
JPS63119166A (en) Fuel battery
CN1330029C (en) Fuel cell system and stack used therein
US20040038103A1 (en) Solid polymer electrolyte fuel cell assembly
JP2007323993A (en) Fuel cell system
JPH01246768A (en) Electrode of fuel cell
JPH01298653A (en) Fuel cell
EP1646099A2 (en) Electrochemical device
JPS63116374A (en) Fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
US20100151342A1 (en) Tubular fuel cell design with improved construction and operating efficiency
JP2005141994A (en) Polyelectrolyte fuel cell
JP2004055192A (en) Operation method and system for solid electrolyte fuel cell
JPH07249423A (en) Fuel cell power generating device
JP7198030B2 (en) fuel cell system
JP4042241B2 (en) Fuel cell
JPH01296570A (en) Fuel battery