JPH01246015A - Electrode material for electric discharge machining - Google Patents

Electrode material for electric discharge machining

Info

Publication number
JPH01246015A
JPH01246015A JP7255088A JP7255088A JPH01246015A JP H01246015 A JPH01246015 A JP H01246015A JP 7255088 A JP7255088 A JP 7255088A JP 7255088 A JP7255088 A JP 7255088A JP H01246015 A JPH01246015 A JP H01246015A
Authority
JP
Japan
Prior art keywords
discharge machining
electrode
electric discharge
machining
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7255088A
Other languages
Japanese (ja)
Inventor
Makoto Matsuura
誠 松浦
Junichi Tomonaga
友永 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP7255088A priority Critical patent/JPH01246015A/en
Publication of JPH01246015A publication Critical patent/JPH01246015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the attainment of a high working speed in water electric discharge machining, and to obtain a prominent performance even in oil electric discharge machining by constituting so that copper is made to be the main component, and thereto silicon carbide of 0.5 to 1.5% by weight is added. CONSTITUTION:By making copper the main component and thereto adding silicon carbide of 0.5 to 1.5% by weight, electrode material is manufactured. And, in the electrodes formed out of this electrode material, as shown in the figure, the rate of consumption is lower than that of any of the electrodes made out of the conventional electrode materials, and the working speed is greater. Especially, as the electrodes for water electric discharge machining, the rate of consumption is lower than that of any of the electrodes made out of the conventional copper material, graphite, or only copper powder sintered material, so that this can be used for a long period of time, and in the water electric discharge machining in which this electrode has been used, a high working speed can be attained. Further, even as the electrodes for oil electric discharge machining, a prominent performance can be obtained in the intermediate and finishing machining.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属、超硬合金、導電性セラミックス等、導
電性を有する被処理物に対して放電加工を行うための電
極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrode material for performing electric discharge machining on electrically conductive workpieces such as metals, cemented carbide, and conductive ceramics.

(従来技術) 従来、放電加工はケロシン溶液内に被処理物を入れ、電
極として主として鋳造銅材又はグラファイトを用いて行
われてきた。加工液のケロシンには、加工液の分解によ
って生成するパイログラファイトが電極表面に析出して
電極の消耗を低下させる作用がある。
(Prior Art) Conventionally, electric discharge machining has been carried out by placing the workpiece in a kerosene solution and using mainly cast copper material or graphite as an electrode. The kerosene in the machining fluid has the effect of reducing electrode wear by depositing pyrographite on the electrode surface, which is produced by decomposition of the machining fluid.

しかしこのケロシンを用いた放電加工は、火災発生の危
険性があり、またケロシン加工液からのアセチレン、エ
チレン、メタン等のガス発生による環境上の問題がある
ので、近年放電加工機の加工液は水が用いられつつある
However, electrical discharge machining using kerosene has the risk of fire and environmental problems due to the generation of gases such as acetylene, ethylene, and methane from the kerosene machining fluid. Water is being used.

(発明が解決しようとする問題点) ところで加工液として水を用いた場合、パイログラファ
イトが電極表面へ析出せず、従来の放電加工用電極、特
に鋳造鋼材、クラファイト等は消耗が激しく実用に供し
難いという問題があった。
(Problem to be solved by the invention) By the way, when water is used as a machining fluid, pyrographite does not precipitate on the electrode surface, and conventional electrodes for electrical discharge machining, especially cast steel materials, graphite, etc., wear out too much and cannot be put into practical use. There was a problem that it was difficult to provide.

この問題を解決するため、例えば特開昭62−1127
38号公報により開示されている如く、実質的に銅から
成る原料粉を加熱加圧焼結して電極材料を製造する方法
が提案されている。
In order to solve this problem, for example, Japanese Patent Laid-Open No. 62-1127
As disclosed in Japanese Patent No. 38, a method has been proposed in which an electrode material is manufactured by heating and pressurizing a raw material powder consisting essentially of copper by sintering it under heat.

しかしこのような方法を以てしても、ケロシン加工液を
使用した場合に較べて電極の消耗度が相当高いのが実情
である。
However, even with this method, the actual situation is that the degree of electrode wear is considerably higher than when kerosene processing fluid is used.

本発明は上記のような事情に鑑みてなされたものであり
、主として水放電加工に適した電極材料を提供すること
を目的としている。
The present invention has been made in view of the above circumstances, and its main purpose is to provide an electrode material suitable for water discharge machining.

(問題点を解決するための手段) 本発明は上記の目的を達成するため、銅を主成分とし、
これにシリコン・カーバイド(SiC)を0.5〜15
重量%添加して電極材料を製造することを要旨としてい
る。
(Means for solving the problems) In order to achieve the above object, the present invention uses copper as a main component,
Add 0.5 to 15 silicon carbide (SiC) to this.
The gist is to manufacture electrode materials by adding % by weight.

以下、本発明を実施例に基づき詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.

(第1実施例) 粒度850メツシユの電解銅粉に粒1300メツシュの
シリコン・カーバイド(SiG)粉を4重量%添加して
混合し、該混合物を2,000〜の圧力で圧縮成形した
後、該成形物を水素ガス還元雰囲気下で加熱温度830
°C1加熱時間30分で焼結し、電極材料を得た。得ら
れた電極・材料を基に直径31ffの円柱状電極を成形
し、鋼(SK−3)を被加工物とし、水を加工液として
正極性(電極側がマイナス、被加工物側がプラス)で穴
明は加工を行い、該電極の加工速[(mf/min )
及び消耗度(体積比)を測定した。
(First Example) 4% by weight of silicon carbide (SiG) powder with a particle size of 1300 mesh was added to electrolytic copper powder with a particle size of 850 mesh and mixed, and the mixture was compression-molded at a pressure of 2,000~2,000 mm. The molded product is heated to a temperature of 830°C in a hydrogen gas reducing atmosphere.
It was sintered at 1 °C for 30 minutes to obtain an electrode material. Based on the obtained electrode/material, a cylindrical electrode with a diameter of 31 ff was formed, steel (SK-3) was used as the workpiece, water was used as the working fluid, and the polarity was positive (negative on the electrode side, positive on the workpiece side). The hole drilling process is carried out, and the processing speed of the electrode [(mf/min)
and the degree of consumption (volume ratio) was measured.

なおその他の加工条件は次の通りである。コンデンサ放
電式電源、電源電圧140V 、加工コンデンサ容量3
μF、平均加工電流1.7 Aまた比較のため市販の鋳
造鋼材、グラフディト及び電解銅粉を加熱加圧焼結して
理論密度91%(比重8.12)に焼結して成る電極材
料を用い、上記実施例と同様の放電加工を行い、該各電
極の加工速成及び消耗度を測定した。その結果を第1図
に示す。
The other processing conditions are as follows. Capacitor discharge type power supply, power supply voltage 140V, processed capacitor capacity 3
μF, average machining current 1.7 A. For comparison, we used an electrode material made by heat-pressing sintering of commercially available cast steel, Graphite, and electrolytic copper powder to a theoretical density of 91% (specific gravity 8.12). Using the electrodes, electrical discharge machining was performed in the same manner as in the above example, and the machining speed and degree of wear of each electrode were measured. The results are shown in FIG.

この図から明らかなように、本発明の電極材料から成形
しt二電極は従来の電極材料を用いた電極のどれよりも
消耗度低く、かつ加工速成が大である。
As is clear from this figure, the two-electrode molded from the electrode material of the present invention has less wear and tear than any of the electrodes using conventional electrode materials, and can be processed more quickly.

(第2実施例) 第1実施例と同じ製造工程で得られた電極材料を基に、
直径25flで軸心に直径5WIIの孔を貫通穿設した
電極を成形し、底付き形状の14(SK−,9)製品を
被加工物とし、ケロシン溶液を加工液として逆極性で中
、仕上げ加工を行い、該電極の加工速度及び消耗度を測
定した。その他の条件は次の通り。トランジスタ放電式
電源、電源電圧80v1ピーク電流5A、パルス巾70
μs、また比較のため市販の鋳造鋼材、グラファイトを
用い、上記実施例と同様の放電加工を行い該各電極の加
工速度及び消耗度を測定した。その結果を第2図に示す
。この図から、曲加工液を使用した場合における本発明
の電極の加工速度は銅、グラファイトのいずれよりもか
なり太き(、消耗率はそれらと同程反あるいはそれ以下
であることが明らかである。
(Second example) Based on the electrode material obtained in the same manufacturing process as the first example,
Molding an electrode with a diameter of 25fl and a hole of diameter 5WII in the axis center, using a 14 (SK-, 9) product with a bottom as the workpiece, and using kerosene solution as the processing fluid, medium and finishing with reverse polarity. Processing was performed, and the processing speed and degree of wear of the electrode were measured. Other conditions are as follows. Transistor discharge type power supply, power supply voltage 80v1 peak current 5A, pulse width 70
For comparison, electrical discharge machining was performed in the same manner as in the above example using commercially available cast steel and graphite, and the machining speed and degree of wear of each electrode was measured. The results are shown in FIG. From this figure, it is clear that the machining speed of the electrode of the present invention when using a bending liquid is considerably thicker than that of either copper or graphite (and the wear rate is as low as or lower than that of both copper and graphite). .

(第3実施例) 第2実施例と同じ電極を使用し、また第2実施例と同じ
製品を被加工物とし、ケロシン溶液を加工液として逆極
性で荒加工を行い、該電極の加工速成及び消耗度を測定
した。その他の条件は次の通り。トランジスタ放電式電
源、電源電圧80V1ピーク電流40A1パルス巾10
0μs、また比較のため市販の鋳造鋼材、グラフ1イト
を用い、上記実施例と同様の放電加工を行い、該各電極
の加工速度及び消耗度を測定した。その結果を第3図に
示す。この図から、曲加工液を使用した場合における本
発明の電極の消耗度はグラファイトよりも大きいが銅よ
りも小さ(、また加工速成は銅、グラファイトに較べて
かなり大きいことが分る。
(Third Example) The same electrode as in the second example was used, and the same product as in the second example was used as the workpiece, and rough machining was performed with opposite polarity using a kerosene solution as the machining fluid, resulting in rapid machining of the electrode. and the degree of wear and tear was measured. Other conditions are as follows. Transistor discharge type power supply, power supply voltage 80V1 peak current 40A1 pulse width 10
For comparison, electric discharge machining was performed in the same manner as in the above example using a commercially available cast steel material, graphite, and the machining speed and degree of wear of each electrode was measured. The results are shown in FIG. From this figure, it can be seen that the degree of wear of the electrode of the present invention when using a bending fluid is greater than that of graphite, but less than that of copper (and that the processing speed is considerably greater than that of copper and graphite.

また発明者等は、電解銅粉に添加するシリコン・カーバ
イド粉の量を種々変えて実験した結果、電極の加工速度
と消耗度との間に第4図に示すような相関関係があるこ
とを突き止めた。すなわち、加工速度はシリコン・カー
バイド粉の添加量が増加するにつれて増加するが、添加
量が15%付近で最大となり、それ以上では低下する。
In addition, as a result of experiments with various amounts of silicon carbide powder added to electrolytic copper powder, the inventors found that there is a correlation between the processing speed of the electrode and the degree of wear as shown in Figure 4. I figured it out. That is, the processing speed increases as the amount of silicon carbide powder added increases, but reaches a maximum when the amount added is around 15%, and decreases above that amount.

消耗度はシリコン・カーバイド粉の添加量が増加するに
つれて減少し、添加量が0.5%付近で最小となり、そ
れ以上では増加する。ここで、加工速度が最大となる時
のシリコン・カーバイド粉の添加量と消耗度が最小とな
る時のシリコン・カーバイド粉の添加量との間にずれが
あり、このずれの幅の範囲、すなわちシリコン・カーバ
イド粉の添加量が0.5〜15%の範囲が本発明の電極
材料におけるシリコン・カーバイド粉の添加量の適正範
囲と考えられる。この範囲内で、低消耗度の加工を重視
する場合は電極材料中のシリコン・カーバイドの添加量
を少なくし、逆に高加工速度の加工を重視する場合はシ
リコン・カーバイドの添加量を多くするなど、必要に応
じてシリコン・カーバイドの添加量を決定すればよい。
The degree of depletion decreases as the amount of silicon carbide powder added increases, reaches a minimum when the amount added is around 0.5%, and increases above that amount. Here, there is a discrepancy between the amount of silicon carbide powder added when the processing speed is maximum and the amount of silicon carbide powder added when the degree of wear is minimum, and the range of this discrepancy, i.e. A range in which the amount of silicon carbide powder added is 0.5 to 15% is considered to be an appropriate range for the amount of silicon carbide powder added in the electrode material of the present invention. Within this range, if low-wear processing is important, reduce the amount of silicon carbide added in the electrode material, and conversely, if high processing speed processing is important, increase the amount of silicon carbide added. The amount of silicon carbide to be added may be determined as necessary.

なお、実施例では電極材料の製造を通常冶金法によって
行っているが、これに限られるものではなく、溶融した
鋼中にシリコン・カーバイド粉を強制的に攪拌、混合し
たものを鋳造する方法、あるいは放電加工用電極の製造
によく用いられる電鋳法において、銅電鋳液中にシリコ
ン・カーバイド粉を懸濁させて、銅とシリコン・カーバ
イドを共析させる方法等によって行ってもよい・(発明
の効果) 本発明に係る電極材料は、水放電加工の電極として従来
の鋼材、グラファイトあるいは銅粉のみを焼結して成る
ものよりも消耗度が低く、長期間使用でき、該電極を用
いた水放電加工において高い加工速度が達成できる。ま
た油放電加工の電極としても、中、仕上げ加工において
顕著な性能を示す。
In the examples, the electrode material is manufactured by a normal metallurgical method, but the method is not limited to this, and the method includes a method of forcibly stirring and mixing silicon carbide powder in molten steel, and casting a mixture. Alternatively, in the electroforming method often used to manufacture electrodes for electrical discharge machining, silicon carbide powder may be suspended in a copper electroforming solution to eutectoid copper and silicon carbide. Effects of the Invention) The electrode material according to the present invention has lower wear and tear than conventional electrodes made of sintered steel, graphite, or copper powder for water discharge machining, and can be used for a long period of time. High machining speeds can be achieved in water discharge machining. It also shows remarkable performance as an electrode for oil discharge machining in medium and finishing machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は各種電極材料の放電加工時におけ
る性能(加工速度及び消耗度)を示すものであり、第1
図は加工液として水を使用した場合の比較図、第2図は
加工液として油を使用すると共に、中、仕上げ加工をし
た場合の比較図、第3図は加工液として油を使用すると
共に荒加工をした場合の比較図、第4図は本発明電極材
料におけるシリコン・カーバイド粉の添加量と加工速度
及び消耗度との相関関係図である。 寥4図
Figures 1 to 3 show the performance (machining speed and degree of wear) of various electrode materials during electrical discharge machining.
The figure is a comparison diagram when water is used as a machining fluid, Figure 2 is a comparison diagram when medium and finishing machining is performed while using oil as a machining fluid, and Figure 3 is a comparison diagram when oil is used as a machining fluid and FIG. 4, which is a comparison diagram when rough machining is performed, is a correlation diagram between the amount of silicon carbide powder added, machining speed, and degree of wear in the electrode material of the present invention. Picture 4

Claims (1)

【特許請求の範囲】[Claims] 銅を主成分とし、これにシリコン・カーバイド(SiC
)を0.5〜15重量%添加して成ることを特徴とする
放電加工用電極材料。
Copper is the main component, and silicon carbide (SiC
) is added in an amount of 0.5 to 15% by weight.
JP7255088A 1988-03-26 1988-03-26 Electrode material for electric discharge machining Pending JPH01246015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255088A JPH01246015A (en) 1988-03-26 1988-03-26 Electrode material for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255088A JPH01246015A (en) 1988-03-26 1988-03-26 Electrode material for electric discharge machining

Publications (1)

Publication Number Publication Date
JPH01246015A true JPH01246015A (en) 1989-10-02

Family

ID=13492578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255088A Pending JPH01246015A (en) 1988-03-26 1988-03-26 Electrode material for electric discharge machining

Country Status (1)

Country Link
JP (1) JPH01246015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329451A (en) * 2004-05-21 2005-12-02 Fuji Photo Film Co Ltd Method for working surface of aluminum plate, base material for lithographic printing plate and lithographic printing plate
CN104972188A (en) * 2015-07-18 2015-10-14 山东理工大学 Method for modifying surface of titanium alloy by means of electric sparks
CN104972186A (en) * 2015-07-18 2015-10-14 山东理工大学 Method for manufacturing gradient composite electrode for electrical spark rough machining and electrical spark finish machining for laser solid forming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329451A (en) * 2004-05-21 2005-12-02 Fuji Photo Film Co Ltd Method for working surface of aluminum plate, base material for lithographic printing plate and lithographic printing plate
CN104972188A (en) * 2015-07-18 2015-10-14 山东理工大学 Method for modifying surface of titanium alloy by means of electric sparks
CN104972186A (en) * 2015-07-18 2015-10-14 山东理工大学 Method for manufacturing gradient composite electrode for electrical spark rough machining and electrical spark finish machining for laser solid forming

Similar Documents

Publication Publication Date Title
US3960577A (en) Dense polycrystalline silicon carbide
EP0445305B1 (en) Vapor deposited diamond synthesizing method on electrochemically treated substrate
Mohal et al. Study on the multiwalled carbon nano tube mixed EDM of Al-SiCp metal matrix composite
US3846084A (en) Chromium-chromium carbide powder and article made therefrom
Chen et al. Characteristics of Al alloy surface after EDC with sintered Ti electrode and TiN powder additive
CN103526251A (en) Method for preparing micro-arc oxidation film with photocatalysis function
US4396482A (en) Composite cathode
JPH01246015A (en) Electrode material for electric discharge machining
CN102703845A (en) Technology for strengthening high surface hardness of TC4 titanium alloy by electrical spark
JP3627784B2 (en) Discharge surface treatment method
JPH02236292A (en) Production of carbonaceous electrode plate for electrolytic production of fluorine
JPH04256520A (en) Electric discharge machining
CN2342925Y (en) Ultrasonic electrolyzing discharging composite working device for nonconducting material
US4115623A (en) Porous material for making tool-electrode and method of producing same
CN102061489A (en) Improved process for smelting metallic titanium by electro-deoxidation method
US3216854A (en) Method for making an electrolytic grinding wheel
CN109055933B (en) Powder liquid phase plasma surface modification method and device thereof
US2538992A (en) Electrolytically deposited iron products
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
Choudhary et al. Blind hole drilling of hybrid aluminium-rice husk ash (ARHA) composite using rotary electro-discharge drilling
Patel et al. Effect of aluminium powder concentration on powder mixed electric discharge machining (PMEDM) of inconel-718
CN214065717U (en) Continuous sintering furnace
JPH0196063A (en) Titanium compound sintered body
JPH0245497B2 (en)
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method