JPH01246723A - Resin mold part for high voltage insulation and its manufacture - Google Patents

Resin mold part for high voltage insulation and its manufacture

Info

Publication number
JPH01246723A
JPH01246723A JP7362188A JP7362188A JPH01246723A JP H01246723 A JPH01246723 A JP H01246723A JP 7362188 A JP7362188 A JP 7362188A JP 7362188 A JP7362188 A JP 7362188A JP H01246723 A JPH01246723 A JP H01246723A
Authority
JP
Japan
Prior art keywords
resin
base material
particles
corrosion
insulating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7362188A
Other languages
Japanese (ja)
Inventor
Toshio Shimizu
敏夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7362188A priority Critical patent/JPH01246723A/en
Publication of JPH01246723A publication Critical patent/JPH01246723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Abstract

PURPOSE:To improve the reliability to the SF6 resolution gas by spreading anticorrosive particles to whose surface minute resin particles are dispersed on the surface of a casting resin insulating base material, or attaching the anticorrosive particles on the surface of the casting insulating base material through a metal mold. CONSTITUTION:To a casting resin insulating base material 11, an anticorrosive layer 16 is formed with anticorrosive particles such as alumina powder 15 to compose a resin-mold part for high voltage insulation purpose. As a result, when it is used in the ambiance of the SF6 resolution gas, the anticorrosive layer protects the casting resin insulating base material, and the mechanical and the electrical properties of the high voltage insulating resin-mold part are never spoiled. Moreover, anticorrosive particles such as alumina powder on whose surface resin superminute particles 14 are dispersed is sprayed on a high temperature metal mold 17, and attached to the surface of the base material 11 in the casting process. As a result, a uniform anticorroside layer can be formed on the casting resin insulating base material.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高電圧絶縁用樹脂モールド部品およびその製
造方法に係り、特に耐SF6ガスに適する高電圧絶縁用
樹脂モールド部品およびその製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a resin molded component for high voltage insulation and a method for manufacturing the same, and in particular, a resin molded component for high voltage insulation that is suitable for SF6 gas resistance. and its manufacturing method.

(従来の技術および発明が解決しようとする課題) 一般に高電圧絶縁用樹脂モールド部品の注型樹脂絶縁基
材には、耐熱衝撃性、硬化収縮性、耐摩耗性、耐熱性、
耐薬品性、機械的および電気的特性の向上のためにアル
ミナ粉末(A1203)、シリカ粉末(S 102 )
 、ガラス繊維、炭酸カルシウム等の無機材料の充填剤
が添加されている。
(Prior art and problems to be solved by the invention) In general, cast resin insulation base materials for high voltage insulation resin molded parts have thermal shock resistance, curing shrinkage, abrasion resistance, heat resistance,
Alumina powder (A1203), silica powder (S102) for improved chemical resistance, mechanical and electrical properties
, glass fiber, calcium carbonate, and other inorganic fillers are added.

しかし、このような高電圧絶縁用樹脂モールド部品を高
電圧電機器の絶縁媒体としている六フッ化イオウガス(
以下SF、ガスと言う)の雰囲気中で使用するときは、
SF6ガスがアーク、コロナ、熱等でSF4,82 F
2.SOF4 、S02 F2等に分解させられるため
、前記シリカ粉末等の無機材料の充填剤と化学反応を起
こし絶縁性能を著しく低下させてしまう等の問題がある
However, the sulfur hexafluoride gas (sulfur hexafluoride gas) used as the insulating medium for high-voltage electrical equipment makes these high-voltage insulating resin molded parts
When using in an atmosphere of SF (hereinafter referred to as gas),
SF6 gas becomes SF4.82 F due to arc, corona, heat, etc.
2. Since it is decomposed into SOF4, SO2F2, etc., it causes a chemical reaction with the inorganic filler such as the silica powder, resulting in a significant decrease in insulation performance.

即ち、ビスフェノール系エポキシ樹脂のモールド部品(
A)、ビスフェノール系エポキシ樹脂にアルミナ粉末を
充填したモールド部品(B)、ビスフェノール系エポキ
シ樹脂にシリカ粉末を充填したモールド部品<C>およ
びビスフェノール系エポキシ樹脂にガラス繊維を充填し
たモールド部品(D)を作り、これらをガス圧4 at
IIのSF6ガスを封入した密閉容器(図示せず)に入
れ、電流持続時間60as、放電回数10回、時間間隔
3〜5分を1サイクルとする大電流のアークによりSF
8の分解ガスを密閉容器中に発生させ、絶縁抵抗と放電
時間との特性図を求めた。これらの関係は、第8図に示
すようにモールド部品(A)およびモールド部品(B)
は、5時間経過後も絶縁抵抗が1013Ωを維持し電気
的特性は満足するものが得られたが機械的特性が悪く、
また、モールド部品(C)およびモールド部品(D)は
、機械的特性はあるものの5時間経過すると絶縁抵抗が
10 .106Ωまで低下し、電気的特性が満足されな
い。よって、これら注型樹脂絶縁基材をこのままではS
F6ガスの雰囲気中で使用することはできない。
In other words, molded parts of bisphenol-based epoxy resin (
A), molded part in which bisphenol-based epoxy resin is filled with alumina powder (B), molded part in which bisphenol-based epoxy resin is filled with silica powder <C>, and molded part in which bisphenol-based epoxy resin is filled with glass fiber (D) and put them at a gas pressure of 4 at
SF6 gas is placed in a sealed container (not shown) filled with SF6 gas, and a large current arc is applied with a current duration of 60 as, a number of discharges 10 times, and a time interval of 3 to 5 minutes as one cycle.
The decomposition gas of No. 8 was generated in a closed container, and a characteristic diagram of insulation resistance and discharge time was obtained. These relationships are as shown in Figure 8 for molded parts (A) and molded parts (B).
The insulation resistance maintained 1013Ω even after 5 hours, and the electrical properties were satisfactory, but the mechanical properties were poor.
Furthermore, although the molded parts (C) and molded parts (D) have good mechanical properties, the insulation resistance decreases to 10.0 after 5 hours. The resistance decreased to 106Ω, and the electrical characteristics were not satisfied. Therefore, if these cast resin insulating base materials are used as they are, S
It cannot be used in an F6 gas atmosphere.

このようなSF6ガスによる高電圧絶縁用樹脂モールド
部品の絶縁低下を防止する方法として、樹脂モールド部
品の表面にSF、ガスでは分解しない強い樹脂系の材料
をコーティングすることが考えられが、このコーティン
グされた樹脂も、樹脂モールド部品の表面で剥離現象が
生じたりあるいはピンホールが発生するなどして長期間
十分信頼をもって使用することができない等の問題があ
る。
One possible way to prevent insulation degradation of resin molded parts for high voltage insulation due to SF6 gas is to coat the surface of the resin molded parts with SF, a strong resin material that does not decompose with gas. These resins also have problems such as peeling phenomenon or pinhole formation on the surface of the resin molded parts, making it impossible to use them with sufficient reliability for a long period of time.

また、他の方法として樹脂モールド部品にS F eガ
スによっては分解しない強い充填材を採用することであ
る。この材料としてはアルミナ粉末(AIO)、CaF
2.CaSO4,BN等があるが、機械的強度の点から
Ca F 2 。
Another method is to use a strong filler that cannot be decomposed by S Fe gas in the resin molded parts. This material includes alumina powder (AIO), CaF
2. Although there are CaSO4, BN, etc., CaF2 is preferred from the viewpoint of mechanical strength.

Ca S O4、B N等は実用に適さないのでアルミ
ナ粉末(A1203)が採用されているが、この材料は
、脆く熱サイクルに対する強度が低いという問題がある
Since CaSO4, BN, etc. are not suitable for practical use, alumina powder (A1203) is used, but this material has the problem of being brittle and having low strength against thermal cycles.

また・その他の方法として樹脂モールド部品の内側を機
械的に強い樹脂材料で構成し、外側をSF6ガスに強い
材料の樹脂とする二段注型法も考えられるが、この方法
は、複数の樹脂が用いられるため各樹脂間に新たな界面
が生じ、これらの部分が剥離し、機械的、電気的特性を
低下させ、信頼ある製品を得ることができない問題があ
る。
Another possible method is a two-stage casting method in which the inside of the resin molded part is made of a mechanically strong resin material, and the outside is made of a resin that is resistant to SF6 gas, but this method requires the use of multiple resins. is used, new interfaces are created between each resin, and these parts peel off, reducing mechanical and electrical properties, making it impossible to obtain reliable products.

本発明は、上記問題を解決するためにSF6分解ガスに
対して腐蝕せず十分に信頼性のある高電圧絶縁用樹脂モ
ールド部品およびその製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide a high-voltage insulating resin molded component that is not corroded by SF6 decomposition gas and has sufficient reliability, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、表面に樹脂超微粒子を分散させた耐食性粒子
を注型樹脂絶縁基材の表面に施したものである。
(Means for Solving the Problems) According to the present invention, corrosion-resistant particles in which ultrafine resin particles are dispersed on the surface of a cast resin insulating base material are applied.

また、表面に樹脂超微粒子を分散させた耐食性粒子を高
温の金型の内面に付着させ、この金型に注型樹脂絶縁基
材を注入し、前記耐食性粒子を注型樹脂絶縁基材の表面
に付着させるようにしだものである。
In addition, corrosion-resistant particles with ultrafine resin particles dispersed on the surface are attached to the inner surface of a high-temperature mold, a casting resin insulating base material is injected into the mold, and the corrosion-resistant particles are applied to the surface of the casting resin insulating base material. It is made to be attached to the surface.

(作 用) SF6ガスの雰囲気中、特にSF6分解ガスの雰囲気中
でも、高電圧絶縁用樹脂モールド部品は樹脂超微粒子を
分散させた耐食性粒子により保護され、内部の高電圧絶
縁用樹脂モールド部品を腐蝕させないし、沿面の絶縁抵
抗を確保し、機械的特性も維持する。
(Function) In an atmosphere of SF6 gas, especially in an atmosphere of SF6 decomposition gas, high-voltage insulating resin molded parts are protected by corrosion-resistant particles in which ultrafine resin particles are dispersed, and the high-voltage insulating resin molded parts inside are protected from corrosion. This ensures creepage insulation resistance and maintains mechanical properties.

金型の内面に樹脂超微粒子を分散させた耐食性粒子を付
着させ、この金型に注型樹脂絶縁基材を注入するから耐
食性粒子が注型樹脂絶縁基材の表面に均一に付着させら
れ、SF6分解ガスの雰囲気中でも十分信頼できる注型
樹脂絶縁基材を得ることができる。
Corrosion-resistant particles in which ultrafine resin particles are dispersed are attached to the inner surface of the mold, and a casting resin insulating base material is injected into this mold, so that the corrosion-resistant particles are uniformly attached to the surface of the casting resin insulating base material. A sufficiently reliable cast resin insulating base material can be obtained even in an atmosphere of SF6 decomposition gas.

また、金型を高温にして樹脂超微粒子を分散させた耐食
性粒子を付着させ、この金型の内部に注型樹脂絶縁基材
を注入するから、耐食性粒子が注型樹脂絶縁基材の表面
に容易に付着させられるとともにその結合を強固にし、
剥離、熱サイクル等に対する強度も十分に確保される。
In addition, since the mold is heated to a high temperature and the corrosion-resistant particles in which ultrafine resin particles are dispersed are attached, and the casting resin insulating base material is injected into the mold, the corrosion-resistant particles are attached to the surface of the casting resin insulating base material. It is easy to attach and strengthens the bond.
Sufficient strength against peeling, thermal cycling, etc. is also ensured.

(実施例) 以下図面につにて本発明高電圧絶縁用樹脂モールド部品
を高圧用がいしに適用した場合の一実施例について説明
する。
(Example) An example in which the resin molded component for high voltage insulation of the present invention is applied to a high voltage insulator will be described below with reference to the drawings.

第1図において、符号10は高圧用がいしであって、機
械的強度をもたせるためにガラス短繊維、シリカ粉末を
含存するビスフェノール系エポキシ樹脂11を注型によ
り円筒状に形成される。このがいし10の円筒状外側面
には絶縁面積を大きくするため凹凸部12が、また上下
の両端にはねじ穴等(図示せず)を明けた固定用金属イ
ンサート13.13が設けられている。この外表面全体
には詳細を後述する耐SF6分解ガス性ををする耐食層
16が形成されており、この耐食層16は、アルミナ粉
体等の耐食性粒子14と高分散性アクリル超微粉体等の
樹脂超微粒子15とを混合させることにより、アルミナ
粉体等の耐食性粒子14の表面に高分散性アクリル超微
粉体等の樹脂超微粒子15が付着された耐食材(第2図
参照)によって構成されている。
In FIG. 1, reference numeral 10 denotes a high-pressure insulator, which is formed into a cylindrical shape by casting bisphenol-based epoxy resin 11 containing short glass fibers and silica powder to provide mechanical strength. The cylindrical outer surface of this insulator 10 is provided with an uneven portion 12 to increase the insulation area, and fixing metal inserts 13 and 13 with screw holes etc. (not shown) are provided at both upper and lower ends. . A corrosion-resistant layer 16 resistant to SF6 decomposition gas, the details of which will be described later, is formed on the entire outer surface, and this corrosion-resistant layer 16 is made of corrosion-resistant particles 14 such as alumina powder and highly dispersed acrylic ultrafine powder. A corrosion-resistant material in which ultra-fine resin particles 15 such as highly dispersed acrylic ultra-fine powder are attached to the surface of corrosion-resistant particles 14 such as alumina powder by mixing with ultra-fine resin particles 15 such as (see Fig. 2) It is made up of.

には、先ず金型17を約200℃の高温度に加熱し、そ
の金型17のキャビティ171にスプレーガン18によ
り、前記耐食材が吹付けられる(第3図)。即ち圧搾空
気源(図示せず)に連結されたパイプ20に圧搾空気が
送られると耐食材を収納するタンク(図示せず)に連結
されるパイプ21から耐食材が吸引され、圧搾空気とと
もに前記高温の金型17のキャビティ17aに吹付けら
れる。
First, the mold 17 is heated to a high temperature of about 200° C., and the corrosion-resistant material is sprayed into the cavity 171 of the mold 17 using the spray gun 18 (FIG. 3). That is, when compressed air is sent to a pipe 20 connected to a compressed air source (not shown), the material-resistant material is sucked from a pipe 21 connected to a tank (not shown) that stores the material-resistant material, and the material-resistant material is sucked together with the compressed air. It is sprayed into the cavity 17a of the hot mold 17.

このようにして耐食材が金型17のキャビティ17aに
吹付けられと耐食粒子の表面の樹脂が、金型17の温度
により軟化され、この樹脂を介して耐食性粒子14が金
型17のキャビティ17aに付着される。この付着層の
厚さは、使用機器の条件により決められるが、第6図で
説明するように一般的には約20μm程度にされる。
In this way, when the corrosion-resistant particles are sprayed into the cavity 17a of the mold 17, the resin on the surface of the corrosion-resistant particles is softened by the temperature of the mold 17, and the corrosion-resistant particles 14 are transferred to the cavity 17a of the mold 17 through this resin. attached to. The thickness of this adhesion layer is determined depending on the conditions of the equipment used, but is generally about 20 μm, as explained in FIG. 6.

金型17は、通常第4図に示すようなものである。前記
方法で耐食材を吹付けた金型17のキャビティ17aが
対向するように配置され、上下両端の中心部に金属イン
サート13.13が挿入される。このようにして組立て
られた金型17の注入口22から例えばガラス短繊維2
3、シリカ粉末24を充填したビスフェノール系エポキ
シ樹脂11からなる注型樹脂絶縁基材が注入され、第1
図に示す高電圧用がいし10が形成される。
The mold 17 is normally as shown in FIG. The cavities 17a of the mold 17 sprayed with anti-corrosive material using the above method are arranged so as to face each other, and metal inserts 13.13 are inserted into the center of both upper and lower ends. From the injection port 22 of the mold 17 assembled in this way, for example, short glass fibers 2.
3. A casting resin insulating base material made of bisphenol-based epoxy resin 11 filled with silica powder 24 is injected, and the first
The high voltage insulator 10 shown in the figure is formed.

この製造過程において、ビスフェノール系エポキシ樹脂
11は高温になると液体状になり、その毛細管現象によ
りガラス短繊維23、シリカ粉末24の間隙を介してア
ルミナ粉体の耐食性粒子14と高分散性アクリル樹脂超
微粒子15との耐食材のすきまに自由に侵入して、金型
17のキャビティ17aまで達しビスフェノール系エポ
キシ樹脂11と耐食材とは連続したマトリックス状の強
固な結合が行われる(第5図参照)。
In this manufacturing process, the bisphenol-based epoxy resin 11 becomes liquid when heated to a high temperature, and due to its capillary phenomenon, the corrosion-resistant particles 14 of the alumina powder and the highly dispersible acrylic resin It freely enters the gap between the fine particles 15 and the corrosion resistant material, and reaches the cavity 17a of the mold 17, forming a continuous matrix-like strong bond between the bisphenol-based epoxy resin 11 and the corrosion resistant material (see Figure 5). .

この結合の際、耐食性粒子14と高分散性アクリル樹脂
超微粒子15との耐食材の間に自由に侵入するのは、高
温により液状になるビスフェノール系エポキシ樹脂11
であってガラス短繊維23、シリカ粉末24の固形物は
注型樹脂絶縁基材の中に止まり、表面に露出することは
ない。
During this bonding, the bisphenol-based epoxy resin 11, which becomes liquid at high temperatures, freely enters between the corrosion-resistant particles 14 and the highly dispersible acrylic resin ultrafine particles 15.
The solid matter of short glass fibers 23 and silica powder 24 remains within the cast resin insulating base material and is not exposed to the surface.

成型後ビスフェノール系エポキシ樹脂11が硬化すると
、がいし10には、その表面に耐食性粒子14と高分散
性アクリル樹脂超微粒子15との耐食層16が形成され
、SF6分解ガスから内部の注型樹脂絶縁基材を保護す
るとともに表面の電気的特性を保持する。また、耐食材
、ガラス短繊維23およびシリカ粉末24がビスフェノ
ール系エポキシ樹脂11により、連続的なマトリックス
として結合するので耐食層16と内部の注型樹脂絶縁基
材との接着が強固のものとなり、急激な温度変化に対し
ても剥離、ふくれ、亀裂等を生じることはない。
When the bisphenol-based epoxy resin 11 hardens after molding, a corrosion-resistant layer 16 of corrosion-resistant particles 14 and highly dispersed acrylic resin ultrafine particles 15 is formed on the surface of the insulator 10, and the cast resin insulation inside is protected from SF6 decomposition gas. Protects the base material and maintains the electrical properties of the surface. In addition, since the corrosion-resistant layer 16 and the silica powder 24 are bonded together as a continuous matrix by the bisphenol-based epoxy resin 11, the adhesion between the corrosion-resistant layer 16 and the internal casting resin insulating base material becomes strong. It does not peel, blister, crack, etc. even in the face of sudden temperature changes.

このようにして形成された高圧用がいし10のSF、分
解ガスによる浸食テストを行った。テストは、SF6ガ
スを0. I Vo1%含む3kgf/eシのゲージ圧
で10日間保持し耐食層16の厚さと浸食層の関係を調
べた。この結果は第6図に示すようになり耐食層16の
厚さを20μm以上にすると浸食層が1μm以下になり
、がいしがSF6ガスに対しても浸食されないことがわ
かった。
The high-pressure insulator 10 thus formed was subjected to an erosion test using SF and cracked gas. The test was conducted using SF6 gas at 0. The relationship between the thickness of the corrosion-resistant layer 16 and the eroded layer was investigated by holding it at a gauge pressure of 3 kgf/e containing 1% I Vo for 10 days. The results are shown in FIG. 6, and it was found that when the thickness of the corrosion-resistant layer 16 was set to 20 μm or more, the erosion layer became 1 μm or less, and the insulator was not eroded by SF6 gas.

このような結果に基づき第7図に示す10kvの各種絶
縁がいしを下記3種類作り、比較テストを行った。
Based on these results, the following three types of 10 kV insulating insulators shown in FIG. 7 were manufactured and comparative tests were conducted.

A1注型樹脂絶縁基材をビスフェノール系エポキシ樹脂
とし、これにガラス繊維 250 phrとシリカ粉体200 phrを充填し、
この表面にアルミナ粒子100 μmの耐食層を施したもの、 B1注型樹脂絶縁基材をビスフェノール系エポキシ樹脂
とし、これにガラス繊維 250phrとシリカ粉体200 phrを充填したも
の(人材から耐食層を除いた もの) C1注型樹脂絶縁基材をビスフェノール系エポキシ樹脂
とし、これにアルミナ粉末250 phrを充填したも
の、 これらがいしを、SF6ガスが0.IVo1%で、3、
Okgf/amのゲージ圧中に10日間保持した特性テ
ストを行った。
A1 casting resin insulating base material is made of bisphenol-based epoxy resin, filled with 250 phr of glass fiber and 200 phr of silica powder,
This surface is coated with a corrosion-resistant layer of 100 μm alumina particles, and the B1 cast resin insulating base material is made of bisphenol-based epoxy resin, which is filled with 250 phr of glass fiber and 200 phr of silica powder (the anti-corrosion layer was provided by personnel). (excluded) C1 casting resin insulating base material made of bisphenol-based epoxy resin filled with 250 phr of alumina powder. With IVo1%, 3,
A characteristic test was conducted in which the sample was maintained at a gauge pressure of Okgf/am for 10 days.

最初各がいし絶縁抵抗は1015Ωであったが、テスト
後はかいしBの絶縁抵抗は108Ωまで低下したが、他
の2種のがいし絶縁抵抗は1013Ωを保持していた。
Initially, the insulation resistance of each insulator was 1015Ω, but after the test, the insulation resistance of insulator B decreased to 108Ω, but the insulation resistance of the other two types of insulators remained at 1013Ω.

次にこ9らがいしA、BおよびCを0℃で1時間、] 
l’) (:+ Tで1時間の液相冷熱サイクルを10
回行い、’;1Jitの曲げ強度テストをした。曲げテ
ストは、JIrに従い、片持ちぼり形の負荷方式で、が
い(の先端50a+mに静的曲げ負荷を加え、その破#
J/Il1重を求めたものである。
Next, these 9 Chinese insulators A, B, and C were heated at 0°C for 1 hour.]
l') (10 1 hour liquid phase cooling cycle at +T
A bending strength test of 1 Jit was conducted. In accordance with JIR, a static bending load was applied to the tip 50a+m of the insulator using a cantilever type loading method, and the fracture #
J/Il1 weight is calculated.

〕(いしA、B、Cの初期の破壊強度は、平均で、れぞ
れ800.780.640 kgfとなったが、余熱サ
イクル後、かいしC1即ちアルミナ粉末のみを充填剤し
たものは強度が平均420 kgrと低下し、耐荷重値
である6 00 kgfを下回ったが、他のがいしA、
Bは冷熱サイクル後も強度が下がらなかった。
] (The average initial breaking strength of Isles A, B, and C was 800.780.640 kgf, respectively, but after the preheating cycle, the strength of Isles C1, that is, the one filled with only alumina powder, decreased. decreased to an average of 420 kgr, which was below the load capacity of 600 kgf, but other insulators A,
In case of B, the strength did not decrease even after the cooling/heating cycle.

また、これらのがいしA、Bには、表面のふくれ、亀裂
、剥離の発生は認められなかった。
Furthermore, no blistering, cracking, or peeling on the surface of these insulators A and B was observed.

以上の結果から明らかなように、注型樹脂絶縁基材にガ
ラス繊維とシリカ粉体とを充填し、この表面にアルミナ
粒子を有する耐食層を施したものは、機械的、電気的特
性が勝れ、高電圧絶縁がいしのような絶縁物に最適であ
る。
As is clear from the above results, a cast resin insulating base material filled with glass fiber and silica powder and a corrosion-resistant layer containing alumina particles on the surface has superior mechanical and electrical properties. This makes it ideal for insulators such as high-voltage insulators.

〔発明の効果〕〔Effect of the invention〕

本発明は、注型樹脂絶縁基材にアルミナ粉体のごとき耐
食粒子により耐食層を形成して高電圧絶縁用樹脂モール
ド部品を構成したから、SF8分解ガスの雰囲気中で使
用するときに耐食層が注型樹脂絶縁基材を保護し、高電
圧絶縁用樹脂モールド部品の機械的、電気的特性を損な
わせることがない。
In the present invention, since a corrosion-resistant layer is formed on a casting resin insulating base material using corrosion-resistant particles such as alumina powder to form a high-voltage insulating resin molded part, the corrosion-resistant layer can be used in an atmosphere of SF8 decomposition gas. protects the cast resin insulating base material and does not impair the mechanical and electrical properties of high voltage insulating resin molded parts.

また、表面に樹脂超微粒子を分散させたアルミナ粉体の
ごとき耐食性粒子を高温の金型に吹付け、これによって
注型樹脂絶縁基材の注型時に注型樹脂絶縁基材の表面に
付着させたから、注型樹脂絶縁基材に均一な耐食層を形
成させることができる。
In addition, corrosion-resistant particles such as alumina powder with ultrafine resin particles dispersed on the surface are sprayed onto a hot mold, and this allows them to adhere to the surface of the cast resin insulating base material when the cast resin insulating base material is cast. Therefore, a uniform corrosion-resistant layer can be formed on the cast resin insulating base material.

しかも注型樹脂絶縁基材が耐食性粒子間に浸透するので
その注型樹脂絶縁基材が硬化後には耐食性粒子と注型樹
脂絶縁基材とが強固に結合され、耐食層が急激な温度変
化等によっても、剥離、ふくれ、亀裂等を起こすことが
ない。
Moreover, since the cast resin insulating base material penetrates between the corrosion-resistant particles, the corrosion-resistant particles and the cast resin insulating base material are firmly bonded after the cast resin insulating base material is cured, and the corrosion-resistant layer is protected against sudden temperature changes. No peeling, blistering, cracking, etc. will occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明絶縁部品の一実施例であるがいしの断
面図、第2図は、第1図に採用した高分散性アクリル樹
脂超微粒子とアルミナ粉体との粒子を拡大して示す説明
図、第3図は、金型に耐食性粒子を付着させる場合の説
明図、第4図は、第3図で付着させた耐食性粒子を有す
る金型を用い、注型樹脂絶縁基材を注型する場合の説明
図、第5図は、第4図により注型したがいしの表面を拡
大して示す断面図、第6図は、耐食層の浸食特性図、第
7図は、一般に使用されている10kvがいしの側面図
、第8図は、従来のがいしの特性曲線図である。 10・・・がいし、11・・・注型樹脂縁基材、12・
・・凹凸部、13・・・金具、14・・・高分散性アク
リル樹脂超微粒子、15・・・アルミナ粉体、16・・
・耐食層、17・・・金型、18・・・スプレィガン、
23・・・ガラス繊維、24・・・アルミナ粉体。 出願人代理人  佐  藤  −離 地3図 も4図 馬5図 Fn丁食j4  F+4 ;  lPm)地6図
Figure 1 is a cross-sectional view of an insulator that is an embodiment of the insulating component of the present invention, and Figure 2 is an enlarged view of the particles of highly dispersed acrylic resin ultrafine particles and alumina powder used in Figure 1. An explanatory diagram, Figure 3 is an explanatory diagram of the case where corrosion-resistant particles are attached to a mold, and Figure 4 is an explanatory diagram of a case in which a casting resin insulating base material is poured using a mold having the corrosion-resistant particles attached in Figure 3. Fig. 5 is an enlarged sectional view of the surface of the insulator after casting according to Fig. 4, Fig. 6 is a diagram showing the erosion characteristics of the corrosion-resistant layer, and Fig. 7 is an explanatory diagram of the insulator used in general. FIG. 8 is a side view of a 10 kV insulator, which is a conventional insulator. 10... Insulator, 11... Cast resin edge base material, 12.
... Uneven portion, 13... Metal fitting, 14... Highly dispersible acrylic resin ultrafine particles, 15... Alumina powder, 16...
・Corrosion-resistant layer, 17...Mold, 18...Spray gun,
23...Glass fiber, 24...Alumina powder. Applicant's agent Sato - 3rd map also 4th map horse 5th map Fn ding food j4 F+4; lPm)

Claims (1)

【特許請求の範囲】 1、表面に樹脂微粒子を分散させた耐食性粒子を注型樹
脂絶縁基材の表面に施したことを特徴とする高電圧絶縁
用樹脂モールド部品。 2、表面に樹脂微粒子を分散させた耐食性粒子を高温の
金型の内面に付着させ、この金型に注型樹脂絶縁基材を
注入し、前記耐食性粒子を注型樹脂絶縁基材の表面に付
着させることを特徴とする高電圧絶縁用樹脂モールド部
品の製造方法。
[Scope of Claims] 1. A resin molded part for high voltage insulation, characterized in that corrosion-resistant particles having fine resin particles dispersed thereon are applied to the surface of a cast resin insulation base material. 2. Corrosion-resistant particles with resin fine particles dispersed on the surface are attached to the inner surface of a high-temperature mold, a casting resin insulating base material is injected into this mold, and the corrosion-resistant particles are applied to the surface of the casting resin insulating base material. A method for manufacturing resin molded parts for high voltage insulation, characterized by adhering the parts.
JP7362188A 1988-03-28 1988-03-28 Resin mold part for high voltage insulation and its manufacture Pending JPH01246723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7362188A JPH01246723A (en) 1988-03-28 1988-03-28 Resin mold part for high voltage insulation and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7362188A JPH01246723A (en) 1988-03-28 1988-03-28 Resin mold part for high voltage insulation and its manufacture

Publications (1)

Publication Number Publication Date
JPH01246723A true JPH01246723A (en) 1989-10-02

Family

ID=13523576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7362188A Pending JPH01246723A (en) 1988-03-28 1988-03-28 Resin mold part for high voltage insulation and its manufacture

Country Status (1)

Country Link
JP (1) JPH01246723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333568A (en) * 2005-05-24 2006-12-07 Mitsubishi Electric Corp Gas insulated switchgear
JP2008085329A (en) * 2006-09-25 2008-04-10 Tokyo Electron Ltd Temperature controlled substrate holder having erosion resistant insulating layer used for substrate processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333568A (en) * 2005-05-24 2006-12-07 Mitsubishi Electric Corp Gas insulated switchgear
JP2008085329A (en) * 2006-09-25 2008-04-10 Tokyo Electron Ltd Temperature controlled substrate holder having erosion resistant insulating layer used for substrate processing system

Similar Documents

Publication Publication Date Title
EP0608793B1 (en) Electric flowmeter
US3414863A (en) Electrically conducting panel
US20110200745A1 (en) Reinforcing bar material coated with high adhesion anticorrosion film and method of producing the same
US5041335A (en) Undercoat composition and a metal substrate coated with a resin composition
JPH01246723A (en) Resin mold part for high voltage insulation and its manufacture
US4883703A (en) Method of adhering thermal spray to substrate and product formed thereby
RU2002120489A (en) METHOD FOR PRODUCING INSULATION FOR ELECTRICAL CONDUCTORS BY APPLICATION OF POWDER COATING
US4519970A (en) Method for producing insulated pipe joint
WO2003086684A1 (en) Binding structure of refractory sleeve for inner hole of nozzle for continuous casting
US6376022B1 (en) Protective coating and method
JP3930841B2 (en) Reinforcing bar with highly anti-adhesive coating and method for producing the same
US3817906A (en) Epoxy resin composition
EP0257698B1 (en) A tortoise-shell-like lining for anticorrosive and antielectrostatic purposes
JP4319995B2 (en) Reinforcing bar with highly anti-adhesive coating and method for producing the same
JPH0230017A (en) Resign mold parts
US20110217485A1 (en) Method for coating a metal crucible element with a mixture of glass and ceramic
JP3285693B2 (en) Manufacturing method of cast molding
US5985087A (en) Insulator with cement compound and method for its production
KR100219729B1 (en) Outdoor Epoxy Casting Resin Suspension Insulator
JP6975098B2 (en) Solid insulation switches and railcars
Wiktorek Evaluation of coating systems for the internal protection of blast furnace stoves
JPH0466691B2 (en)
JP2585548B2 (en) Hermetic ceramic coating and method for producing the same
JP3207720B2 (en) Resin molded component and method of manufacturing the same
JPH0432711B2 (en)