JPH0124439B2 - - Google Patents

Info

Publication number
JPH0124439B2
JPH0124439B2 JP16856082A JP16856082A JPH0124439B2 JP H0124439 B2 JPH0124439 B2 JP H0124439B2 JP 16856082 A JP16856082 A JP 16856082A JP 16856082 A JP16856082 A JP 16856082A JP H0124439 B2 JPH0124439 B2 JP H0124439B2
Authority
JP
Japan
Prior art keywords
phosphor
light output
sio
variation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16856082A
Other languages
Japanese (ja)
Other versions
JPS5958082A (en
Inventor
Satoshi Sugano
Kenji Terajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16856082A priority Critical patent/JPS5958082A/en
Publication of JPS5958082A publication Critical patent/JPS5958082A/en
Publication of JPH0124439B2 publication Critical patent/JPH0124439B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は希土類緑色発光螢光体の製造方法に係
る。 (発明の技術的背景及びその問題点) 螢光ランプの演色性と光出力を同時に改善する
一手段として、比較的狭帯域の発光スペクトル分
布を有する青色、緑色、赤色発光螢光体を適当な
割合に混合して使用する三波長方式が知られてい
る。発光色の大巾に異る三種の螢光体を混合使用
するこの方式の螢光ランプでは、ランプ点灯中に
各螢光体の光出力低下の差易によつて引き起こさ
れる色づれ現象があり、商品価値を低下させてい
る。 昨今、事務機の発達により複写機の使用台数は
増加の一途をたどつているが、特に螢光ランプを
光源とする複写機は省エネルギーという時代の要
請によく対応し、その普及率にはめざましいもの
がある。この種の複写機で光源用螢光ランプが点
灯中に光出力を低下することは、複写スピードを
低下することにつながる。それ故、初期光出力は
もとより点灯中の光出力低下も問題となる。しか
し一般螢光ランプに比較して高負荷状態で使用さ
れるこれら光源用螢光ランプの光出力の低下はか
なり大きい。 セリウムとテレビウムとで付活された珪酸イツ
トリウム螢光体〔(Y、Ce、Tb)2O3・SiO2〕は、
緑色の発光を有し、高効率であるために、三波長
方式螢光ランプ及び複写機光源用螢光ランプに使
用されているものである。しかし、この螢光体は
高効率である反面、ランプ点灯中の光出力低下が
比較的大きい点で改良することが望まれている。 我々はこのような要請にこたえ、螢光ランプ点
灯中の光出力低下を僅少に改良した新規な一般式
(Re1-a-b Tba Ceb2O3・mP2O5・nSiO2で表わ
される緑色発光螢光体を発明しすでに出願した。
(特公昭60−9543号公報) 本発明はこの新規な緑色発光螢光体の製造方法
に関するものであり、製造工程上安定に、かつ性
能のバラツキの少ない緑色発光螢光体を提供する
ものである。 即ち、(Re1-a-b Tba Ceb2O3・mP2O5
nSiO2で表わされる緑色発光螢光体を製造するに
あたり、SiO2の原材料として結晶水及び付着水
を含有するSiO2粉末を用いることを特徴とする
ものである。 例えば、市販の無水のSiO2粉末を用いて調製
した螢光体と、20重量%の水分を含有したSiO2
粉末を用いて調製した螢光体とを使用し、通常の
方法で38ワツト螢光ランプ例えばFL−40S・G/
38を作製し、光出力を測定したところ、無水の
SiO2粉末をSiO2の原料として用いて調製した螢
光体を使用した螢光ランプにおいて螢光体のロツ
ト間において、12%の変動があるのに対して、20
重量%の水分を含有したSiO2粉末を用いて調製
した螢光体を使用した螢光ランプにおいて、螢光
体のロツト間において、4%の光出力の変動しか
認められず、非常に安定した螢光ランプが得られ
た。 このように、本発明の製造方法により調製され
た螢光体は光出力(性能)の変動が少なく、製造
工程上安定に調製し得るものである。 (発明の実施例) 実施例 1 酸化ランタン(La2O3)15.80g、酸化セリウ
ム(CeO2)120.49g、酸化テルビウム(Tb4O7
37.39g、りん酸水素二アンモニウム
((NH42HPO4)118.86g、二酸化珪素(SiO2
7.52g(20重量%の水分を含有するもの)、フツ
化リチウム(LiF)0.039gをボールミル等により
充分粉砕混合する。この混合物をルツボに入れ、
窒素雰囲気中1000℃にて1.5時間焼成する。得ら
れた焼成物を粉砕し、ルツボに入れ、カーボン粉
末30gを上乗せした後、ルツボに蓋をして窒素雰
囲気中1350℃5時間焼成する。焼成後カーボン粉
末を分離除去し、粉砕した後、70〜90℃の温純水
にてよく洗浄する。その後焼成物をロ過、乾燥す
る。更に乾燥した焼成物をルツボに詰め、窒素95
容量%と水素5容量%との混合ガスである還元性
雰囲気で1350℃5時間焼成する。 このようにして得られた螢光体は(La0.1Ce0.7
Tb0.22O3・0.9P2O5・0.2SiO2である。この螢光
体は紫外線励起により発光のピーク波長が545nm
付近にある緑色を強く発光する。図にこの螢光体
の発光スペクトル分布を示してある。この例では
リチウム化合物としてLiFを用いたが、リチウム
化合物の種類に関係なく得られる螢光体の組成式
が上記式で表記されるなら、全く同様の効果を得
させる。 この螢光体を用い常法に従つて、38ワツト螢光
ランプFL−40S・G/38を作製し、光出力の変動
を螢光体ロツト間にて測定したところ光出力は
100%〜96%であり、4%の光出力の変動しか認
められなかつた。 比較例として、無水の二酸化珪素(SiO2)を
用い全く同一の条件にて螢光体を調製し、得られ
た螢光体を使用して同一条件でランプを作製し、
光出力の変動を螢光体ロツト間にて測定したとこ
ろ、光出力は99%〜87%であり、12%の光出力の
変動が観察され、特性上非常にバラツキの大きい
螢光ランプしか得られなかつた。 実施例 2 酸化ランタン(La2O3)63.53g、酸化セリウ
ム(CeO2)22.95g、酸化テルビウム(Tb4O7
24.92g、りん酸水素ニアンモニウム
((NH42HPO4)70.43g、二酸化珪素(SiO2
8.43g(5重量%の水分を含有するもの)、フツ
化カリウム(KF)0.29gをボールミル等により
充分粉砕混合する。この原料混合物は実施例1と
同様の条件で焼成処理される。 得られた螢光体組成は(La0.6Ce0.2Tb0.22O3
0.8P2O5・0.4SiO2である。この螢光体は紫外線励
起により発光ピーク波長が545nm付近の緑色を強
く発光する。 以下実施例1と同様にして螢光ランプを作製
し、光出力を測定する。実施例2の螢光体におい
て、光出力の変動を螢光体ロツト間にて測定した
ところ、光出力は98〜94%であり、4%の光出力
の変動しか認められなかつた。 比較例として、無水の二酸化珪素(SiO2)を
用い全く同一の条件にて螢光体を調製し、得られ
た螢光体を使用して同一条件でランプを作製し、
光出力の変動を螢光体ロツト間にて測定したとこ
ろ、光出力は97%〜85%であり、約12%の光出力
の変動が観察され、特性上非常にバラツキの大き
い螢光ランプしか得られなかつた。 一方、実施例1の組成の螢光体において、含水
量(重量%)を変えたSiO2を用いた場合の螢光
体の光出力の変動(ロツト間のバラツキ)を表に
示す。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of manufacturing a rare earth green light emitting phosphor. (Technical Background of the Invention and Problems Thereof) As a means of simultaneously improving the color rendering properties and light output of a fluorescent lamp, appropriate blue, green, and red light-emitting phosphors having a relatively narrow band emission spectral distribution have been developed. A three-wavelength method is known in which wavelengths are mixed in proportion. In this type of fluorescent lamp, which uses a mixture of three types of phosphors with different emission colors, there is a color shift phenomenon caused by the tendency for the light output of each phosphor to decrease while the lamp is on. , reducing the product value. In recent years, the number of copying machines in use has been steadily increasing due to the development of office machines, and copying machines that use fluorescent lamps as light sources have responded well to the demands of the times for energy conservation, and their penetration rate is remarkable. There is something. In this type of copying machine, reducing the light output while the light source fluorescent lamp is turned on leads to a reduction in the copying speed. Therefore, not only the initial light output but also the decrease in the light output during lighting becomes a problem. However, compared to general fluorescent lamps, the light output of these fluorescent lamps for light sources used under high load conditions is considerably reduced. The yttrium silicate phosphor [(Y, Ce, Tb) 2 O 3 · SiO 2 ] activated with cerium and terebrium is
Because it emits green light and is highly efficient, it is used in three-wavelength fluorescent lamps and fluorescent lamps for copier light sources. However, although this phosphor is highly efficient, it suffers from a relatively large drop in light output during lamp lighting, so improvements are desired. In response to these requests, we have developed a new general formula (Re 1-ab Tb a Ce b ) 2 O 3・mP 2 O 5・nSiO 2 that slightly improves the decrease in optical output during lighting of a fluorescent lamp. He invented a green-emitting phosphor and has already filed an application.
(Japanese Patent Publication No. 60-9543) The present invention relates to a method for manufacturing this novel green-emitting phosphor, and provides a green-emitting phosphor that is stable in the manufacturing process and has less variation in performance. be. That is, (Re 1-ab Tb a Ce b ) 2 O 3・mP 2 O 5
In producing a green light-emitting phosphor represented by nSiO 2 , the present invention is characterized in that SiO 2 powder containing crystal water and attached water is used as a raw material for SiO 2 . For example, a phosphor prepared using commercially available anhydrous SiO 2 powder and SiO 2 containing 20% water by weight
A 38 Watt fluorescent lamp such as FL-40S・G/
38 and measured the light output, it was found that anhydrous
In fluorescent lamps using phosphors prepared using SiO 2 powder as the raw material for SiO 2 , there is a 12% variation between phosphor lots;
In a fluorescent lamp using a phosphor prepared using SiO 2 powder containing % water by weight, only a 4% variation in light output was observed between phosphor lots, indicating very stable results. A fluorescent lamp was obtained. As described above, the phosphor prepared by the manufacturing method of the present invention has little variation in light output (performance) and can be stably prepared in the manufacturing process. (Embodiments of the invention) Example 1 Lanthanum oxide (La 2 O 3 ) 15.80 g, cerium oxide (CeO 2 ) 120.49 g, terbium oxide (Tb 4 O 7 )
37.39g, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) 118.86g, silicon dioxide (SiO 2 )
7.52 g (containing 20% by weight of water) and 0.039 g of lithium fluoride (LiF) were thoroughly ground and mixed using a ball mill or the like. Put this mixture into a crucible,
Bake for 1.5 hours at 1000°C in a nitrogen atmosphere. The obtained fired product is crushed, placed in a crucible, and 30 g of carbon powder is added thereto.The crucible is then capped and fired at 1350°C for 5 hours in a nitrogen atmosphere. After firing, the carbon powder is separated and removed, pulverized, and thoroughly washed with warm pure water at 70 to 90°C. After that, the fired product is filtered and dried. Furthermore, the dried fired product is packed in a crucible and heated to 95% nitrogen.
% by volume and 5% by volume of hydrogen in a reducing atmosphere at 1350°C for 5 hours. The phosphor thus obtained was (La 0.1 Ce 0.7
Tb 0.2 ) 2 O 3・0.9P 2 O 5・0.2SiO 2 . This phosphor has a peak emission wavelength of 545nm when excited by ultraviolet light.
Emits a strong green light in the vicinity. The figure shows the emission spectrum distribution of this phosphor. In this example, LiF was used as the lithium compound, but if the compositional formula of the phosphor obtained is expressed by the above formula regardless of the type of lithium compound, exactly the same effect can be obtained. A 38 watt fluorescent lamp FL-40S/G/38 was manufactured using this phosphor according to a conventional method, and the fluctuation in light output was measured between the phosphor lots.
The range was 100% to 96%, and only a 4% variation in light output was observed. As a comparative example, a phosphor was prepared using anhydrous silicon dioxide (SiO 2 ) under exactly the same conditions, and a lamp was manufactured using the obtained phosphor under the same conditions.
When the variation in light output was measured between phosphor lots, the light output was 99% to 87%, and a 12% variation in light output was observed, indicating that only fluorescent lamps with very large variations in characteristics were obtained. I couldn't help it. Example 2 Lanthanum oxide (La 2 O 3 ) 63.53 g, cerium oxide (CeO 2 ) 22.95 g, terbium oxide (Tb 4 O 7 )
24.92g, Niammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) 70.43g, silicon dioxide (SiO 2 )
8.43 g (containing 5% by weight of water) and 0.29 g of potassium fluoride (KF) were thoroughly ground and mixed using a ball mill or the like. This raw material mixture is fired under the same conditions as in Example 1. The composition of the obtained phosphor was (La 0.6 Ce 0.2 Tb 0.2 ) 2 O 3 .
It is 0.8P2O50.4SiO2 . This phosphor emits strong green light with an emission peak wavelength of around 545 nm when excited by ultraviolet light. Thereafter, a fluorescent lamp was prepared in the same manner as in Example 1, and its light output was measured. In the phosphor of Example 2, when the variation in light output was measured between phosphor lots, the light output was 98 to 94%, and only a 4% variation in light output was observed. As a comparative example, a phosphor was prepared using anhydrous silicon dioxide (SiO 2 ) under exactly the same conditions, and a lamp was manufactured using the obtained phosphor under the same conditions.
When the variation in light output was measured between fluorescent lamp lots, the light output was between 97% and 85%, and a variation in light output of approximately 12% was observed. I couldn't get it. On the other hand, in the phosphor having the composition of Example 1, the variation in light output (variation between lots) of the phosphor when SiO 2 with different water content (wt%) is used is shown in the table.

【表】 表に示すように、水分が微量にでも含まれるこ
とにより、その効果は非常に大なるものがあり、
光出力の変動の小さい螢光体が得られるが、1%
以上の水分を含有したものが好ましい傾向を有す
る。 なお、還元焼成を繰り返すことにより各実施例
とも特性が更に向上する。 以上に説明した本発明の製造方法により調製さ
れた螢光体はいづれも545nm付近に発光ピークを
持つ緑色発光螢光体であり、光出力の変動(ロツ
ト間のバラツキ)の少ないものである。従つて複
写機光源用螢光ランプ、高効率高演色性螢光ラン
プに適用された場合、特性の安定したものが得ら
れる。
[Table] As shown in the table, even a small amount of water has a very large effect.
A phosphor with small fluctuations in light output can be obtained, but at 1%
Those containing more water tend to be preferable. Note that the characteristics of each example are further improved by repeating reduction firing. All of the phosphors prepared by the manufacturing method of the present invention described above are green-emitting phosphors having an emission peak around 545 nm, and have little variation in light output (variation between lots). Therefore, when applied to a fluorescent lamp for a copying machine light source or a fluorescent lamp with high efficiency and high color rendering properties, stable characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例螢光体の発光スペクトル
分布図である。
The figure is an emission spectrum distribution diagram of a phosphor according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 セリウムとテリビウムとで付活され、一般式
(Re1-a-b Tba Ceb2O3・mP2O5・nSiO2で表わ
される希土類緑色発光蛍光体を製造する方法にお
いて、SiO2の原材料としてSiO2・xH2O(3.3×
10-5≦x≦2.2)を用いることを特徴とする蛍光
体の製造方法。 但し、一般式において、Reはイツトリウム
(Y)、ランタン(La)、ガドリニウム(Gd)の
少なくとも一種、a>0、b>0、0<a+b<
1、m>0、n>0である。
[Claims] 1. To produce a rare earth green light-emitting phosphor activated with cerium and terbium and represented by the general formula (Re 1-ab Tb a Ce b ) 2 O 3 .mP 2 O 5 .nSiO 2 In the method, SiO 2 x H 2 O (3.3×
10 -5 ≦x≦2.2). However, in the general formula, Re is at least one of yttrium (Y), lanthanum (La), and gadolinium (Gd), a>0, b>0, 0<a+b<
1, m>0, n>0.
JP16856082A 1982-09-29 1982-09-29 Preparation of fluorescent material Granted JPS5958082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16856082A JPS5958082A (en) 1982-09-29 1982-09-29 Preparation of fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16856082A JPS5958082A (en) 1982-09-29 1982-09-29 Preparation of fluorescent material

Publications (2)

Publication Number Publication Date
JPS5958082A JPS5958082A (en) 1984-04-03
JPH0124439B2 true JPH0124439B2 (en) 1989-05-11

Family

ID=15870288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16856082A Granted JPS5958082A (en) 1982-09-29 1982-09-29 Preparation of fluorescent material

Country Status (1)

Country Link
JP (1) JPS5958082A (en)

Also Published As

Publication number Publication date
JPS5958082A (en) 1984-04-03

Similar Documents

Publication Publication Date Title
JP5331981B2 (en) Silicate-based luminescent material with multiple emission peaks, method for preparing the luminescent material, and light emitting device using the luminescent material
CN101851508B (en) Europium activated silicate green fluorescent powder and application thereof in white light emitting diode
CA1137295A (en) Luminescent bivalent europium-activated barium borophosphate
US4629582A (en) Green-emitting phosphor
JPS59102979A (en) Fluorescent material
JPH0523316B2 (en)
JPS6366357B2 (en)
JP3515737B2 (en) Phosphor and fluorescent lamp using the same
JP2002003836A (en) Phosphor and fluorescent lamp obtained by using the same
JPH0124439B2 (en)
JPS5944335B2 (en) fluorescent material
US4233538A (en) Luminescent lead-activated alkaline earth metal rare earth metal borates and mercury vapor discharge lamp containing the same
JPS598381B2 (en) High color rendering fluorescent lamp
JPH0629417B2 (en) Fluorescent body
JP2995976B2 (en) Method for producing green light emitting phosphor for lamp
JPS6244792B2 (en)
JPS609543B2 (en) fluorescent material
JPH02170888A (en) Production of blue light-generating fluorescent material
KR930003975B1 (en) Fluorescent material and fluorescent lamp used there
JP2726521B2 (en) Phosphor and fluorescent lamp
JPS5944341B2 (en) fluorescent material
JPS607676B2 (en) fluorescent material
JPS63154787A (en) Phosphor
JPH0629416B2 (en) Fluorescent body
JPH0129237B2 (en)