JPH01241622A - Multiplying device - Google Patents

Multiplying device

Info

Publication number
JPH01241622A
JPH01241622A JP63070016A JP7001688A JPH01241622A JP H01241622 A JPH01241622 A JP H01241622A JP 63070016 A JP63070016 A JP 63070016A JP 7001688 A JP7001688 A JP 7001688A JP H01241622 A JPH01241622 A JP H01241622A
Authority
JP
Japan
Prior art keywords
partial product
register
input
multiplier
input adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63070016A
Other languages
Japanese (ja)
Inventor
Kazunori Takahashi
一徳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63070016A priority Critical patent/JPH01241622A/en
Publication of JPH01241622A publication Critical patent/JPH01241622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute multiplication in a processing time which is half of the conventional multiplication processing time, with the small increase of a hardware by simultaneously generating two partial products and obtaining a cumulative partial product with a three-input adder. CONSTITUTION:A multiplying device equips a cumulative partial product register 9 to hold the output of a three-input adder 10 and to execute again an input to the three-input adder 10, and a high order partial product generating circuit 7 to generate a high order partial product from a multiplicand and to input the multiplicand to the three-input adder 10. A low order partial product generating circuit 8 is provided to generate a low order partial product from the multiplicand and to input the product to the three-input adder 10 and a control circuit 6 is equipped to control the high order partial product generating circuit 7 and low order partial product generating circuit 8 from a multiplier. Thus, since the two partial products are simultaneously generated and the cumulative partial product is obtained by the three-input adder 10, the two fold processing can be executed with one cycle and the high speed multiplication can be executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は符号付きの乗算を行う乗算装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multiplication device that performs signed multiplication.

従来の技術 従来の乗算回路としては、例えば[インブルーブト ア
プローチ トウ ザ ユーズ オプ プIし〒ス マル
チプリケージ苫ン アルゴリズム」アイ・ビー・エム 
テクニカル ディスクロジャブレティン 27巻11号
1986年4月(”Improved approac
h to the use of Booth’smu
ltiplication algorithm”、I
BM TechnicalDisclosure Bu
lletin Vol、27411 Apri1198
5)に示されている。
Conventional technology Conventional multiplication circuits include, for example, the ``In Blueprint Approach to the Use of Optional Algorithms'' published by IBM.
Technical Disclosure Bulletin Volume 27, No. 11, April 1986
h to the use of Booth'smu
ltiplication algorithm”, I
BM Technical Disclosure Bu
lletin Vol, 27411 Apri1198
5).

第6図はこの従来の乗算回路のブロック図を示すもので
あり、1は被乗数レジスタ、3は乗数レジスタ、11は
累算された部分積の上位を保持する上位積レジスタ、1
゛2は下位積レジスタ、13は演算回路、14は演算と
演算回路のB入力を制御する演算制御回路、4は乗数2
ビツト右シフトする乗数シック、14は演算回路の出力
を2ビツト右シフトする上位累算部分積シフタ、15は
上位累算部分積シフタ14の桁あふれを左からキャリ入
力して下位積レジスタ12を2ビツト右シフトする下位
累算部分積シフタ、6は乗数シフタ4の桁あふれを保持
するキャリフラグ、16は披乗数の2倍値を得るための
2倍回路、17は選択回路である。
FIG. 6 shows a block diagram of this conventional multiplication circuit, in which 1 is a multiplicand register, 3 is a multiplier register, 11 is an upper product register that holds the upper part of the accumulated partial product, and 1 is a multiplier register.
2 is a lower product register, 13 is an arithmetic circuit, 14 is an arithmetic control circuit that controls the arithmetic operation and the B input of the arithmetic circuit, and 4 is a multiplier 2.
14 is an upper cumulative partial product shifter that shifts the output of the arithmetic circuit to the right by 2 bits; 15 is a carry input of the overflow of the upper cumulative partial product shifter 14 from the left to input the lower product register 12. A lower cumulative partial product shifter for right-shifting by 2 bits, 6 a carry flag for holding overflow of the multiplier shifter 4, 16 a doubling circuit for obtaining the double value of the multiplier, and 17 a selection circuit.

以上のように構成された従来の乗算回路について、以下
にその動作を説明する。
The operation of the conventional multiplication circuit configured as described above will be described below.

始めに、被乗数ならびに乗数をそれぞれ被乗数レジスタ
1と乗数レジスタ3に入力するとともに、上位積レジス
タ11と下位積レジスタ12およびキャリフラグ6を零
にクリアする。
First, a multiplicand and a multiplier are input into multiplicand register 1 and multiplier register 3, respectively, and upper product register 11, lower product register 12, and carry flag 6 are cleared to zero.

演算回路13の演算およびB入力は乗数レジスタ3の下
位2ビツトとキャリアラグ5とから決定され、演算回路
13の出力は第4図において演算の欄がA”ならば八入
力をそのtt、”A−1−B”ならば八入力とB入力の
加算結果、’A−B”ならば八入力からB入力の減算結
果となる。またB入力は選択回路17において6×”な
らば被乗数レジスタ1が、2×”ならば2倍回路16の
出力が選択される。演算後、乗数シフタ4、上位累算部
分積シフタ14および下位累算部分積シフタ16はいず
れも右に算術シフトし、それぞれ所定のレジスタにシフ
ト結果を格納する。
The calculation and B input of the calculation circuit 13 are determined from the lower two bits of the multiplier register 3 and the carrier lag 5, and the output of the calculation circuit 13 is 8 inputs if the calculation column is A" in FIG. If it is "A-1-B", it will be the result of addition of 8 inputs and B input, and if it is 'A-B', it will be the result of subtraction of B input from 8 inputs. Further, for the B input, the selection circuit 17 selects the multiplicand register 1 if it is 6×'', and selects the output of the doubling circuit 16 if it is 2×”. After the calculation, the multiplier shifter 4, the upper cumulative partial product shifter 14, and the lower cumulative partial product shifter 16 all perform an arithmetic shift to the right, and store the shift results in respective predetermined registers.

以上の演算およびシフトは、乗数が偶数ビット長のとき
は乗数のビット長÷2回、乗数が奇数ビット長のときは
(乗数のビット長+1)÷2回繰り返される。
The above operations and shifts are repeated twice when the multiplier has an even bit length, and (multiplier bit length+1)÷2 times when the multiplier has an odd bit length.

乗算結果は上位積レジスタ11と下位積レジスタ12に
上位と下位に別れて保持される。
The multiplication results are held in an upper product register 11 and a lower product register 12 separately into upper and lower parts.

また、全部分積を求めて加算する乗算器は例えば’LS
I化が進む並列演算方式による乗算器の回路方式を見る
”日経ニレ1978 、5 、29P、76 に示され
る。
Also, a multiplier that calculates and adds total partial products is, for example, 'LS
A look at multiplier circuit systems based on the parallel operation system, which is becoming more and more integrated," Nikkei Nire 1978, 5, 29P, 76.

発明が解決しようとする課題 しかしながら上記のような構成では、部分積が1つしか
生成されないため、nビットの乗数を2ビツトのブース
(Booth)のアルゴリズムで処理する場合n/2 
サイクル必要であるという問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, only one partial product is generated, so when an n-bit multiplier is processed by a 2-bit Booth algorithm, n/2
This method had the problem of requiring cycles.

また、全部分積を求めて累算する乗算器では非常に多く
のハードウェアを必要とするという課題を有していた。
Another problem is that a multiplier that calculates and accumulates total partial products requires a large amount of hardware.

本発明はかかる点に濫み、少ないハードウェアの増加で
2つの部分積を同時に生成し、3入力加算器を用いて累
算処理を行う高速乗算装置を提供することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-speed multiplication device that simultaneously generates two partial products with a small increase in hardware and performs accumulation processing using a three-input adder.

課題を解決するための手段 本発明は累算処理に用いる3入力加算器と、前記3入力
加算器の出力を保持し再び前記3入力加算器に入力する
累算部分積レジスタと、被乗数から上位部分積を生成し
前記3入力加算器に入力する上位部分積生成回路と、被
乗数から下位部分積を生成し前記3入力加算器に入力す
る下位部分積生成回路と、乗数から前記上位部分積生成
回路と前記上位部分積生成回路を制御する生成回路とを
備えた乗算装置である。
Means for Solving the Problems The present invention provides a 3-input adder used for accumulation processing, an accumulated partial product register that holds the output of the 3-input adder and inputs it again to the 3-input adder, and a an upper partial product generation circuit that generates a partial product and inputs it to the 3-input adder; a lower partial product generation circuit that generates a lower partial product from the multiplicand and inputs it to the 3-input adder; and a lower partial product generation circuit that generates the upper partial product from the multiplier. A multiplication device includes a circuit and a generation circuit that controls the upper partial product generation circuit.

作  用 本発明は前記した構成により、2つの部分積を同時に生
成し、3入力加算器で累算部分積を求めるため、1サイ
クルで2倍の処理ができ、高速乗算が可能となる。
Effects According to the present invention, with the above-described configuration, two partial products are generated simultaneously and the cumulative partial product is determined by a three-input adder, so that double processing can be performed in one cycle, and high-speed multiplication is possible.

実施例 第1図は本発明の実施例における乗算装置のブロック図
を示すものである。1は乗算開始時に被乗数を入力し、
演算処理中は左に4ビツトずつシフトされた被乗数を保
持する被乗数レジスタ、2は被乗数レジスタ1に保持さ
れた数値を左に4ビツトシフトする被乗数シフタ、3は
乗算開始時に乗数を入力して演算処理中は4ビツトずつ
右シフトされた乗数が保持される乗数レジスタ、4は乗
数レジスタ3に保持された数値を4ビツト右シフトする
乗数シフタ、6は乗数レジスタ3に保持された数値を右
シフトしたときの桁あぶれを保持するキャリアラグ、7
は被乗数レジスタ1に保持された数値Xから±4X、±
8xを出力する上位部分積生成回路、8は被乗数レジス
タ1に保持された数値Xから±X、±2xを出力する下
位部分積生成回路、6は乗数レジスタ3の下位4ビツト
とキャリフラグ6を入力し、上位部分積生成回路7と下
位部分積生成回路8を制御する制御回路、9は演算処理
中は累算された部分積を保持する累算部分積レジスタ、
10は上位部分積生成回路7の出力と下位部分積生成回
路8の出力と累算部分積レジスタ9に保持された数値を
入力し3入力の加算を行い、結果を累算部分積レジスタ
9に格納する3入力加算器である。また、第3図は上位
部分積生成回路7及び下位部分積生成回路8の詳細図を
、第4図は3入力加算器1oの詳細図を示すものである
Embodiment FIG. 1 shows a block diagram of a multiplication device in an embodiment of the present invention. 1 inputs the multiplicand at the start of multiplication,
During arithmetic processing, the multiplicand register holds the multiplicand shifted 4 bits to the left. 2 is a multiplicand shifter that shifts the value held in multiplicand register 1 by 4 bits to the left. 3 inputs the multiplier at the start of multiplication and performs arithmetic processing. Inside is a multiplier register that holds the multiplier shifted to the right by 4 bits, 4 is a multiplier shifter that shifts the number held in multiplier register 3 to the right by 4 bits, and 6 is a multiplier shifter that shifts the number held in multiplier register 3 to the right. Carrier lugs that keep the digits out of order, 7
is ±4X from the numerical value X held in multiplicand register 1, ±
8 is a lower partial product generation circuit that outputs ±X, ±2x from the numerical value X held in multiplicand register 1, 6 is a circuit that outputs the lower 4 bits of multiplier register 3 and carry flag 6. a control circuit that inputs the input and controls the upper partial product generation circuit 7 and the lower partial product generation circuit 8; 9 is an accumulated partial product register that holds the accumulated partial products during arithmetic processing;
10 inputs the output of the upper partial product generation circuit 7, the output of the lower partial product generation circuit 8, and the numerical value held in the cumulative partial product register 9, performs addition of the three inputs, and stores the result in the cumulative partial product register 9. This is a 3-input adder that stores data. Further, FIG. 3 shows a detailed diagram of the upper partial product generating circuit 7 and the lower partial product generating circuit 8, and FIG. 4 shows a detailed diagram of the three-input adder 1o.

以上のように構成された本実施例の乗算回路について、
以下にその動作を説明する。
Regarding the multiplication circuit of this embodiment configured as above,
The operation will be explained below.

まず、累算部分積レジスタ9にゼロを、被乗数レジスタ
1に被乗数を、乗数レジスタ3に乗数をそれぞれ格納す
る。被乗数レジスタ1に保持されている数値をx(!。
First, zero is stored in the cumulative partial product register 9, a multiplicand is stored in the multiplicand register 1, and a multiplier is stored in the multiplier register 3, respectively. The value held in multiplicand register 1 is x(!.

、xl、・・・・・・xn−4)、乗数レジスタ3に保
持されている数値をY (y□ + 71 +・・・・
・・ynl)とする。
,xl,...xn-4), and the numerical value held in multiplier register 3 as Y (y□ + 71 +...
...ynl).

本実施例では2ビツトのブースのアルゴリズムに基づい
て説明する。
This embodiment will be explained based on a 2-bit Booth algorithm.

O)乗数レジスタ3の下位4ビツト(V n4 +7n
−3+7n−2j’n−1)とC(キャリフラグ)を制
御回路6に入力し、上位部分積生成回路7゜下位部分積
生成回路8を制御する。下位部分積生成回路7と下位部
分積生成回路8では、第2図に示すデータを出力する。
O) Lower 4 bits of multiplier register 3 (V n4 +7n
-3+7n-2j'n-1) and C (carry flag) are input to the control circuit 6 to control the upper partial product generation circuit 7 and the lower partial product generation circuit 8. The lower partial product generation circuit 7 and the lower partial product generation circuit 8 output the data shown in FIG.

(23入力加算器1oにおいて、上位部分積生成回路7
.下位部分積生成回路8の出力及び累算部分積レジスタ
9に保持されている数値の間で加算を行い、結果を累算
部分積レジスタ9に格納する。一方、被乗数レジスタ1
は被乗数シフタ2で左に4ピツトシフトして再び被乗数
レジスタ1に格納される。また、乗数レジスタ3は乗数
シフタ4で右に4ビツトシフトされ、再び乗算レジスタ
3に格納される。
(In the 23-input adder 1o, the upper partial product generation circuit 7
.. Addition is performed between the output of the lower partial product generation circuit 8 and the numerical value held in the cumulative partial product register 9, and the result is stored in the cumulative partial product register 9. On the other hand, multiplicand register 1
is shifted 4 pits to the left by multiplicand shifter 2 and stored in multiplicand register 1 again. Further, the multiplier register 3 is shifted to the right by 4 bits by the multiplier shifter 4, and then stored in the multiplier register 3 again.

(1)(2)の操作をnビットの乗数の場合n/4 サ
イクル繰り返すことにより乗算結果が累算部分積レジス
タ9に保持されることになる。
By repeating operations (1) and (2) for n/4 cycles in the case of an n-bit multiplier, the multiplication result is held in the cumulative partial product register 9.

ここで、第3図に示すように上位部分積生成回路7は左
2又は3ビツトシフタと2の補数生成回路、下位部分積
生成回路8は左0又は1ピツトノフタと2の補数生成回
路を用いて構成することができる。また、第4図に示す
ように、3入力加算器は2入力加算器にC3Aを付加す
るだけで実現することができる。
Here, as shown in FIG. 3, the upper partial product generation circuit 7 uses a left 2 or 3 bit shifter and a 2's complement generation circuit, and the lower partial product generation circuit 8 uses a left 0 or 1 pit shifter and a 2's complement generation circuit. Can be configured. Further, as shown in FIG. 4, a three-input adder can be realized by simply adding C3A to a two-input adder.

以上のように、本実施例によれば、少ないハードウェア
の増加で乗数の下位4ピツトとキャリフラグから上位部
分積と下位部分積を生成し3入力加算器で演算するとい
う構成により、nビットの乗数の場合n/4 サイクル
で実行できる。
As described above, according to the present embodiment, with a configuration in which the upper partial product and the lower partial product are generated from the lower 4 pits of the multiplier and the carry flag and are operated by the 3-input adder with a small increase in hardware, n-bit For a multiplier of , it can be executed in n/4 cycles.

なお、この実施例においてはブースのアルゴリズムを用
いたが、本発明はブースのアルゴリズム以外の方法でも
実現することが可能であることは言うまでもなく、通常
の2倍の速度で乗算を実行することができる。
Although Booth's algorithm was used in this embodiment, it goes without saying that the present invention can be implemented using methods other than Booth's algorithm, and multiplication can be performed at twice the normal speed. can.

発明の詳細 な説明したように、本発明によれば乗算器のような大き
なハードウェアを用いることなく、従来の乗算回路に対
して少ないハードウェアの増加で、従来の乗算処理時間
の半分の処理時間で乗算が実行でき、その実用的効果は
大きい。
As described in detail, according to the present invention, without using large hardware such as a multiplier, with a small increase in hardware compared to a conventional multiplication circuit, the processing time can be reduced by half of the conventional multiplication processing time. Multiplication can be performed in time, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の乗算装置のブロック図、第
2図は同実施例における制御回路の制御テーブル図、第
3図は同実施例における上位部分積生成回路および下位
部分積生成回路8の詳細な構成を示すブロック図、第4
図は同実施例における3入力加算器の詳細な構成を示す
回路図、第6図は従来の乗算装置のブロック図、第6図
は同装置の演算制御回路の制御テーブル図である。 1・・・・・・被乗数レジスタ、2・・・・・・被乗数
シフト、3・・・・・・乗数レジスタ、4・・・・・・
乗数シフタ、6・・・・・・キャリフラグ、6・・・・
・・制御回路、7・・・・・・上位部分積生成回路、8
・・・・・・下位部分積生成回路、9・・・・・・累算
部分積レジスタ、10・・・・・・3入力加算器、11
・・・・・・上位積レジスタ、12・・・・・・下位積
レジスタ、13・・・・・・演算回路、14・・・・・
・上位累算部分積シフタ、16・・・・・・下位累算部
分積シフタ、16・・・・・・2倍回路、17・・・・
・・選択回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 IQ) 第3図
Fig. 1 is a block diagram of a multiplication device according to an embodiment of the present invention, Fig. 2 is a control table diagram of a control circuit in the embodiment, and Fig. 3 is an upper partial product generation circuit and a lower partial product generation circuit in the embodiment. Block diagram showing the detailed configuration of circuit 8, No. 4
FIG. 6 is a circuit diagram showing a detailed configuration of a three-input adder in the same embodiment, FIG. 6 is a block diagram of a conventional multiplication device, and FIG. 6 is a control table diagram of an arithmetic control circuit of the same device. 1... Multiplicand register, 2... Multiplicand shift, 3... Multiplicand register, 4...
Multiplier shifter, 6... Carry flag, 6...
...Control circuit, 7... Upper partial product generation circuit, 8
...Lower partial product generation circuit, 9...Accumulated partial product register, 10...3-input adder, 11
...Upper product register, 12...Lower product register, 13...Arithmetic circuit, 14...
・Upper cumulative partial product shifter, 16...Lower cumulative partial product shifter, 16...2x circuit, 17...
...Selection circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure IQ) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 累算処理に用いる3入力加算器と、前記3入力加算器の
出力を保持し再び前記3入力加算器に入力する累算部分
積レジスタと、被乗数から上位部分積を生成し前記3入
力加算器に入力する上位部分積生成回路と、被乗数から
下位部分積を生成し前記3入力加算器に入力する下位部
分積生成回路と、乗数から前記上位部分積生成回路と前
記下位部分積生成回路を制御する制御回路とを備え、2
つの部分積を同時に生成し、前記3入力加算器で累算部
分積を求めることを特徴とする乗算装置。
a 3-input adder used for accumulation processing, an accumulation partial product register that holds the output of the 3-input adder and inputs it again to the 3-input adder, and the 3-input adder that generates an upper partial product from the multiplicand. A lower partial product generation circuit that generates a lower partial product from the multiplicand and inputs it to the three-input adder, and controls the upper partial product generation circuit and the lower partial product generation circuit from the multiplier. 2.
A multiplication device characterized in that two partial products are simultaneously generated, and the three-input adder calculates an accumulated partial product.
JP63070016A 1988-03-24 1988-03-24 Multiplying device Pending JPH01241622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070016A JPH01241622A (en) 1988-03-24 1988-03-24 Multiplying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070016A JPH01241622A (en) 1988-03-24 1988-03-24 Multiplying device

Publications (1)

Publication Number Publication Date
JPH01241622A true JPH01241622A (en) 1989-09-26

Family

ID=13419393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070016A Pending JPH01241622A (en) 1988-03-24 1988-03-24 Multiplying device

Country Status (1)

Country Link
JP (1) JPH01241622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114887U (en) * 1990-03-07 1991-11-26
JPH0474219A (en) * 1990-07-17 1992-03-09 Toshiba Corp High speed multiplier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114887U (en) * 1990-03-07 1991-11-26
JPH0474219A (en) * 1990-07-17 1992-03-09 Toshiba Corp High speed multiplier

Similar Documents

Publication Publication Date Title
US5325320A (en) Area efficient multiplier for use in an integrated circuit
JP2011134346A (en) Arithmetic processor
JPH0612229A (en) Multiplication and accumulation circuit
US6009450A (en) Finite field inverse circuit
JPH0831025B2 (en) Multiplication circuit
US5721697A (en) Performing tree additions via multiplication
JP2009507413A (en) Full adder module and multiplier device using the full adder module
US7607165B2 (en) Method and apparatus for multiplication and/or modular reduction processing
JPH01241622A (en) Multiplying device
JP3660075B2 (en) Dividing device
JPS58129653A (en) Multiplication system
KR0147942B1 (en) Booths recording circuit in a multiplier
US20040133618A1 (en) Method and system for performing a multiplication operation and a device
US6182105B1 (en) Multiple-operand addition with intermediate saturation
JPS6259828B2 (en)
JPH07141148A (en) Pipeline parallel multiplier
JP2529890B2 (en) Multiplicative remainder calculator
JP3130797B2 (en) Product-sum operation processing method and apparatus
KR0153759B1 (en) Circuit of high speed multiplication and involution
JPH0784762A (en) Multiplication circuit
JP3205020B2 (en) Arithmetic unit
JP3433487B2 (en) Binary to decimal converter
JPH02143374A (en) Product sum arithmetic unit
JPS63172337A (en) Multiplication circuit
JPH05307465A (en) Multiplication remainder arithmetic unit