JPH01246110A - Production of compound oxide - Google Patents

Production of compound oxide

Info

Publication number
JPH01246110A
JPH01246110A JP7207588A JP7207588A JPH01246110A JP H01246110 A JPH01246110 A JP H01246110A JP 7207588 A JP7207588 A JP 7207588A JP 7207588 A JP7207588 A JP 7207588A JP H01246110 A JPH01246110 A JP H01246110A
Authority
JP
Japan
Prior art keywords
water
ethylenediaminetetraacetic acid
solution
gel
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7207588A
Other languages
Japanese (ja)
Inventor
Chihiro Sakurai
桜井 千尋
Masahiko Okuyama
奥山 雅彦
Yoshiaki Nomiya
野宮 好尭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOROIDO RES KK
Original Assignee
KOROIDO RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOROIDO RES KK filed Critical KOROIDO RES KK
Priority to JP7207588A priority Critical patent/JPH01246110A/en
Publication of JPH01246110A publication Critical patent/JPH01246110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain homogeneous ultrafine particles of a compound oxide by a low-temperature calcination, by dissolving ethylenediaminetetraacetic acid compounds of one or more metallic elements in water, evaporating water from the resultant homogeneous solution and calcining the obtained gelatinous substance. CONSTITUTION:Ethylenediaminetetraacetic acid compounds of one or more metallic elements (e.g. Y, Ba and Cu) are dissolved in water to form a uniform solution, the water is evaporated from the solution and the resultant gelatinous substance is calcined e.g. in an O2 stream.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、複合酸化物の製造方法に関し、特に酸化物系
超電導材料を得るのに適する複合酸化物の製造方法に関
する。また、本発明はエレクトロニクス分野において用
いられる機能性材料となる複合酸化物を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a composite oxide, and particularly to a method for producing a composite oxide suitable for obtaining an oxide-based superconducting material. The present invention also relates to a method for producing a composite oxide that is a functional material used in the electronics field.

[従来の技術] 超電導材料、例えばY B a 2 Cu 30□−8
焼結体は、従来Y  O、BaCO3,CuOの粉体を
乳鉢により粉砕・混合し、高温焼成してそれらの固相反
応により製造されている。
[Prior art] Superconducting material, for example Y Ba 2 Cu 30□-8
Sintered bodies are conventionally produced by pulverizing and mixing powders of Y 2 O, BaCO 3 , and CuO in a mortar, firing them at high temperatures, and subjecting them to a solid phase reaction.

また、組成の均一性、微粒子化を目的として、例えばイ
ツトリウムとバリウムと銅の塩を溶解した溶液のpHを
調整することによりシュウ酸塩として同時に沈殿を形成
させるような湿式共沈法により微粒子の金属塩を得、こ
れを焼成して複合酸化物を製造することが知られている
In addition, for the purpose of uniformity of composition and formation of fine particles, a wet co-precipitation method is used to form fine particles at the same time as oxalate by adjusting the pH of a solution in which yttrium, barium, and copper salts are dissolved. It is known to obtain a metal salt and sinter it to produce a composite oxide.

[発明が解決しようとする問題点] しかしながら、従来の各成分の粉末から出発し固相反応
による方法は、出発原料粉末の超微細化が困難であるた
め、組成の均一性、組織の緻密化、微細化に問題を有し
、かつ均一相を得るためには仮焼−粉砕をくり返す必要
があり、超電導特性が劣化する傾向にある。
[Problems to be Solved by the Invention] However, in the conventional method starting from powders of each component and using solid phase reaction, it is difficult to make the starting raw material powder ultra-fine, so it is difficult to achieve uniformity of composition and densification of structure. However, there is a problem in miniaturization, and in order to obtain a uniform phase, it is necessary to repeat calcining and pulverization, and the superconducting properties tend to deteriorate.

また、シュウ酸塩とする湿式共沈法においても、イツト
リウム、バリウム、銅の各成分が沈殿を形成するさいの
pH値の差異により、収率の低下、組成のずれなどの問
題を生じ、上記の混合固相法と比較すると微細化された
組織の原料粉末が得られるが、超電導特性、特に臨界電
流密度Jcに与える効果は少なく、多くの問題を残して
いる。
In addition, in the wet co-precipitation method for oxalate, problems such as a decrease in yield and deviation in composition occur due to differences in pH values when the components of yttrium, barium, and copper form precipitates. Although a raw material powder with a finer structure can be obtained compared to the mixed solid phase method, it has little effect on superconducting properties, especially the critical current density Jc, and many problems remain.

[問題点を解決するだめの手段] 本発明は、上記のような問題点を解決するために研究を
行ない、ゾル−ゲル法で生成される超微粒子に着目し、
金属元素のエチレンジアミン四酢酸化合物を用いると、
それから水分を蒸発させることによりゲル状物質が生成
することに着目し、それを焼成すると低温での焼成によ
り超微粒子の複合酸化物を製造することができることを
見い出し、本発明を完成させた。
[Means to Solve the Problems] The present invention has conducted research to solve the above problems, and focused on ultrafine particles produced by the sol-gel method.
When using the metallic element ethylenediaminetetraacetic acid compound,
Then, they focused on the fact that a gel-like substance is produced by evaporating water, and found that by firing it at a low temperature, it was possible to produce an ultrafine composite oxide, thereby completing the present invention.

すなわち、本発明は、1種又は2種以上の金属元素のエ
チレンジアミン四酢酸化合物を水に溶解して均一溶液と
し“、水を蒸発させてゲル状物質を得た後、それを焼成
することからなる複合酸化物の製造方法である。
That is, the present invention involves dissolving an ethylenediaminetetraacetic acid compound of one or more metal elements in water to form a homogeneous solution, evaporating the water to obtain a gel-like substance, and then firing it. This is a method for producing a composite oxide.

本発明で用いる金属元素のエチレンジアミン四酢酸化合
物としてはイツトリウム、バリウム、銅、アルミニウム
、チタン、ジルコニウム、ビスマス、カルシウム、スト
ロンチウム、鉄、コバルト、ニッケル、亜鉛、ランタン
などのエチレンジアミン四酢酸化合物が用いられる。超
電導体を製造する場合にはイツトリウム、バリウム、銅
の、又はカルシウム、ストロンチウム、ビスマス、銅の
、又はランタン、バリウム、銅のエチレンジアミン四酢
酸化合物が好ましい。チタン酸バリウムのアクチュエー
ターを製造する場合はエチレンジアミンテトラアセタト
バリウム酸チタンが好ましい。
Ethylenediaminetetraacetic acid compounds of metal elements used in the present invention include yttrium, barium, copper, aluminum, titanium, zirconium, bismuth, calcium, strontium, iron, cobalt, nickel, zinc, lanthanum, and the like. For producing superconductors, ethylenediaminetetraacetic acid compounds of yttrium, barium, copper, or of calcium, strontium, bismuth, copper, or of lanthanum, barium, copper are preferred. When producing barium titanate actuators, titanium ethylenediaminetetraacetatobarate is preferred.

金属元素のエチレンジアミン四酢酸化合物水溶液からの
水の蒸発により得たゲル状物質を焼成する温度は、エチ
レンジアミン四酢酸化合物の種類によっても異なり、5
00〜1300℃の範囲が用いられるが、イツトリウム
、バリウム、銅の各エチレンジアミン四酢酸化合物の混
合水溶液から得られたゲル状物質を焼成する温度は80
0℃付近の温度が用いられる。
The temperature at which the gel-like material obtained by evaporating water from an aqueous solution of an ethylenediaminetetraacetic acid compound of a metal element is fired varies depending on the type of ethylenediaminetetraacetic acid compound, and is
The range of 00 to 1300°C is used, but the temperature at which the gel-like material obtained from the mixed aqueous solution of each ethylenediaminetetraacetic acid compound of yttrium, barium, and copper is fired is 80°C.
Temperatures around 0°C are used.

金属元素のエチレンジアミン四酢酸化合物の水溶液にお
ける濃度としては、均一溶液を形成するためにも前記化
合物の飽和溶解度以下でなければならないが、水を蒸発
させる関係上なるべく高い方が好ましい。
The concentration of the ethylenediaminetetraacetic acid compound of the metal element in the aqueous solution must be below the saturation solubility of the compound in order to form a homogeneous solution, but it is preferably as high as possible in order to evaporate water.

前記の均一溶液を基板上に塗布、スプレーなどによりコ
ーティングなどをし、水を蒸発させてゲル状物質の膜と
し、それを焼成させることにより薄膜あるいは厚膜を得
ることができる。この方法は、特に、優れた超電導特性
を有する超電導体の薄膜あるいは厚膜を得るのに適して
いる。
A thin or thick film can be obtained by applying or spraying the uniform solution on a substrate, evaporating water to form a film of gel-like material, and baking the film. This method is particularly suitable for obtaining thin or thick films of superconductors with excellent superconducting properties.

さらに、この複合酸化物の製造方法は、超電導材料以外
の他の機能性、構造用セラミックスの製造にも有効であ
る。
Furthermore, this method for producing composite oxides is also effective for producing functional and structural ceramics other than superconducting materials.

[作  用] 1種又は2種以上の金属元素のエチレンジアミン四酢酸
化合物を水に溶解して均一溶液とし、水を蒸発させて得
たゲル状物質では、2種以上の金属元素が均一に分散し
ている。このためこのゲル状物質を焼成すると均質な複
合酸化物が得られる。しかも、その焼成においては低温
での焼成により複合酸化物が容易に得られる。
[Function] In a gel-like substance obtained by dissolving an ethylenediaminetetraacetic acid compound of one or more metal elements in water to make a homogeneous solution and then evaporating the water, two or more metal elements are uniformly dispersed. are doing. Therefore, when this gel-like substance is fired, a homogeneous composite oxide can be obtained. Furthermore, the composite oxide can be easily obtained by firing at a low temperature.

超電導材料を作る場合における固相反応による方法では
均一相を得るためには仮焼−粉砕を繰り返す必要がある
が、本発明ではゲル状物質において金属元素が均一に分
散していることにより仮焼−粉砕を繰り返す必要がない
When producing superconducting materials, solid phase reaction methods require repeated calcination and pulverization to obtain a homogeneous phase, but in the present invention, the calcination and pulverization processes are repeated because the metal elements are uniformly dispersed in the gel-like material. - No need for repeated crushing.

[実 施 例] 以下、本発明を実施例により更に具体的に説明するが、
本発明はその要旨を超えない限り、以下の実施例に限定
されるものではない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 エチレンジアミンテトラアセタト イツトリウム酸アンモニウム  0,01モルエチレン
ジアミンテトラアセクト バリウム酸アンモニウム 、   0.02モルエチレ
ンジアミンテトラアセタト銅酸口、03モルを秤量し、
ビーカーに入れloomlの水で溶解して均一な溶液と
する。その溶液を熱風乾燥機(80’C)中に入れ、1
日程度水を蒸発させるとゲル状物質が得られる。それを
ビーカーより取り出し、アルミナボートに乗せ、酸素を
1Ω/分流しながら850℃で8時間仮焼すると、イツ
トリウム、バリウム及び銅の複合酸化物からなる超微粉
末5.7gが得られた。その粉末を3000kg/c♂
で加圧成形し、この成形体を酸素1Ω/分流しながら9
50℃で10時間本焼成し、超電導体を得た。このもの
はYBa2Cu30□1斜方晶の組成を有する。
Example 1 Ammonium ethylenediaminetetraacetatoitrate 0.01 mol Ammonium ethylenediaminetetraacetobarate, 0.02 mol ethylenediaminetetraacetate cuprate, 0.03 mol were weighed,
Put it in a beaker and dissolve it with room ml of water to make a homogeneous solution. Put the solution in a hot air dryer (80'C) and
A gel-like substance is obtained by evaporating the water for about a day. It was taken out from the beaker, placed on an alumina boat, and calcined at 850° C. for 8 hours while flowing oxygen at 1Ω/minute to obtain 5.7 g of ultrafine powder consisting of a composite oxide of yttrium, barium, and copper. 3000kg/c♂ of the powder
Pressure molded with
Main firing was performed at 50° C. for 10 hours to obtain a superconductor. This material has a YBa2Cu30□1 orthorhombic composition.

実施例 2 エチレンジアミンテトラアセタトバリウム酸チタン0.
1モルを秤量し、ビーカーに入れ、50m1の水で溶解
して均一な溶液とする。その溶液を熱風乾燥機(80℃
)中に入れ、1日程度水を蒸発させるとゲル状物質が得
られる。それをビーカーより取り出17、アルミナボー
トに乗せ、酸素を1.1117分流しながら900℃で
2時間仮焼すると、チタン酸バリウムの粉末23.2.
が得られた。その粉末を3000kg/c−で加圧成形
し、この成形体を酸素1j2/分流しながら1300℃
で1時間本焼成をし、チタン酸バリウム誘電体を得る。
Example 2 Titanium ethylenediaminetetraacetatobarate 0.
Weigh out 1 mole, put it in a beaker, and dissolve it in 50 ml of water to make a homogeneous solution. The solution was dried in a hot air dryer (80°C).
) and evaporate the water for about a day to obtain a gel-like substance. It was taken out from the beaker 17, placed on an alumina boat, and calcined at 900°C for 2 hours while oxygen was flowing in 1.1117 parts, resulting in barium titanate powder 23.2.
was gotten. The powder was pressure molded at 3000 kg/c-, and the molded body was heated to 1300°C while oxygen 1j2/split flow.
Main firing was performed for 1 hour to obtain a barium titanate dielectric material.

〔発明の効果コ 本発明によれば、1種又は2種以上の金属元素のエチレ
ンジアミン四酢酸化合物を水に溶解して均一溶液とし、
水を蒸発させて得るゲル状物質は、金属元素が均一に分
散しているために、焼成により均質な複合酸化物が得ら
れ、かつその焼成を低温度で行うことができ、超微粉末
が得られる。さらに、その粉末を成形し、本焼成するさ
いの焼成温度も比較的低くてよい。
[Effects of the Invention] According to the present invention, an ethylenediaminetetraacetic acid compound of one or more metal elements is dissolved in water to form a homogeneous solution,
In the gel-like substance obtained by evaporating water, metal elements are uniformly dispersed, so a homogeneous composite oxide can be obtained by calcination, and the calcination can be performed at a low temperature, resulting in ultrafine powder. can get. Furthermore, when the powder is molded and the main firing is performed, the firing temperature may be relatively low.

例えば、超電導材料Y −B a−Cu−0系において
850℃という低温焼成でもY B a 2 Cu a
 07−。
For example, in the superconducting material Y-Ba-Cu-0, even when fired at a low temperature of 850°C, YBa 2 Cu a
07-.

斜方晶の組成が得られ、また従来の固相法、湿式共沈法
のような組成のずれ、収率の低下がないことが確認され
た。この複合酸化物の製造方法により従来のYBa2C
u3O7□超電導焼成体の欠点であった低い臨界電流密
度Jcの大幅な向上が得られる。
It was confirmed that an orthorhombic composition was obtained and that there was no deviation in composition or decrease in yield as in conventional solid phase methods and wet coprecipitation methods. By this method of manufacturing composite oxide, conventional YBa2C
The low critical current density Jc, which was a drawback of the u3O7□ superconducting fired body, can be significantly improved.

また、1種又は2種以」二の金属元素のエチレンジアミ
ン四酢酸化合物を水に溶解した均一溶液を基板へコーテ
ィングなどし、水を蒸発させてゲル状物質とし、焼成す
ることにより優れた超電導特性を有する超電導体の薄膜
あるいは厚膜を得ることが可能である。
In addition, excellent superconducting properties can be achieved by coating a substrate with a homogeneous solution of ethylenediaminetetraacetic acid compound of one or more metal elements dissolved in water, evaporating the water to form a gel-like substance, and baking it. It is possible to obtain thin or thick films of superconductors having .

さらに、この複合酸化物の製造方法は、超電導材料以外
の他の機能性、構造用セラミックスの製造に有効である
ことは言うまでもない。
Furthermore, it goes without saying that this method for producing a composite oxide is effective for producing other functional and structural ceramics other than superconducting materials.

Claims (1)

【特許請求の範囲】[Claims] 1種又は2種以上の金属元素のエチレンジアミン四酢酸
化合物を水に溶解して均一溶液とし、水を蒸発させてゲ
ル状物質を得た後、それを焼成することからなる複合酸
化物の製造方法。
A method for producing a composite oxide, which comprises dissolving an ethylenediaminetetraacetic acid compound of one or more metal elements in water to make a homogeneous solution, evaporating the water to obtain a gel-like substance, and then firing it. .
JP7207588A 1988-03-28 1988-03-28 Production of compound oxide Pending JPH01246110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7207588A JPH01246110A (en) 1988-03-28 1988-03-28 Production of compound oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7207588A JPH01246110A (en) 1988-03-28 1988-03-28 Production of compound oxide

Publications (1)

Publication Number Publication Date
JPH01246110A true JPH01246110A (en) 1989-10-02

Family

ID=13478925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7207588A Pending JPH01246110A (en) 1988-03-28 1988-03-28 Production of compound oxide

Country Status (1)

Country Link
JP (1) JPH01246110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103832A2 (en) * 2002-06-05 2003-12-18 University Technologies International Inc. Oxygen reduction catalyst
JP2013040090A (en) * 2011-08-19 2013-02-28 Nagaoka Univ Of Technology Method of producing metal oxide particle with spherical shape

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307113A (en) * 1987-06-08 1988-12-14 Nippon Telegr & Teleph Corp <Ntt> Production of superconductor
JPS63310721A (en) * 1987-06-12 1988-12-19 Kanegafuchi Chem Ind Co Ltd Production of solution of compound metal to be used for forming oxide superconducting compound
JPS6411977A (en) * 1987-07-03 1989-01-17 Kanegafuchi Chemical Ind Production of thin film of oxide superconductive compound
JPS6424016A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor
JPS6465003A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Superconductive material and production thereof
JPS6465007A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Starting material solution for superconductive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465003A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Superconductive material and production thereof
JPS6465007A (en) * 1987-01-30 1989-03-10 Agency Ind Science Techn Starting material solution for superconductive material
JPS63307113A (en) * 1987-06-08 1988-12-14 Nippon Telegr & Teleph Corp <Ntt> Production of superconductor
JPS63310721A (en) * 1987-06-12 1988-12-19 Kanegafuchi Chem Ind Co Ltd Production of solution of compound metal to be used for forming oxide superconducting compound
JPS6411977A (en) * 1987-07-03 1989-01-17 Kanegafuchi Chemical Ind Production of thin film of oxide superconductive compound
JPS6424016A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103832A2 (en) * 2002-06-05 2003-12-18 University Technologies International Inc. Oxygen reduction catalyst
WO2003103832A3 (en) * 2002-06-05 2004-03-04 Univ Technologies Int Oxygen reduction catalyst
JP2013040090A (en) * 2011-08-19 2013-02-28 Nagaoka Univ Of Technology Method of producing metal oxide particle with spherical shape

Similar Documents

Publication Publication Date Title
Chu et al. Preparation of High‐Tc Superconducting Oxides by the Amorphous Citrate Process
CN116903369A (en) Preparation method of rare earth alkaline earth manganese-based perovskite electronic phase-change ceramic material
JPH01246110A (en) Production of compound oxide
US5077265A (en) Co-precipitation synthesis of precursors to bismuth-containing superconductors
HUT52646A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JPH0653563B2 (en) Method for producing complex oxide
JPH0476322B2 (en)
JP2632514B2 (en) Manufacturing method of ceramic superconductor
JP3034267B2 (en) Oxide superconductor
JPH0580404B2 (en)
EP1380541A2 (en) A process for the production of very pure fine-grained superconducting powders
JPH0255207A (en) Production of thin film of compound metallic oxide
Barboux et al. High Tc Superconductors using Solution Techniques
JPH0196016A (en) Starting material for conjugate oxide superconductor and production thereof
JPH01172211A (en) Production of raw material for compound oxide superconductor
Rao et al. Synthesis and property evaluation of Y-Ba-Cu-O superconductors
JP2523687B2 (en) Method of forming superconducting film pattern
JPH01246175A (en) Production of compound oxide ceramics
JPH01103919A (en) Production of superconductive ceramic
JPH0255259A (en) Production of compound oxide ceramics
JPH0274528A (en) Superconducting powder, production thereof and superconducting paste
JPS63288912A (en) Production of inorganic oxide superconductor
JPH01224227A (en) Preparation of powder for sintering superconducting ceramic of bi-alkaline earth element-cu oxide type
JPS63303851A (en) Sintered body of superconducting ceramic
JPS63288911A (en) Production of high temperature superconductor