JPH01243422A - Arbitrary figure exposing method - Google Patents

Arbitrary figure exposing method

Info

Publication number
JPH01243422A
JPH01243422A JP6935588A JP6935588A JPH01243422A JP H01243422 A JPH01243422 A JP H01243422A JP 6935588 A JP6935588 A JP 6935588A JP 6935588 A JP6935588 A JP 6935588A JP H01243422 A JPH01243422 A JP H01243422A
Authority
JP
Japan
Prior art keywords
aperture
group
electron beam
sample
small hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6935588A
Other languages
Japanese (ja)
Inventor
Takashi Matsuzaka
松坂 尚
Shinji Okazaki
信次 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6935588A priority Critical patent/JPH01243422A/en
Publication of JPH01243422A publication Critical patent/JPH01243422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enable the exposure of high precision, by detecting a position by using an electron beam obtained by irradiating small hole having a known position relation with the position of an origin. CONSTITUTION:On an aperture 5 on which an opening 5 of arbitrary shape is arranged, a small hole 1 is formed so as to have previously a relative relation. Position detection on a sample is performed by using an electron beam passing through the small hole 1, and, from the results, the irradiation origin 4 of an image of the opening 5 of arbitrary shape (a) is obtained. That is, an electron beam 9 is deflected, a small beam like an electron beam 9' is formed, position detection is performed, thereby enabling the detection of the displacement between a prearranged irradiation position and an irradiation origin 4. From the detected results, the position correction of a rectangular beam on the sample surface is enabled. Further, since the small hole 1 can be irradiated independently of the opening 5 of arbitrary shaped, undesired figure can be prevented from being exposed. Thereby image drawing of high precision can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、任意の断面形状を有する電子ビームを形成す
る電子ビーム露光装置に係り、特に任意形状の電子ビー
ムを試料上の所望の位置に精度よく照射するのに好適な
任意図形露光方法−関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electron beam exposure apparatus that forms an electron beam having an arbitrary cross-sectional shape, and particularly relates to an electron beam exposure apparatus that forms an electron beam of an arbitrary shape at a desired position on a sample. An arbitrary figure exposure method suitable for precise irradiation.

〔従来の技術〕[Conventional technology]

任意形状の電子ビームを形成する電子ビーム露光装置で
は、特開昭61−183926に記載のように、種々の
形状の開口もしくは開口群(以下、単に開口と略す、)
を有するアパーチャ上で電子ビームを偏向移動させ、所
望の形状の開口を、選択して。
In an electron beam exposure apparatus that forms an electron beam of an arbitrary shape, an aperture or aperture group (hereinafter simply abbreviated as aperture) of various shapes is used, as described in JP-A-61-183926.
Select an aperture of the desired shape, by moving the electron beam deflection over the aperture.

これを試料上に投影するものであった。This was to be projected onto the sample.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

断面が任意形状の電子ビームは従来の矩形ビームと異な
り形状の複雑さのため、それ自身を用いて試料上での位
置検出が難しく、さらに、その形状と電子ビームの電流
密度との対応が複雑なため。
Unlike conventional rectangular beams, an electron beam with an arbitrary cross section has a complex shape, making it difficult to detect its position on a sample, and furthermore, the correspondence between the shape and the current density of the electron beam is complicated. For some reason.

試料上での寸法等の計測に関しても困難な点が多かった
。上記従来技術では、任意形状の電子ビームの試料上で
の照射位置補正や、任意形状の電子ビームを互いに接続
する場合に、このビームの寸法9回転、形状歪等を簡便
かつ正確に検出することについての配慮が十分でなかっ
た。
There were also many difficulties in measuring dimensions, etc. on the sample. In the above conventional technology, when correcting the irradiation position of an arbitrarily shaped electron beam on a sample or connecting arbitrarily shaped electron beams to each other, it is difficult to easily and accurately detect nine rotations in the dimension of the beam, shape distortion, etc. There was not enough consideration given to

本発明の目的は、任意形状の電子ビームの試料上での照
射位置補正を実行し、また、寸法9回転。
The purpose of the present invention is to correct the irradiation position of an arbitrary-shaped electron beam on a sample, and to perform 9 rotations in dimension.

あるいは形状歪を検出して、高精度な露光を可能とする
任意図形露光方法を提供することにある。
Another object of the present invention is to provide an arbitrary figure exposure method that detects shape distortion and enables highly accurate exposure.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的のうち照射位置補正は、電子ビームを所望の形
状に成形するため任意形状の開口を設けたアパーチャ上
に、この任意形状の開口と予め相対関係を定めて小孔を
設け、この小孔を通過する電子ビームで試料上での位置
検出を行い、その結果から任意形状の開口像の照射原点
を求めることによって達成される。
Among the above purposes, correction of the irradiation position is performed by forming a small hole on an aperture with an arbitrary-shaped opening in order to shape the electron beam into a desired shape, with a relative relationship determined in advance with the arbitrary-shaped opening, and then This is achieved by detecting the position on the sample with an electron beam passing through the sample, and determining the irradiation origin of an aperture image of an arbitrary shape from the results.

また、任意図形の寸法2回転、あるいは形状歪等の検出
は、この任意形状の開口の周辺に2個以上の小孔を互い
に位置関係を定め、かつ、任意形状の開口との対応を決
めて配置し、これらの小孔を順次照射して得られる電子
ビームで位置検出し、電子ビーム間相互の関係を求める
ことによって達成される。
In addition, to detect two rotations of the dimension of an arbitrary shape or shape distortion, etc., define the positional relationship of two or more small holes with each other around the arbitrary-shaped opening, and determine the correspondence with the arbitrary-shaped opening. This is accomplished by position detection using the electron beams obtained by sequentially irradiating these small holes, and determining the mutual relationship between the electron beams.

〔作用〕[Effect]

可変成形方式では、第3図に示すように、矩形のいずれ
かの頂点を照射原点に選べば1寸法変化に対して不変な
位置を選ぶことができた。この矩形の大きさを変化させ
るための電子ビーム9を偏向し石、電子ビーム9′のよ
うに小さいビームを作り位置検出を行えば、その時の照
射予定位置と照射原点4′とのズレを検出でき、その結
果から矩形ビームの試料面上での位置補正が可能であっ
た。
In the variable molding method, as shown in FIG. 3, by selecting one of the vertices of the rectangle as the irradiation origin, it was possible to select a position that remained unchanged even with one dimensional change. If the electron beam 9 to change the size of this rectangle is deflected to create a small beam like the electron beam 9' and the position is detected, the deviation between the planned irradiation position and the irradiation origin 4' can be detected. From the results, it was possible to correct the position of the rectangular beam on the sample surface.

一方、任意図形では、第1図aのように、電子ビームに
よる照射領域6に矩形と同様に照射原点4を定めても、
開口部5がそこに存在しない場合が考えられる。そこで
、任意図形の端の点7を照射原点として選ぶと、矩形の
場合と異なり図形ごとに照射原点の位置が異なり、描画
データが極めて複雑になる。そこで、任意形状を有する
開口5を、試料上へ投影したときの図形の照射位置を定
めるために、仮想的に照射原点4を定める。この照射原
点4に対して、予め距離と方向を定めてアパーチャ上に
小孔1を設ける。この小孔1を通過した電子ビームで位
置検出を行えば、小孔1と照射原点4の相対関係が既知
であるから、任意図形の照射原点4と照射予定位置との
ズレを検出することができ、その結果、任意形状の断面
を持った電子ビームの位置補正が実行できる。しかも、
この小孔1は任意形状の開口5とは独立に照射できる領
域に設けられているので、開口像を試料上に投影すると
き、余分な図形が露光されることも防止できる。
On the other hand, in the case of an arbitrary figure, even if the irradiation origin 4 is set in the irradiation area 6 by the electron beam as in the case of a rectangle, as shown in FIG. 1a,
It is possible that the opening 5 is not present there. Therefore, if point 7 at the end of an arbitrary figure is selected as the irradiation origin, unlike in the case of a rectangle, the position of the irradiation origin differs for each figure, making the drawing data extremely complicated. Therefore, in order to determine the irradiation position of the figure when the aperture 5 having an arbitrary shape is projected onto the sample, the irradiation origin 4 is virtually determined. With respect to this irradiation origin 4, a small hole 1 is provided on the aperture with a distance and direction determined in advance. If the position is detected using the electron beam that has passed through the small hole 1, the relative relationship between the small hole 1 and the irradiation origin 4 is known, so it is possible to detect the deviation between the irradiation origin 4 of an arbitrary figure and the planned irradiation position. As a result, the position of an electron beam with an arbitrary cross section can be corrected. Moreover,
Since this small hole 1 is provided in a region that can be irradiated independently of the arbitrarily shaped aperture 5, it is possible to prevent unnecessary figures from being exposed when the aperture image is projected onto the sample.

さらに、第2図すのように、このような小孔1゜2.3
を任意形状の開口像のX方向の幅、あるいは、Y方向の
幅に対応させて開口の周辺に配置して、これらの小孔1
,2.3を順次照射して得られる電子ビームで位置検出
を行い、試料上でのビーム間の距離を検出すれば、開口
像の寸法を検出することができる。
Furthermore, as shown in Figure 2, such a small hole 1° 2.3
These small holes 1 are arranged around the aperture corresponding to the width in the X direction or the width in the Y direction of the aperture image of arbitrary shape.
, 2.3 are sequentially irradiated to detect the position and detect the distance between the beams on the sample, the size of the aperture image can be detected.

また、この時の各ビームの座標値から試料上の回転量を
検出できる。この回転量をX、Y軸方向とも求めて比較
することによって、開口像の試料面上での歪の量を測定
することができる。
Furthermore, the amount of rotation on the sample can be detected from the coordinate values of each beam at this time. By determining and comparing the amount of rotation in both the X and Y axis directions, it is possible to measure the amount of distortion of the aperture image on the sample surface.

〔実施例〕〔Example〕

第1図に特許請求範囲第1項の実施例を示す。 FIG. 1 shows an embodiment of claim 1.

第1図aに示すように、電子ビームの照射領域6の内部
に、試料面に投影する任意形状の開口5が設けられてい
る。ここで1図中に矢印で示したように、座標軸の方向
をx、yと定める0本実施例では、照射領域6の左下端
を照射原点4と定めた。
As shown in FIG. 1a, an aperture 5 of an arbitrary shape is provided inside the electron beam irradiation region 6 to be projected onto the sample surface. Here, as shown by arrows in FIG. 1, the directions of the coordinate axes are defined as x and y. In this embodiment, the lower left end of the irradiation area 6 is defined as the irradiation origin 4.

これは、他の開口と統一が取れていれば、いずれの点で
も良い。この照射領域6の外側に小孔1を設けた。小孔
1の大きさ、形状は任意であるが。
Any point may be used as long as it is consistent with other openings. A small hole 1 was provided outside this irradiation area 6. The size and shape of the small hole 1 are arbitrary.

ここでは矩形状のものを用いている。さらに簡単のため
に、小孔1の左下端の頂点が、照射原点4のX座標と一
致し、Y座標値は、照射原点4から試料上の距離に換算
して−YOだけ離して設定した。この小孔1のみを電子
ビームで照射し、この像を試料上に投影して位置検出用
のビームを形成し、ビームの位置基準となるマーク上に
走査偏向して位置検出を行う、その結果得られるビーム
の位置座標(Xm、Ym)から、照射原点4の試料上で
の位置は(X m 、 Y m + Y o )と求め
られ。
Here, a rectangular one is used. For further simplicity, the apex of the lower left end of the small hole 1 was set to match the X coordinate of the irradiation origin 4, and the Y coordinate value was set at a distance of −YO from the irradiation origin 4 in terms of distance on the sample. . Only this small hole 1 is irradiated with an electron beam, this image is projected onto the sample to form a beam for position detection, and the beam is scanned and deflected onto a mark that serves as a position reference to detect the position. From the obtained beam position coordinates (Xm, Ym), the position of the irradiation origin 4 on the sample is determined as (X m , Y m + Y o ).

照射予定位置(Xs、Ys)に対してのズレは。What is the deviation from the planned irradiation position (Xs, Ys)?

ΔX = X m −X s 、Δ=Ym+Yo−Ys
  と求められる。このズレ量をOとするように(−Δ
X。
ΔX = Xm-Xs, Δ=Ym+Yo-Ys
is required. Let this deviation amount be O (-Δ
X.

−ΔY)なるデータを、例えば、偏向器に与える偏向デ
ータに重畳させれば1位置補正が実行できる。なお、小
孔1を(0,−Yo )なる位置に設けたが、この位置
は照射領域4と独立に照射可能であれば、どこに設定し
ても構わない。
-ΔY), for example, can be superimposed on the deflection data given to the deflector to perform one-position correction. Although the small hole 1 is provided at the position (0, -Yo), this position may be set anywhere as long as it can be irradiated independently of the irradiation area 4.

第1図すは、小孔1′ 1′を用い、電子ビームの電流
量を多くして、位置検出精度の劣化を防止する場合の実
施例である。小孔1が小さすぎると、試料面上で十分な
ビーム電流が取れないため、検出信号のSN比が低下し
位置検出精度が劣化する。
FIG. 1 shows an embodiment in which small holes 1' and 1' are used to increase the amount of current of the electron beam to prevent deterioration of position detection accuracy. If the small hole 1 is too small, sufficient beam current cannot be obtained on the sample surface, resulting in a decrease in the S/N ratio of the detection signal and deterioration in position detection accuracy.

これを防止するために、X方向の位置検出には、Y方向
に大きさを拡大して、X方向の分解能を維持しつつ電流
量を増やした電子ビームを用い、Y方向の位置検出には
、X方向に拡大したビームを用いる例である。
To prevent this, for position detection in the X direction, we use an electron beam whose size has been expanded in the Y direction and increased the amount of current while maintaining resolution in the X direction; , is an example using a beam expanded in the X direction.

第2図は、特許請求範囲第2項の実施例である。FIG. 2 is an embodiment of claim 2.

第2図aに示したように、任意形状の開口5と相対関係
を定めて小孔1,2を設ける。小孔1,2を順次電子ビ
ームで照射し、各々について試料上で位置検出を行う、
このときの測定座標を(X 1 。
As shown in FIG. 2a, small holes 1 and 2 are provided in a relative relationship with an opening 5 of arbitrary shape. The small holes 1 and 2 are sequentially irradiated with an electron beam, and the position of each on the sample is detected.
The measurement coordinates at this time are (X 1 ).

”) y  (Xz、 Yz)とすると、L= (Xz
−Xz)”+ (Yz−Yt)”  から小孔1. −
2の間隔が求められ、開口5との相対関係から試料上で
の開口5の像の寸法が求められる。さらにθ=arct
an ((Yz−Yz) / (Xz−Xi) )から
同様の手続きを経て、開口5の試料上での回転量を測定
することができる。
”) y (Xz, Yz), then L= (Xz
-Xz)"+ (Yz-Yt)" to small hole 1. −
2 is determined, and the size of the image of the aperture 5 on the sample is determined from the relative relationship with the aperture 5. Furthermore, θ=arct
The amount of rotation of the aperture 5 on the sample can be measured from an ((Yz-Yz)/(Xz-Xi)) through a similar procedure.

第2図すに示したように、小孔1,2.3を順次照射し
て得られる試料上の座4m (Xzt Yz) v(X
zv Yz) +  (Xse Yg)から、θzz=
arctan ((Yl−Yl) / (Xz−Xz)
 )θza=arctan ((Ya  Yl) / 
(XJI−Xt) )が求められ、θizt θ18を
比較することにより、開口5の像の形状歪を評価できる
As shown in Figure 2, the area on the sample obtained by successively irradiating small holes 1 and 2.3 is
From zv Yz) + (Xse Yg), θzz=
arctan ((Yl-Yl) / (Xz-Xz)
) θza=arctan ((Ya Yl) /
(XJI-Xt) ) is obtained, and by comparing θizt θ18, the shape distortion of the image of the aperture 5 can be evaluated.

以上の測定をもとに電子光学系を調整すれば、高精度な
描画を実現できる。
By adjusting the electron optical system based on the above measurements, highly accurate drawing can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複雑な断面形状の電子ビームを用いて
も、試料上での位置補正や電子ビームの寸法2回転、さ
らには形状歪の測定ができ、高精度な描画を実現する上
で効果がある。
According to the present invention, even if an electron beam with a complicated cross-sectional shape is used, it is possible to correct the position on the sample, rotate the electron beam twice, and measure shape distortion, which makes it possible to achieve highly accurate drawing. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す平面図、第3図
は従来の矩形ビームの位置補正法を説明する平面図であ
る。 1.1’ 、1’ 、2.3・・・小孔、4,4′・・
・照射原点、5・・・任意形状の開口、6・・・照射領
域、7・・・任意図形の端の点、8・・・矩形の開口、
9,9′・・・(l 奉 2 口 (α〕 第 3 口 <f;) ? /、2.3・・ 小3し 1’、 I’  ・・小jし 4−照射原2報 514.仕置ユ形ダ入の同口 6 照射1域 7−・・任免間物t&の克
1 and 2 are plan views showing an embodiment of the present invention, and FIG. 3 is a plan view illustrating a conventional rectangular beam position correction method. 1.1', 1', 2.3...small hole, 4,4'...
- Irradiation origin, 5... Arbitrary shaped aperture, 6... Irradiation area, 7... End point of arbitrary figure, 8... Rectangular opening,
9,9'...(l 2 mouth (α) 3rd mouth <f;) ? /, 2.3... 3rd grade 1', I'... 4th source 2 report 514 .Same mouth 6 with pudding type DA irradiation 1 area 7-...Katsu of the appointment room t&

Claims (1)

【特許請求の範囲】 1、複数の任意形状の開口もしくは開口群を有するアパ
ーチャと、前記アパーチャ上で電子ビームを偏向して所
望の開口もしくは開口群を選ぶ手段とを具備する電子ビ
ーム露光装置において、前記アパーチャ上にあつて、前
記開口もしくは開口群とは独立に照射できる領域で、し
かも、前記開口もしくは開口群の近傍に、かつ、前記開
口もしくは開口群の像の試料上での照射位置を決定する
ために仮想的に定めた原点位置と既知の位置関係を持つ
て小孔を設け、前記小孔を照射して得られる電子ビーム
を用いて位置検出を行い、前記小孔と前記開口もしくは
開口群の原点との位置関係を仲立ちとして、試料上での
前記開口もしくは開口群の像の原点位置と開口もしくは
開口群の色の照射予定位置との差を検出し位置補正を行
うことを特徴とする任意図形露光方法。 2、前記アパーチャ上にあつて、前記開口もしくは開口
群の周辺で、しかも、前記開口もしくは開口群とは独立
に照射できる領域に互いに位置関係を定め、かつ、前記
開口もしくは開口群形状との対応をとつて複数の小孔を
設け、前記小孔を順次独立に照射して得られる電子ビー
ムで位置検出を行い、試料面上での前記電子ビーム間相
互の位置関係を求め、予め定めた前記開口もしくは開口
群との相対関係を用いて、前記開口もしくは開口群の像
の試料面上での寸法ないし回転ないし形状歪を検出する
ことを特徴とする任意図形露光方法。
[Claims] 1. An electron beam exposure apparatus comprising an aperture having a plurality of arbitrarily shaped apertures or aperture groups, and means for deflecting an electron beam on the aperture to select a desired aperture or aperture group. , a region on the aperture that can be irradiated independently of the aperture or group of apertures, and in the vicinity of the aperture or group of apertures, and an irradiation position of the image of the aperture or group of apertures on the sample. In order to determine the origin position, a small hole is provided with a known positional relationship with the hypothetically defined origin position, and the position is detected using an electron beam obtained by irradiating the small hole, and the small hole and the opening or It is characterized by detecting the difference between the origin position of the image of the aperture or aperture group on the sample and the scheduled irradiation position of the color of the aperture or aperture group, using the positional relationship with the origin of the aperture group as an intermediary, and performing position correction. An arbitrary figure exposure method. 2. On the aperture, in the periphery of the aperture or group of apertures, and which can be irradiated independently of the aperture or group of apertures, determine their positional relationship with each other, and correspond to the shape of the aperture or group of apertures. A plurality of small holes are provided in the sample, and the position is detected using the electron beam obtained by sequentially and independently irradiating the small holes, and the mutual positional relationship between the electron beams on the sample surface is determined. An arbitrary pattern exposure method characterized by detecting the size, rotation, or shape distortion of an image of the aperture or aperture group on a sample surface using a relative relationship with the aperture or aperture group.
JP6935588A 1988-03-25 1988-03-25 Arbitrary figure exposing method Pending JPH01243422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6935588A JPH01243422A (en) 1988-03-25 1988-03-25 Arbitrary figure exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6935588A JPH01243422A (en) 1988-03-25 1988-03-25 Arbitrary figure exposing method

Publications (1)

Publication Number Publication Date
JPH01243422A true JPH01243422A (en) 1989-09-28

Family

ID=13400165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6935588A Pending JPH01243422A (en) 1988-03-25 1988-03-25 Arbitrary figure exposing method

Country Status (1)

Country Link
JP (1) JPH01243422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125609A (en) * 1988-11-04 1990-05-14 Fujitsu Ltd Semiconductor manufacturing equipment
JPH03230514A (en) * 1990-02-06 1991-10-14 Fujitsu Ltd Electron beam aligner and aligning method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251874A (en) * 1975-10-22 1977-04-26 Jeol Ltd Electron beam exposure device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251874A (en) * 1975-10-22 1977-04-26 Jeol Ltd Electron beam exposure device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125609A (en) * 1988-11-04 1990-05-14 Fujitsu Ltd Semiconductor manufacturing equipment
JPH03230514A (en) * 1990-02-06 1991-10-14 Fujitsu Ltd Electron beam aligner and aligning method

Similar Documents

Publication Publication Date Title
JP2000252203A (en) Alignment mark and alignment method
JPH0324771B2 (en)
KR20110090956A (en) Image formation method and image formation device
JP3192500B2 (en) Electron beam drawing method and electron beam drawing apparatus
US5831273A (en) Charged particle beam lithography method and apparatus thereof
US5466549A (en) Method of detecting and adjusting exposure conditions of charged particle exposure system
JPH01243422A (en) Arbitrary figure exposing method
JP2000277425A (en) Electron beam lithography method and its device
JP4011642B2 (en) Electron beam drawing method and apparatus
JPH05109609A (en) Electron-beam lithographic method
JPH0282515A (en) Electron beam lithography
JP2010147066A (en) Coordinate measuring apparatus and charged particle beam drawing equipment
JPS6222010A (en) Detecting method for pattern defect
JP3550476B2 (en) Charged particle beam processing method and processing apparatus
JPH04242919A (en) Charged beam drawing apparatus
JP3002246B2 (en) Charged beam correction method
JP3034480B2 (en) Edge angle evaluation method for forming aperture
JPH0722349A (en) Charged beam lithography device
JP3369835B2 (en) Shape evaluation method of shaping aperture in charged beam writing apparatus and rotation adjustment method of shaping aperture
JP3195332B2 (en) Electron beam drawing method and electron beam drawing apparatus
JPH02250311A (en) Drawing by electron beam
JPH02262326A (en) Charged beam pattern drawing method
JPH076943A (en) Charged particle beam drawing
JPH06177025A (en) Electron beam lithography and device therefor
JPS6313337B2 (en)