JPH01246041A - Automatic instructing device for industrial robot - Google Patents

Automatic instructing device for industrial robot

Info

Publication number
JPH01246041A
JPH01246041A JP7222588A JP7222588A JPH01246041A JP H01246041 A JPH01246041 A JP H01246041A JP 7222588 A JP7222588 A JP 7222588A JP 7222588 A JP7222588 A JP 7222588A JP H01246041 A JPH01246041 A JP H01246041A
Authority
JP
Japan
Prior art keywords
teaching
rough
pressing force
industrial robot
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7222588A
Other languages
Japanese (ja)
Other versions
JP2659121B2 (en
Inventor
Shuichi Nakada
周一 中田
Katsumi Yamamoto
克己 山本
Toshio Aono
敏雄 青能
Shinichi Sugita
真一 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP7222588A priority Critical patent/JP2659121B2/en
Publication of JPH01246041A publication Critical patent/JPH01246041A/en
Application granted granted Critical
Publication of JP2659121B2 publication Critical patent/JP2659121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To save the teaching labor and time for an industrial robot by manually teaching a small number of rough teaching points, an approaching direction, and a teaching interval, and automatically operating the industrial robot by an automatic teaching performance means. CONSTITUTION:According to a rough teaching point position, an approaching direction, and a teaching interval, each of which has been stored in a rough teaching position-approaching direction storage means 22a and a teaching interval storage means 22b respectively, an industrial robot 10 is operated by an automatic teaching performance means 20a, so that a tool 16 is made to approach the predetermined teaching position of a model work from a little distant point. And when the tool touches the model work, its pressing force is detected by a force sensor 15, and when its value exceeds a predetermined one set by a setting means 23b, the automatic teaching performance means 20a makes a teaching point storage means 22c store the position of an arm 11, which has been detected by a current position detecting means 21b according to an output from a pressing force comparison means 23a. The same procedure is repeated in the other teaching points. Thus, the teaching labor and time of the device concerned can be saved considerably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アームの先端部に工具を取り付けた産業用ロ
ボットに、パリ取りや磨き作業等の作業線を自動的に教
示する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device that automatically teaches work lines for deburring, polishing, etc. to an industrial robot having a tool attached to the tip of its arm.

(従来の技術) 例えば、パリ取り作業の作業線の教示は、従来は可搬形
のオペレーティングボックスを手動により操作し、産業
用ロボットのアーム先端部に取り付けた工具(またはダ
ミー工具)を移動させ、位置決め支持されたモデルワー
クのパリ取りすべき周縁の教示点の一つに当接してその
位置を記憶させ、このような操作を全ての教示点につき
くり返すことにより行っていた。しかしてモデルワーク
への工具の当接の有無は目視により行っていた。
(Prior Art) For example, in teaching the work line for deburring work, conventionally, a portable operating box is manually operated to move a tool (or dummy tool) attached to the tip of an industrial robot's arm. This was done by making contact with one of the teaching points on the peripheral edge of the positioned and supported model workpiece to be deburred, memorizing the position, and repeating this operation for all the teaching points. However, the presence or absence of contact of the tool with the model work was checked visually.

(発明が解決しようとする課題) このような従来技術においては、全ての教示点を手動に
より教示しているので教示に手間及び時間を要する。ま
た、パリ取りや磨き等の作業の際には所定の押圧力で工
具をワークに押し付ける必要があるが、前述の如く当接
の有無を目視にたよっている従来技術においては教示の
際のモデルワークに対する押圧力が一定とはならず、こ
のためパリ取り後のパリ取り残し量や磨き後の仕上り状
態に大きなばらつきが生じる。
(Problems to be Solved by the Invention) In such conventional techniques, all teaching points are taught manually, which requires time and effort for teaching. In addition, when performing tasks such as deburring and polishing, it is necessary to press the tool against the workpiece with a predetermined pressing force, but as mentioned above, in the conventional technology that relies on visual inspection to check whether there is contact, the model used for teaching The pressing force against the workpiece is not constant, which causes large variations in the amount of deburr left after removing deburr and the finished state after polishing.

本発明は大まかなラフ教示のみを行えば、あとは自動的
に作動して教示の手間が大幅に減少し、また教示の際の
モデルワークに対する押圧力が一定となる産業用ロボッ
トの自動教示装置を得ようとするものである。
The present invention is an automatic teaching device for industrial robots that allows only rough teaching to be performed and the rest is automatically operated, greatly reducing the effort required for teaching, and in which the pressing force against the model workpiece during teaching is constant. It is an attempt to obtain.

(課題を解決するための手段) このために、本発明による産業用ロボットの自動教示装
置は、添付図面に例示する如く、アーム11の先端部に
工具16を取り付けた産業用ロボット10の教示装置に
おいて、前記アーム11の先端部と工具16の間に設け
た力センサ15と、前記アーム11の位置を検出する現
在位置検出手段21bと、位置決め固定されたモデルワ
ークWより離れた少数のラフ教示点の位置とこの各ラフ
教示点からモデルワークWに向かう接近方向を記憶する
ラフ教示位置・接近方向記憶手段22aと、教示間隔を
記憶する教示間隔記憶手段22bと、前記力センサ15
により検出される前記工具16の押圧力が押圧力設定手
段23bにより設定された所定値を越えれば出力を生ず
る押圧力比較手段23aと、前記ラフ教示位置・接近方
向記憶手段22a及び教示間隔記憶手段22bの記憶内
容に基づき前記工業用ロボット10を作動させて前記工
具16をモデルワークWに前記教示間隔で順次当接する
とともにこの当接により前記押圧力比較手段23aが出
力を生じた際における前記現在位置検出手段21bによ
り検出された前記アーム11の各位置を教示点記憶手段
22cに記憶させる自動教示実行手a20aを備えたこ
とを特徴とするものである。
(Means for Solving the Problems) For this purpose, an automatic teaching device for an industrial robot according to the present invention is a teaching device for an industrial robot 10 in which a tool 16 is attached to the tip of an arm 11, as illustrated in the attached drawings. , a force sensor 15 provided between the tip of the arm 11 and the tool 16, a current position detecting means 21b for detecting the position of the arm 11, and a small number of rough teaching devices located away from the model workpiece W which is positioned and fixed. Rough teaching position/approaching direction storage means 22a that stores the position of the point and the approach direction from each rough teaching point toward the model work W; teaching interval storage means 22b that stores the teaching interval; and the force sensor 15.
a pressing force comparison means 23a which produces an output when the pressing force of the tool 16 detected by the tool exceeds a predetermined value set by the pressing force setting means 23b; the rough teaching position/approach direction storage means 22a; and the teaching interval storage means. 22b, the industrial robot 10 is operated to sequentially abut the tool 16 on the model workpiece W at the taught intervals, and the current value is determined when the pressing force comparison means 23a produces an output due to this abutment. The apparatus is characterized in that it includes an automatic teaching executor a20a that stores each position of the arm 11 detected by the position detecting means 21b in the teaching point storing means 22c.

(作用) ラフ教示位置・接近方向記憶手段22aに予め記憶され
たラフ教示点の位置及び接近方向と、教示間隔記憶手段
22bに予め記憶された教示間隔に基づき、自動教示実
行手段20aは産業用ロボッl−10を作動させて、先
ず工具16を所定の教示点付近のモデルワークWから多
少離れた位置に位置決めし、その位置からモデルワーク
Wに向けて接近させる。工具16がモデルワークWの教
示点に当接すれば力センサ15がモデルワークWに対す
る押圧力を検出し、その値が押圧力設定手段23bによ
り予め設定された所定値を越えれば押圧力比較手段23
aは出力を生じる。自動教示実行手段20aは、この出
力が生じた際に現在位置検出手段21bにより検出され
たアーム11の位置を教示点記憶子122cに記憶させ
る。次いで自動教示手段20aは再び同様に作動して工
具16を次の教示点に当接してアーム11の位置を記憶
させ、これを全ての教示点について順次繰り返して、全
ての教示点の位置を教示点記憶手段22Cに記憶させる
(Operation) Based on the position and approach direction of the rough teaching point stored in advance in the rough teaching position/approach direction storage means 22a and the teaching interval stored in advance in the teaching interval storage means 22b, the automatic teaching execution means 20a performs industrial The robot 1-10 is operated to first position the tool 16 at a position somewhat distant from the model work W near a predetermined teaching point, and then approach the model work W from that position. When the tool 16 comes into contact with the teaching point of the model workpiece W, the force sensor 15 detects the pressing force against the model workpiece W, and if the value exceeds a predetermined value set in advance by the pressing force setting means 23b, the pressing force comparing means 23
a produces an output. The automatic teaching execution means 20a causes the teaching point memory 122c to store the position of the arm 11 detected by the current position detection means 21b when this output occurs. Next, the automatic teaching means 20a operates in the same manner again to bring the tool 16 into contact with the next teaching point to memorize the position of the arm 11, and repeats this sequentially for all the teaching points to teach the positions of all the teaching points. It is stored in the point storage means 22C.

(発明の効果) 上述の如(、本発明によれば、少数のラフ教示点及び接
近方向と教示間隔のみを手動により教示すれば、あとは
自動教示実行手段が自動的に産業用ロボットを作動させ
て所定の教示間隔で工具を各教示点に当接させ、その時
のアームの位置を記憶させるので、この種の教示に要す
る手間及び時間を大幅に減少させることができる。また
、各教示点の位置はモデルワークに対する押圧力が所定
の値となった一定の条件で記憶されるので、その後の自
動加工の際のパリ取り残し量や磨きの仕上り状態のばら
つきを減少させることができる。
(Effects of the Invention) As described above, according to the present invention, if only a small number of rough teaching points, approach directions, and teaching intervals are manually taught, the automatic teaching execution means automatically operates the industrial robot. The tool is brought into contact with each teaching point at predetermined teaching intervals, and the position of the arm at that time is memorized, which greatly reduces the effort and time required for this type of teaching.Also, each teaching point Since the position of is memorized under a certain condition in which the pressing force against the model work reaches a predetermined value, it is possible to reduce the amount of debris left behind and variations in the finished state of polishing during subsequent automatic processing.

(実施例) 以下に、添付図面に示すパリ取り作業における実施例に
より、本発明の説明をする。
(Example) The present invention will be explained below with reference to an example of deburring work shown in the accompanying drawings.

第2図に示す如(,6軸多関節形の産業用ロボッ)10
は互いに揺動自在に順次枢支されたアーム11を有し、
その先端部であるリスト部12には、力センサ15を介
して工具16が取り付けられている。工具16は電動型
のもので、その回転軸にはパリ取り用のエンドミル等の
加工部16aを備えている。各アーム11及びリスト部
12は6個のサーボモータMl−M6により駆動される
As shown in Figure 2 (6-axis articulated industrial robot) 10
has arms 11 which are pivotally supported one after another so as to be able to swing freely relative to each other,
A tool 16 is attached to the wrist portion 12, which is the tip thereof, via a force sensor 15. The tool 16 is of an electric type, and its rotating shaft is equipped with a machining section 16a such as an end mill for deburring. Each arm 11 and wrist part 12 is driven by six servo motors M1-M6.

産業用ロボット10を作動させて本発明による自動教示
及び自動加工を行う制御装置は主中央処理装置(以下メ
ーインCPUという)20とメモリ22を主要構成部材
とし1.メ・インCPU20にはサーボCPU211〜
216を介して各サーボモータM1〜M6が接続され、
センサコントローラ23とインターフェイス(IF)2
4を介して力センサ15が接続され、また操作盤25が
接続されている。
The control device that operates the industrial robot 10 to perform automatic teaching and automatic processing according to the present invention includes a main central processing unit (hereinafter referred to as main CPU) 20 and a memory 22 as main components: 1. Main CPU 20 includes servo CPU 211~
Each servo motor M1 to M6 is connected via 216,
Sensor controller 23 and interface (IF) 2
A force sensor 15 is connected via 4, and an operation panel 25 is also connected.

第1図に示す如く、各サーボCPU211〜216(第
1図には符号21としてまとめて表示)はプログラム化
された駆動制御手段21aと現在位置検出手段21bを
備え、駆動制御手段21aはメインCPU20からの指
令信号に基づき各サーボモータMl−M6(第1図には
符号Mとしてまとめて表示)に制御パルスを分配して駆
動して産業用ロボッ1−10を作動させるものであり、
現在位置検出手段21bは駆動制御手段21aから同じ
制御パルスの分配を受けこれをカウントして各アーム1
1の現在位置を検出するものである。
As shown in FIG. 1, each servo CPU 211 to 216 (indicated collectively as 21 in FIG. 1) includes a programmed drive control means 21a and a current position detection means 21b, and the drive control means 21a is connected to the main CPU 21. The industrial robot 1-10 is operated by distributing and driving control pulses to each servo motor Ml-M6 (collectively indicated as M in FIG. 1) based on a command signal from the servo motor 1-M6.
The current position detection means 21b receives the same control pulses from the drive control means 21a, counts them, and
This is to detect the current position of No. 1.

メモリ22は実質的にラフ教示位置・接近方向記憶手段
22aと教示間隔記憶手段22bと教示点記憶手段22
cを備え、ラフ教示位置・接近方向記憶手段22aには
後述するラフ教示点の位置及び接近方向が、また教示間
隔記憶手段22bには後述する教示間隔が、自動教示に
先立ち予め入力される。センサコントローラ23はプロ
グラム化された押圧力比較手段23aと押圧力設定手段
23bとを備え、押圧力設定手段23bには予め所定の
押圧力Fo(切削具16aによるパリ取りの際に必要な
所定の押圧力と同じ値)が記憶されており、押圧力比較
手段23aは力センサ15により検出された工具16の
加工部16aに加わる押圧力を前記所定値Foと比較し
て、この押圧力が前記所定値Foを越えれば出力を生ず
るものである。
The memory 22 essentially includes a rough taught position/approach direction storage means 22a, a taught interval storage means 22b, and a taught point storage means 22.
The position and approach direction of a rough teaching point, which will be described later, are input in advance into the rough teaching position/approach direction storage means 22a, and the teaching interval, which will be described later, into the teaching interval storage means 22b, prior to automatic teaching. The sensor controller 23 includes a programmed pressing force comparison means 23a and a pressing force setting means 23b, and the pressing force setting means 23b has a predetermined pressing force Fo (a predetermined value necessary for deburring with the cutting tool 16a). The pressing force comparing means 23a compares the pressing force applied to the machining part 16a of the tool 16 detected by the force sensor 15 with the predetermined value Fo, and the pressing force is determined to be the same as the pressing force. If the predetermined value Fo is exceeded, an output is generated.

メインCPU20は、第1図に示す如く、ブIコダラム
化された自動教示実行手段20aと自動加工実行手段2
0bを備えている。自動教示実行手段20aは、先ずラ
フ教示位置・接近方向記憶子、段22aに記憶されたラ
フ教示点の位置及び接近方向と、教示間隔記憶手段22
bに記憶された教示間隔に基づき、駆動制御手段21a
を介して後述の如〈産業用ロボン)10を作動させて工
具16の加工部16aをモデルワークWの各教示点に当
接し、この押圧力が増大して押圧力比較手段23aが出
力を生じれば、現在位置検出手段21bにより検出され
た各アーム11の位置を表すカウント値すなわち教示位
置を教示記憶手段22 cに記憶させるものである。ま
た、自動加工実行手段20bは、上述のようにして教示
点記憶手段22Cに記憶された各教示位置に基づき、駆
動制御手段21aを介して産業用ロボットlOを作動さ
せ、工具16の加工部16aを各教示点を通る作業線に
沿って移動させ、回転するエンドミルのような加工部1
6aによりワークのパリ取りを行わせるものである。
The main CPU 20, as shown in FIG.
0b. The automatic teaching execution means 20a first stores the rough teaching position/approach direction memory, the position and approach direction of the rough teaching point stored in the stage 22a, and the teaching interval storage means 22.
Based on the teaching interval stored in b, the drive control means 21a
The industrial robot 10, which will be described later, is operated to bring the machining part 16a of the tool 16 into contact with each teaching point of the model workpiece W, and this pressing force increases and the pressing force comparison means 23a produces an output. If so, the count value representing the position of each arm 11 detected by the current position detecting means 21b, that is, the teaching position, is stored in the teaching storage means 22c. Further, the automatic machining execution means 20b operates the industrial robot IO via the drive control means 21a based on the teaching positions stored in the teaching point storage means 22C as described above, and operates the processing portion 16a of the tool 16. The machining section 1, which resembles a rotating end mill, moves along the working line passing through each teaching point.
6a, the workpiece is deburred.

次に上記実施例の教示動作を第3図〜第5図により説明
する。この教示はパリ取り加工がなされたモデルワーク
Wを取付治具により位置決め支持し、工具16の回転を
停止して行い、第5図のフローチャートのステップ10
0〜106で示す手動による予備的なラフ教示と、ステ
ップ110〜121で示す自動教示に分かれている。
Next, the teaching operation of the above embodiment will be explained with reference to FIGS. 3 to 5. This teaching is carried out by positioning and supporting the model workpiece W that has been subjected to the deburring process using a mounting jig, and stopping the rotation of the tool 16.
It is divided into manual preliminary rough teaching shown by steps 0 to 106 and automatic teaching shown to steps 110 to 121.

■)ラフ教示 ラフ教示においては、第3図に示す如く、モデルワーク
Wから離れた少数のラフ教示点A、B。
■) Rough teaching In rough teaching, as shown in FIG. 3, a small number of rough teaching points A and B are located away from the model work W.

C・・・Mの位置と、この各ラフ教示点からモデルワー
クWの外周とほぼ直交する方向でモデルワークWに向か
う接近方向Oa、Ob、Oc・・・Omと、教示間隔T
を手動により教示する。各ラフ教示点A、 B・・・M
の数及び相互の間隔は任意であるが、隣り合う教示点を
結ぶ直線がモデルワークWの外周に接近及び離れ過ぎな
い範囲においてなるべく間隔が大となるように定め、こ
の間隔は同一とする必要はない。また教示間隔Tは各ラ
フ教示点の間の範囲毎に変えてもよい。
The positions of C...M, the approach directions Oa, Ob, Oc...Om from each rough teaching point toward the model work W in a direction substantially orthogonal to the outer circumference of the model work W, and the teaching interval T.
be taught manually. Each rough teaching point A, B...M
The number of teaching points and the mutual spacing are arbitrary, but the spacing should be as large as possible within the range where the straight line connecting adjacent teaching points approaches and does not go too far from the outer periphery of the model work W, and this spacing must be the same. There isn't. Further, the teaching interval T may be changed for each range between rough teaching points.

先ず第5図のフローチャートのステップ100において
操作fi25(又は可IM形のオペレーティングボソク
ス)により産業用ロボットIOを操作して工具16の加
工部16aをラフ教示黒人に移動し、ステップ101に
おいてその位置(現在位置検出手段21bのカウント値
)をメモリ220)所定領域(ラフ教示位置・接近方向
記憶手段22a)に記憶させ、次いでステップ102に
おいて接近方向Oaを設定してメモリ22の所定領域に
記憶させる。続くステップ103〜105において、同
様にして加工部16aを次のラフ教示点13に移動して
その位置と接近方向obをメモリ22に記憶させる。続
くステップ106においてはラフ教示点A、B間の教示
間隔Tをメモリ22の所定領域(教示間隔記憶手段22
b)に記憶さ)上る。
First, in step 100 of the flowchart of FIG. 5, the industrial robot IO is operated by the operation fi 25 (or IM type operating box) to move the machining part 16a of the tool 16 to the rough teaching position, and in step 101, the position is changed. (The count value of the current position detection means 21b) is stored in a predetermined area (the rough teaching position/approach direction storage means 22a) of the memory 220, and then in step 102, the approach direction Oa is set and stored in the predetermined area of the memory 22. . In subsequent steps 103 to 105, the processing section 16a is similarly moved to the next rough teaching point 13, and its position and approach direction ob are stored in the memory 22. In the subsequent step 106, the teaching interval T between the rough teaching points A and B is stored in a predetermined area of the memory 22 (teaching interval storage means 22).
b) memorized) go up.

II )自動教示 次に第4図及び第5図により自動教示の説明をする。 
t!作盤25によりメインCPU20に自動教示の開始
を指令すれば、CPU20 (自動教示実行手段20a
部分)は、先ずステ・ノブ110において所定のカウン
タのカウント値nを1とした後、ステップ111におい
てS na (= St a= A)点の位置を演算し
、続くステップ112において産業用ロボソ1−10を
作動させて工具16の加工部16aをSea点に移動す
る。Sea点の位置はラフ教示点Aから直線的にラフ教
示点Bに向かって(n−1)XTの位置である。次いで
メインCPU 20は、ステップ113において5na
(=S1a−八)点からモデルワークWに向かう接近方
向0na(=Ota=Oa)を演算し、ステップ114
において産業用ロボット10を作動させて加工部16a
を接近方向0工aに移動させる。接近方向Onaはラフ
教示された接近方向Oaとobの交点に向かう方向であ
る。切削具16aが接近方向0工aに移動しモデルワー
クWの外周に当接して加工部16aに生じた押圧力Fは
力センサ15により検出される。センサコントローラ2
3は、ステップ115においてこの押圧力Fを読み込み
、ステップ1、16において押圧力比較手段23aはこ
の押圧力Fを押圧力設定手段23bに記憶された所定値
の押圧力Foと比較しF>Foとなれば出力を発生する
。メインCPU20は押圧力比較手段23aが出力を発
生するまではステップ114を繰り返して切削具16a
を接近方向Opaに移動させ、出力を発生すればステッ
プ117において産業用ロボット10を停止させて加工
部16aの接近を停止させる。この状態においては加工
部i6aは第1の教示点Peaに位置して押圧力FOで
モデルワークWに押圧され、メインCPU20はステッ
プ118においてこの教示点P4aの位置(現在位置検
出手段21bのカウント値)をメモリ22の所定領域(
教示点記憶手段22C)に記憶させ、次いでステップ1
19においてカウント値nに1を加えて2とする。この
状態においては(n−]、)′1゛≧ABではないので
メインCPU20は制御動作をステップ120からステ
ップZtC:戻し、ステップ111〜119を繰り返し
て教示点Pzaの位置をメモリ22の所定領域に記憶さ
せ、更にステップ111〜119を繰り返して教示点り
″la。
II) Automatic teaching Next, automatic teaching will be explained with reference to FIGS. 4 and 5.
T! When the main CPU 20 is instructed to start automatic teaching by the making board 25, the CPU 20 (automatic teaching execution means 20a
First, the count value n of a predetermined counter is set to 1 in the steering knob 110, and then in step 111 the position of the point S na (= Sta= A) is calculated, and in the subsequent step 112, the industrial robot robot 1 -10 is activated to move the processing portion 16a of the tool 16 to the Sea point. The position of the Sea point is (n-1) XT from the rough teaching point A in a straight line toward the rough teaching point B. Next, in step 113, the main CPU 20
(=S1a-8) An approach direction 0na (=Ota=Oa) toward the model work W is calculated, and step 114
The industrial robot 10 is operated in the processing section 16a.
is moved in the approach direction 0 ma. The approach direction Ona is a direction toward the intersection of the roughly taught approach directions Oa and ob. The cutting tool 16a moves in the approach direction 0 machining a and comes into contact with the outer periphery of the model workpiece W, and the pressing force F generated on the processed portion 16a is detected by the force sensor 15. Sensor controller 2
3 reads this pressing force F in step 115, and in steps 1 and 16, the pressing force comparing means 23a compares this pressing force F with the pressing force Fo of a predetermined value stored in the pressing force setting means 23b, and F>Fo. If so, an output will be generated. The main CPU 20 repeats step 114 until the pressing force comparison means 23a generates an output, and the cutting tool 16a
is moved in the approach direction Opa, and if an output is generated, the industrial robot 10 is stopped in step 117, and the approach of the processing section 16a is stopped. In this state, the machining part i6a is located at the first teaching point Pea and is pressed against the model work W by the pressing force FO, and the main CPU 20 determines the position of this teaching point P4a (the count value of the current position detection means 21b) in step 118. ) in a predetermined area of the memory 22 (
stored in the teaching point storage means 22C), and then in step 1
In step 19, 1 is added to the count value n to make it 2. In this state, since (n-], )'1゛≧AB does not hold, the main CPU 20 returns the control operation from step 120 to step ZtC, repeats steps 111 to 119, and stores the position of the teaching point Pza in a predetermined area of the memory 22. The teaching point "la" is stored by repeating steps 111 to 119.

Peaを記憶させる。教示点Pヰaの位置を記憶した後
のステップ119においてカウント値nが5となれば(
n−1)T≧ABとなるので、メインCPU20はステ
ップ121に進んで産業用ロボット10を作動させ、工
具16の加工部16aをラフ教示点Bに移動させて教示
を終了する。
Memorize Pea. If the count value n becomes 5 in step 119 after storing the position of the teaching point Pia, (
n-1) Since T≧AB, the main CPU 20 proceeds to step 121, operates the industrial robot 10, moves the processing portion 16a of the tool 16 to the rough teaching point B, and ends the teaching.

以上においては、説明を簡略化するためにラフ教示点A
とBの間についてのみ説明したが、実際はラフ教示にお
いてステップ100〜106を繰り返して全てのラフ教
示点A、B、C・・・Mの位置と1.各接近方向Oa、
Ob・・・Omと1.各教示間隔Tをまとめて記憶させ
た後1.自動教示においてステップ110〜121を繰
り返してモデルワークW全周の全教示点P工a、P2a
・・・Pやmの自動教示を行うものである。
In the above, to simplify the explanation, the rough teaching point A
Although the explanation has only been made for the points between and B, in reality, steps 100 to 106 are repeated during rough teaching to determine the positions of all rough teaching points A, B, C, . . . , and 1. Each approach direction Oa,
Ob...Om and 1. After storing each teaching interval T at once: 1. In automatic teaching, steps 110 to 121 are repeated to obtain all teaching points P work a, P2a around the entire circumference of the model work W.
... Automatically teaches P and m.

次に自動加工動作を第4図及び第6図に示すフローチャ
ートにより説明する。パリ取り未加工のワークWaをモ
デルワークWの代りに位置決め支持l、た後2、操作盤
25によりメインCP U 20に自動加工の開始を指
令すれば、メインCPU20(自動加工実行手段20b
部分)は作動を開始する。
Next, automatic machining operations will be explained with reference to flowcharts shown in FIGS. 4 and 6. After positioning and supporting the undeburred workpiece Wa instead of the model workpiece W, if the operation panel 25 commands the main CPU 20 to start automatic machining, the main CPU 20 (automatic machining execution means 20b
part) begins to operate.

メインCPU20は工具16を回転駆動し、先ずステッ
プ200において産業用ロボット10を作動させて工具
16の加工部16aをラフ教示点Aに移動する。続いて
メインCPU20はステップ201において所定のカウ
ンタのカウント値nを1とした後、ステップ202にお
いて産業用ロボット10を作動させて加工部16aを教
示点Peaに移動し、続くステップ203においてカウ
ント値nに1を加えて2とした後、ステップ204より
ステップ202に戻してステップ202〜204を繰り
返し、加工部16aを教示点Pia〜P4aを通る作業
線Wβに沿って移動させる。次いでメインCPU20は
ステップ204よりステップ211に移ってカウント値
nを1に戻した後、ステップ202〜204と同様のス
テップを繰り返して加工部16aを教示点Pユb−P4
.bを通る作業線Weに沿って移動させ、以下同様の繰
り返しにより加工部16aをワークWaの全周に沿った
作業線Wβに沿って移動させ、回転する加工部16aに
よりワークWaの周囲のパリ取りを行う。
The main CPU 20 rotates the tool 16, and first, in step 200, the industrial robot 10 is operated to move the processing section 16a of the tool 16 to the rough teaching point A. Next, the main CPU 20 sets the count value n of a predetermined counter to 1 in step 201, then operates the industrial robot 10 in step 202 to move the processing section 16a to the teaching point Pea, and in the subsequent step 203 sets the count value n to 1. After adding 1 to 2, the process returns from step 204 to step 202 and steps 202 to 204 are repeated to move the machining section 16a along the work line Wβ passing through the teaching points Pia to P4a. Next, the main CPU 20 moves from step 204 to step 211, returns the count value n to 1, and then repeats the same steps as steps 202 to 204 to move the machining section 16a to the teaching point Pyub-P4.
.. By repeating the same process, the machining section 16a is moved along the working line Wβ along the entire circumference of the workpiece Wa. Take the pick.

切削具16aがワークWaを一周して最初の教示点Pj
Laに戻れば(ステップ292)、次のステップ295
においてメインCPU20は加工部16aをワークWa
から離れたラフ教示位置Aに戻してパリ取り作業を終了
する。
The cutting tool 16a goes around the workpiece Wa and reaches the first teaching point Pj.
When returning to La (step 292), the next step 295
, the main CPU 20 converts the processing section 16a into a workpiece Wa.
Return to rough teaching position A away from , and finish the deburring work.

上記実施例によれば、手動のラフ教示により少数のラフ
教示点A、B、C・・・Mの位置及び接近方向Oa、O
b、Oc・・・Omと教示間隔Tのみを教示すれば、あ
とはメインCPU20が産業用ロボットlOを作動させ
て自動的に所定の教示間隔Tで各教示点の位置を記憶さ
せるので教示に要する手間と時間を大幅に減少させるこ
とができる。また、各教示点の位置はモデルワークWに
対する加工部16aの押圧力がパリ取りの際の押圧力F
oとなった状態で記憶されるので、その後の自動加工に
よるパリ取りの際の取り残し量の誤差はワークWaの形
状及び取付けの誤差によるものだけとなり、このような
取り残し量の誤差は大幅に減少する。
According to the above embodiment, the positions and approach directions Oa, O of a small number of rough teaching points A, B, C, . . . M are determined by manual rough teaching.
If you only teach b, Oc...Om and the teaching interval T, the main CPU 20 will operate the industrial robot IO and automatically memorize the position of each teaching point at the predetermined teaching interval T. The required effort and time can be significantly reduced. In addition, the position of each teaching point is such that the pressing force of the processing section 16a against the model workpiece W is the pressing force F during deburring.
Since the state of 0 is stored, the error in the amount left behind during subsequent deburring by automatic processing is only due to errors in the shape and installation of the workpiece Wa, and such errors in the amount left behind are greatly reduced. do.

なお、上記実施例においては押圧力設定手段23bに記
憶する押圧力Foをパリ取りの際に必要な押圧力とした
が、この押圧力FOをパリ取りの・ための押圧力よりも
小さい所定値としてアーム11の位置を検出し、これに
基づきパリ取りのための押圧力を与えるアーム11の位
置をメインCPU20により演算して、これを教示位置
として記憶するようにしてもよい。これによれば使用す
る力センサ15の容量が小さいもので足り、また教示位
置の精度を向上させることもできる。
In the above embodiment, the pressing force Fo stored in the pressing force setting means 23b is the pressing force necessary for deburring, but this pressing force FO may be set to a predetermined value smaller than the pressing force for deburring. The position of the arm 11 may be detected as follows, and based on this, the main CPU 20 may calculate the position of the arm 11 that applies the pressing force for deburring, and store this as the taught position. According to this, it is sufficient to use a force sensor 15 having a small capacity, and it is also possible to improve the accuracy of the taught position.

また、上記実施例においては、自動教示の際にエンドミ
ル等の加工部16aを使用するものとして説明したが、
このような加工部16aの代りに同一寸法の円筒状のダ
ミー工具を使用して自動教示を行ってもよい。また、現
在位置検出手段21bも駆動制御手段21aからの制御
パルスをカウントする代りに、アーム11の各部に設け
たエンコーダにより直接検出するようにしてもよい。
Further, in the above embodiment, the processing section 16a such as an end mill is used for automatic teaching, but
Automatic teaching may be performed using a cylindrical dummy tool of the same size instead of such a processing portion 16a. Furthermore, instead of counting the control pulses from the drive control means 21a, the current position detection means 21b may be directly detected by encoders provided at each part of the arm 11.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明による産業用ロボットの自動教示装置
の一実施例を示し、第1図は全体構成図、。 第2図は全体構造図、第3図はラフ教示位置の説明図、
第4図は自動教示の説明図、第5図は教示のためのフロ
ーチャート、第6図は自動加工のためのフローチャート
である。 符号の説明 10・・・産業用ロボット、11・・・アーム、15・
・・力センサ、16・・・工具、20a・・・自動教示
実行手段、21b・・・現在位置検出手段、22a・・
・ラフ教示位置・接近方向記憶手段、22b・・・教示
間隔記憶手段、22c・・・教示点記憶手段、23a・
・・押圧力比較手段、23b・・・押圧力設定手段、W
・・・モデルワーク。
The accompanying drawings show an embodiment of an automatic teaching device for an industrial robot according to the present invention, and FIG. 1 is an overall configuration diagram. Figure 2 is a diagram of the overall structure, Figure 3 is an explanatory diagram of the rough teaching position,
FIG. 4 is an explanatory diagram of automatic teaching, FIG. 5 is a flowchart for teaching, and FIG. 6 is a flowchart for automatic machining. Explanation of symbols 10...Industrial robot, 11...Arm, 15.
... Force sensor, 16... Tool, 20a... Automatic teaching execution means, 21b... Current position detection means, 22a...
・Rough teaching position/approach direction storage means, 22b...Teaching interval storage means, 22c...Teaching point storage means, 23a.
...Press force comparison means, 23b...Press force setting means, W
...Model work.

Claims (1)

【特許請求の範囲】[Claims] アームの先端部に工具を取り付けた産業用ロボットの教
示装置において、前記アームの先端部と工具の間に設け
た力センサと、前記アームの位置を検出する現在位置検
出手段と、位置決め固定されたモデルワークより離れた
少数のラフ教示点の位置とこの各ラフ教示点からモデル
ワークに向かう接近方向を記憶するラフ教示位置・接近
方向記憶手段と、教示間隔を記憶する教示間隔記憶手段
と、前記力センサにより検出される前記工具の押圧力が
押圧力設定手段により設定された所定値を越えれば出力
を生ずる押圧力比較手段と、前記ラフ教示位置・接近方
向記憶手段及び教示間隔記憶手段の記憶内容に基づき前
記産業用ロボットを作動させて前記工具をモデルワーク
に前記教示間隔で順次当接するとともにこの当接により
前記押圧力比較手段が出力を生じた際における前記現在
位置検出手段により検出された前記アームの各位置を教
示点記憶手段に記憶させる自動教示実行手段を備えたこ
とを特徴とする産業用ロボットの自動教示装置。
A teaching device for an industrial robot in which a tool is attached to the tip of an arm, a force sensor provided between the tip of the arm and the tool, a current position detection means for detecting the position of the arm, and a positioning and fixed device. rough teaching position/approach direction storage means for storing the positions of a small number of rough teaching points distant from the model workpiece and the approach direction from each rough teaching point toward the model workpiece; teaching interval storage means for storing teaching intervals; a pressing force comparison means that generates an output when the pressing force of the tool detected by the force sensor exceeds a predetermined value set by the pressing force setting means; and a memory in the rough teaching position/approach direction storage means and the teaching interval storage means. Based on the content, the industrial robot is operated to sequentially contact the tool with the model workpiece at the teaching interval, and when the contact causes the pressing force comparison means to generate an output, the current position is detected by the current position detection means. An automatic teaching device for an industrial robot, comprising automatic teaching execution means for storing each position of the arm in a teaching point storage means.
JP7222588A 1988-03-25 1988-03-25 Automatic teaching device for industrial robots Expired - Fee Related JP2659121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222588A JP2659121B2 (en) 1988-03-25 1988-03-25 Automatic teaching device for industrial robots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7222588A JP2659121B2 (en) 1988-03-25 1988-03-25 Automatic teaching device for industrial robots

Publications (2)

Publication Number Publication Date
JPH01246041A true JPH01246041A (en) 1989-10-02
JP2659121B2 JP2659121B2 (en) 1997-09-30

Family

ID=13483105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222588A Expired - Fee Related JP2659121B2 (en) 1988-03-25 1988-03-25 Automatic teaching device for industrial robots

Country Status (1)

Country Link
JP (1) JP2659121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540753A1 (en) * 1991-05-21 1993-05-12 Hitachi Construction Machinery Co., Ltd. System for controlling industrial robot
JP2011006178A (en) * 2009-06-24 2011-01-13 Furukawa Unic Corp Teaching playback device of crane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540753A1 (en) * 1991-05-21 1993-05-12 Hitachi Construction Machinery Co., Ltd. System for controlling industrial robot
EP0540753A4 (en) * 1991-05-21 1994-08-24 Hitachi Construction Machinery System for controlling industrial robot
JP2011006178A (en) * 2009-06-24 2011-01-13 Furukawa Unic Corp Teaching playback device of crane

Also Published As

Publication number Publication date
JP2659121B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP2719345B2 (en) Processing control device using force sensor
US4603511A (en) Grinding robot
JPH01160837A (en) Method and apparatus for cutting glass
JPH103308A (en) Interference avoiding method for industrial robot
EP0416123A1 (en) Manual intervention method for industrial robot
JPH01246041A (en) Automatic instructing device for industrial robot
JPS601139B2 (en) Automatic tool dimension correction method for copying machine tools
EP0460227B1 (en) Additional shaft follow-up control system of robot
JPH07171779A (en) Centering method of industrial robot with travel device
JP2001038660A (en) Teaching end effector, and robot teaching method
JP2552743B2 (en) Robot controller
JP2889622B2 (en) Polishing robot controller
JP2635106B2 (en) Robot work area limiting device
WO1985000678A1 (en) Method of inspecting machining locus control
JPH02152748A (en) Checking device for stroke end of machine tool for numerical control
JP2693022B2 (en) NC machine tool control method
JP2686157B2 (en) Numerical control device with work shape drawing function
JP2669641B2 (en) Numerical controller for machining non-round workpieces
JPH04131910A (en) Method and device for setting work coordinate shift variable of numerically controlled lathe
JPH02235106A (en) Error processing system for numerical controller
JPH1199491A (en) Robot control device
JPH05104409A (en) Work coordinate system setting device for lathe
JP3779523B2 (en) Position teaching method
JP6124771B2 (en) Robot system
JP3013998B2 (en) Rotary axis zero return method in numerical controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees