JPH01238414A - Induction power supply device for transmission line monitoring sensor - Google Patents

Induction power supply device for transmission line monitoring sensor

Info

Publication number
JPH01238414A
JPH01238414A JP6050488A JP6050488A JPH01238414A JP H01238414 A JPH01238414 A JP H01238414A JP 6050488 A JP6050488 A JP 6050488A JP 6050488 A JP6050488 A JP 6050488A JP H01238414 A JPH01238414 A JP H01238414A
Authority
JP
Japan
Prior art keywords
voltage
transmission line
current transformer
current
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6050488A
Other languages
Japanese (ja)
Other versions
JPH0789693B2 (en
Inventor
Junichi Minafuji
皆藤 順一
Koichi Sugiyama
耕一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63060504A priority Critical patent/JPH0789693B2/en
Publication of JPH01238414A publication Critical patent/JPH01238414A/en
Publication of JPH0789693B2 publication Critical patent/JPH0789693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To obtain the DC power of good quality easily, by shorting the output of a current transformer to obtain AC voltage from aerial wire current when it is on a predetermined voltage level. CONSTITUTION:The output of the secondary winding 2a of a current transformer 2 passed through the aerial earth wire 1a of a transmission line is rectified with a rectification circuit 3 since a thyristor 6 is unconducting at the beginning. If this rectification voltage is not higher than the operating voltage of a Zener diode ZD4, a definite DC voltage can be obtained with a voltage regulator 7. If it is not lower than the operating voltage, the potential at a point y is limited to the operating voltage by the function of the ZD4. Then, the potential at the gate (a point z) of the thyristor 6 connected to a point x will rise and it becomes conducting. When the output of the secondary winding 2a gets to negative polarity and reverse-blocking state, it becomes unconducting. With this repetition, the potential at the point y holds the voltage in which the operating voltage is set at its peak value. By inputting this voltage into the regulator 7, stable DC voltage can be outputted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、送電線に流れている電流を電源として、送電
線の監視センサを駆動するための直流電力を得る送電線
監視センサ用の誘導電源装置に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to an induction sensor for a power transmission line monitoring sensor that uses a current flowing through the power line as a power source to obtain DC power for driving a power transmission line monitoring sensor. This relates to power supplies.

し従来の技術] 従来、送電線から電力を得る誘導電源装置として、比較
的大きな電力を必要とする場合には、通常、送電線鉄塔
に電気的に接続されている架空地線を鉄塔と絶縁するこ
とによって、送電線本線と架空地線の相互静電容量、架
空地線の自己静電容量で決まる静電誘導電圧を発生させ
、この静電誘導による電圧を利用して、目的とする装置
等の駆動用交流電源あるいは直流電源を得るものがある
[Conventional technology] Conventionally, when a relatively large amount of power is required for an induction power supply device that obtains power from a power transmission line, the overhead ground wire that is electrically connected to the power transmission line tower is usually insulated from the tower. By doing so, an electrostatically induced voltage determined by the mutual capacitance between the main power transmission line and the overhead ground wire and the self-capacitance of the overhead ground wire is generated, and this electrostatically induced voltage is used to generate the target device. There are some that obtain an AC power source or a DC power source for driving.

その他、送電線本線に本線状態を計測できるようなセン
サを取付ける場合には、送電線本線から電源を得る必要
があるが、この場合には、通常、送電線本線に変流器を
取付け、その変流器の二次巻線出力を整流し、第3図の
ような回路で必要な電源をとるのが一般的である。第3
図の回路では、送電線lの電流による磁束を変流器2の
鉄心で拾い、二次巻線2aに交流電圧を発生させる。
In addition, when installing a sensor that can measure the main line condition on the main power transmission line, it is necessary to obtain power from the main power transmission line, but in this case, usually a current transformer is installed on the main power transmission line. It is common to rectify the output of the secondary winding of a current transformer and obtain the necessary power with a circuit like the one shown in Figure 3. Third
In the circuit shown in the figure, the magnetic flux caused by the current in the power transmission line 1 is picked up by the iron core of the current transformer 2, and an alternating current voltage is generated in the secondary winding 2a.

この交流電圧を整流回路3で整流し、定電圧素子4たる
ツェナーダイオードZD並びに電圧レイニレ−タフで一
定の直流電圧レベルに保って、センサ駆動用電源とする
ものである。
This AC voltage is rectified by a rectifier circuit 3 and maintained at a constant DC voltage level by a Zener diode ZD as a constant voltage element 4 and a voltage rain rate, and is used as a power source for driving the sensor.

[発明が解決しようとする課題] しかし、架空地線から所定の電源を得る場合に、前記し
たように、架空地線を送電線鉄塔から絶縁することは、
設備上極めて大がかりな工事を必要とする他、架空地線
が絶縁されることにより1本来の目的である「避雷の効
果」が期待できなくなる等の欠点がある。
[Problems to be Solved by the Invention] However, when obtaining a predetermined power source from an overhead ground wire, insulating the overhead ground wire from the power transmission tower as described above is difficult.
In addition to requiring extremely large-scale construction work, there are drawbacks such as the fact that the original purpose of ``lightning protection'' cannot be expected because the overhead ground wire is insulated.

そこで、架空地線から所定の電源を得るために、送電線
本線から電源を取る第3図の回路をそのまま適用するこ
とが考えられるが、次のような問題がある。
Therefore, in order to obtain a predetermined power source from the overhead ground wire, it is conceivable to apply the circuit shown in FIG. 3, which takes the power source from the main power transmission line, as it is, but there are the following problems.

第3図の回路では、変流器2の二次巻線2aの出力に、
絶えず変化している送電線1の電流に対応した電圧が誘
起される。この誘起電圧を整流回路3で整流した後、定
電圧素子4と制限抵抗5(抵抗R)の直列回路で一定の
直流電圧を作るが、その時、定電圧素子4には、変流器
2の二次巻線2aの出力電圧と定電圧レベルとの差分だ
け、電流Izが流れる。即ち、変流器2の二次巻線2a
の出力電圧を交流ピーク値でVa とし、定電圧素子4
の電圧レベルをVzとすると、定電圧素子4に電流I 
z = (Va −Vz ) /Rが流れる。この電流
Izが大きくなればなる稈、定電圧素子4は流れる電流
に酎えるような容量を持つ必要があり、回路のコンパク
ト化に大きな妨げとなっていた。
In the circuit of FIG. 3, the output of the secondary winding 2a of the current transformer 2 is
A voltage corresponding to the constantly changing current in the power transmission line 1 is induced. After this induced voltage is rectified by the rectifier circuit 3, a constant DC voltage is created by the series circuit of the constant voltage element 4 and the limiting resistor 5 (resistance R). The current Iz flows by the difference between the output voltage of the secondary winding 2a and the constant voltage level. That is, the secondary winding 2a of the current transformer 2
The output voltage of the AC peak value is Va, and the constant voltage element 4
If the voltage level of is Vz, the current I in the constant voltage element 4 is
z = (Va - Vz) /R flows. As the current Iz increases, the constant voltage element 4 must have a capacity that can accommodate the flowing current, which is a major hindrance to making the circuit more compact.

第3図の回路の動作原理を第4図を用いて更に詳しく説
明する。第4図(a)は変流器2の二次巻線出力を整流
回路3中の整流器で整流した後の波形であり、このピー
ク値Vaの出力は整流回路3中の平滑回路を経ることに
より第4図(b)のように平滑化され、ツェナーダイオ
ードZDで第4図(C)の如く一定電圧しベルv2とな
って出力される。この場合、ツェナーダイオードZDの
電力損失PはP−Vz XIzであるから、ツェナーダ
イオードZDに流れる電流I2が増えるとき、即ち変流
器2の二次巻線出力が大きくなるときは、その送電線電
流の増大につれてツェナーダイオードZDの電力損失P
も増えるという関係にあり、熱的にも温度ヒ昇する。第
4図(d)は。
The operating principle of the circuit shown in FIG. 3 will be explained in more detail with reference to FIG. FIG. 4(a) shows the waveform after the secondary winding output of the current transformer 2 is rectified by the rectifier in the rectifier circuit 3, and the output of this peak value Va passes through the smoothing circuit in the rectifier circuit 3. The voltage is smoothed as shown in FIG. 4(b), and is outputted as a constant voltage by the Zener diode ZD as a bell v2 as shown in FIG. 4(c). In this case, the power loss P of the Zener diode ZD is P-Vz XIz, so when the current I2 flowing through the Zener diode ZD increases, that is, when the secondary winding output of the current transformer 2 increases, As the current increases, the power loss P in the Zener diode ZD
There is a relationship in which the temperature increases, and the temperature also increases thermally. Figure 4(d) is.

変!AL器2の二次巻線2aの出力電圧Vaとツェナー
ダイオードZDの定電圧レベルVz との差分だけ、流
れるTL流1z = (Va −Vz )/Rを示す。
strange! A TL flow 1z = (Va - Vz)/R is shown that flows by the difference between the output voltage Va of the secondary winding 2a of the AL device 2 and the constant voltage level Vz of the Zener diode ZD.

このようなことから第3図に示した回路では、広範囲に
変動している電流領域をカバーして安定した直流電流を
得ることは困難であり、この回路をそのまま適用できな
い。
For this reason, with the circuit shown in FIG. 3, it is difficult to cover a wide range of current fluctuations and obtain a stable DC current, and this circuit cannot be applied as is.

本発明の目的は、従来技術の欠点を解消し、簡単にしか
も良質な直流電力を架空地線電流から得ることができる
送電線監視センサ用の誘導電源装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inductive power supply device for a power transmission line monitoring sensor that overcomes the drawbacks of the prior art and can easily obtain high-quality DC power from overhead ground wire current.

[課題を解決するための手段] 本発明は、送電線に流れている電流を電源として、送電
線設備の監視センサ等を駆動する電力を得る誘導電源装
置において、架空地線電流から交流電圧を得る変流器と
、該変流器の二次巻線出力端子に接続した整流回路と、
該整流回路に接続した直流定電圧制御回路と、上記変流
器の二次巻線出力端子に接続され一定の電圧に達した時
に信号出力する電圧制御素子と、該変流器の二次巻線出
力端子に並列に接続されており、上記電圧制御素子から
の信号出力を制御入力として受けて導通し、導通時にお
ける変流器の二次巻線出力の交流電圧極性が反転すると
非導通となるスイッチング素子とを備えたものである。
[Means for Solving the Problems] The present invention provides an induction power supply device that uses a current flowing in a power transmission line as a power source to obtain power for driving a monitoring sensor, etc. of power transmission line equipment. a rectifier circuit connected to a secondary winding output terminal of the current transformer;
a DC constant voltage control circuit connected to the rectifier circuit, a voltage control element connected to the secondary winding output terminal of the current transformer and outputting a signal when a certain voltage is reached, and a secondary winding of the current transformer. It is connected in parallel to the line output terminal, and conducts when it receives the signal output from the voltage control element as a control input, and becomes non-conductive when the AC voltage polarity of the secondary winding output of the current transformer is reversed during conduction. It is equipped with a switching element as shown in FIG.

スイッチング素子はサイリスタであることが好ましい。Preferably, the switching element is a thyristor.

[作用] 送電線に流れている電流、従って架空地線電流から変流
器で得られる交流電圧が変動し、特にその電圧が定電圧
素子の規定する一定電圧にまで達すると、定電圧素子に
信号が出力される。この信号は、変流器の二次巻線出力
端子に並列に接続されたスイッチイング素子の制御入力
端子に加わり、スイッチイング素子を導通させる。従っ
て、変流器の二次巻線出力端子はスイッチイング素子に
より短絡される。このため定電圧素子に加わっている電
圧は定電圧素子の規定する一定電圧以下に落ち、定電圧
素子にはその耐容量以上の大きな電流が流れない、スイ
ッチイング素子は、導通時における変流器の二次巻線出
力の交流電圧極性が反転すると非導通となり、自動復帰
する。
[Function] When the AC voltage obtained from the current transformer fluctuates from the current flowing in the power transmission line and therefore the overhead ground wire current, and especially when the voltage reaches the constant voltage specified by the constant voltage element, the constant voltage element A signal is output. This signal is applied to the control input terminal of the switching element connected in parallel to the secondary winding output terminal of the current transformer, causing the switching element to conduct. Therefore, the secondary winding output terminals of the current transformer are short-circuited by the switching element. Therefore, the voltage applied to the constant voltage element falls below the constant voltage specified by the constant voltage element, and a large current exceeding its withstand capacity does not flow through the constant voltage element.The switching element is a current transformer when conducting. When the AC voltage polarity of the secondary winding output is reversed, it becomes non-conductive and returns automatically.

このように、変流器出力を所定電圧レベル時に短絡する
回路構成とすることにより、低電流領域から大電流領域
まで安定した直流電源を、簡単にしかも経済的に得るこ
とができるようになる。
By configuring the circuit to short-circuit the output of the current transformer at a predetermined voltage level in this manner, it becomes possible to easily and economically obtain a stable DC power source from a low current range to a high current range.

スイッチイング素子としてはサイリスタが好ましいが、
他の公知の半導体スイッチ素子が利用できる。
Thyristors are preferred as switching elements, but
Other known semiconductor switch elements can be used.

[実施例] 以下本発明を図示の実施例に従って説明する。[Example] The present invention will be explained below according to the illustrated embodiments.

第1図は本発明の電源装置の具体例を示したもので、送
電線架空地線1aに貫通させた変流器2を有し、この変
流器2の二次巻線2aには整流回路3が接続され、整流
回路3の出方端子には、定電圧素子4たるツェナーダイ
オードZD及び制限抵抗5たる抵抗Rから成る直列回路
と1ML圧レギしレータ7とが接続されている。更に、
変流器2の二次巻線2aにはスイッチング素子としての
サイリスタ6が並列に接続され、サイリスタ6の制御入
力端子たるゲートは、ツェナーダイオード2Dと制限抵
抗5との結合点Xに接続されている。
FIG. 1 shows a specific example of the power supply device of the present invention, which has a current transformer 2 passed through an overhead ground wire 1a of a power transmission line, and a secondary winding 2a of this current transformer 2. A circuit 3 is connected, and the output terminal of the rectifier circuit 3 is connected to a series circuit consisting of a Zener diode ZD as a constant voltage element 4 and a resistor R as a limiting resistor 5, and a 1ML pressure regulator 7. Furthermore,
A thyristor 6 as a switching element is connected in parallel to the secondary winding 2a of the current transformer 2, and a gate serving as a control input terminal of the thyristor 6 is connected to a node X between a Zener diode 2D and a limiting resistor 5. There is.

上記構成の動作を第2図を参照しながら説明する。The operation of the above configuration will be explained with reference to FIG.

変流器2の二次巻線2aの出方は、サイリスタ6が当初
は非導通となっていることから、整流回路3中の整流器
により第2図(a)のように整流され、整流回路3中の
平滑回路により第2図(b)のように平滑化される。平
滑化された電圧VaがツェナーダイオードZDの動作電
圧レベルVz以下であれば、電圧レギュレータ7で一定
の電圧値に変化され、直流電圧が得られる。
Since the thyristor 6 is initially non-conducting, the secondary winding 2a of the current transformer 2 is rectified by the rectifier in the rectifier circuit 3 as shown in FIG. The smoothing circuit shown in FIG. 3 smooths the signal as shown in FIG. 2(b). If the smoothed voltage Va is lower than the operating voltage level Vz of the Zener diode ZD, it is changed to a constant voltage value by the voltage regulator 7, and a DC voltage is obtained.

架空地線電流が大きくなり、整流回路3の出力電圧Va
  (第2図(b))が高くなって、ツェナーダイオー
ドZDの動作電圧レベル72以上となる場合には、ツェ
ナーダイオードZDの働きにより、整流回路3の出力ラ
インの電圧(第1図に示すy点の電位)は、第2図(C
)に示したようにツェナー動作電圧v2に押えられる。
The overhead ground wire current increases, and the output voltage Va of the rectifier circuit 3
(Fig. 2(b)) becomes higher than the operating voltage level 72 of the Zener diode ZD, the voltage of the output line of the rectifier circuit 3 (y shown in Fig. 1) increases due to the action of the Zener diode ZD. The potential at the point) is shown in Figure 2 (C
), the Zener operating voltage is suppressed to v2.

このとき、ツェナーダイオードZDの動作前においては
ゼロ電位となっていた制限抵抗5の端子電圧(X点の電
位)が、はぼ整流回路出力電圧Vaとツェナー動作電圧
v2との差(Va −Vz )に対応する電位になる。
At this time, the terminal voltage of the limiting resistor 5 (potential at point ).

このため、X点に接続されているサイリスタ6のゲート
(2点)の電位が一ヒ昇し、サイリスタ6がターンオン
して導通状態になる。
Therefore, the potential of the gate (2 points) of the thyristor 6 connected to the X point rises, and the thyristor 6 is turned on and becomes conductive.

サイリスタ6が導通すれば、第2図(d)に示すように
、変流器2の二次巻線の出力は端子は短絡され、短絡直
後から急激に下る。このためVa4Vzとなり、ツェナ
ーダイオード4に流れる電流Izは殆ど流れない。
When the thyristor 6 becomes conductive, the terminals of the output of the secondary winding of the current transformer 2 are short-circuited, and the output drops rapidly immediately after the short-circuit, as shown in FIG. 2(d). Therefore, the voltage becomes Va4Vz, and almost no current Iz flows through the Zener diode 4.

サイリスタ6は、変流器2の二次巻線出力が正極性にあ
る間は、−度短絡するとゲートの2点の電位が下っても
、そのままの状態を保持し、変流器2の二次巻線出力が
負極性になって逆阻止状態となったとき、再びターンオ
フして非導通状態になる。
As long as the secondary winding output of the current transformer 2 is in positive polarity, the thyristor 6 maintains its current state even if the potential at the two gate points drops when short-circuited by − degrees, and the secondary winding output of the current transformer 2 remains in the same state. When the next winding output becomes negative polarity and enters a reverse blocking state, it is turned off again and becomes non-conductive.

上記の繰返しにより、サイリスタ6の動作を考慮した整
流回路3の出力ライン上のy点の電圧波形は、第2図(
e)に示すようになり、常時、ツェナー動作電圧Vzを
ピーク値とした電圧を保持することになる。この整流出
力電圧を電圧レギュレータ7に入力することにより、安
定した直流電圧Vdc(ffi2図(f))が出力され
る。尚、電圧レギュレータ7は、サイリスタ6がターン
オンした時点より変流器2の二次巻線出力が負から正に
ゼロクロスする時点までの電圧変動をなくように動作す
る。即ち、第2図(e)におけるツェナーダイオード4
の動作電圧レベルVzから電圧レベルVzoに対して、
一定の直流を出力するものである。
By repeating the above, the voltage waveform at point y on the output line of the rectifier circuit 3, taking into account the operation of the thyristor 6, is as shown in Fig. 2 (
As shown in e), the voltage whose peak value is the Zener operating voltage Vz is always maintained. By inputting this rectified output voltage to the voltage regulator 7, a stable DC voltage Vdc (FIG. 2 (f)) is output. Note that the voltage regulator 7 operates to eliminate voltage fluctuations from the time when the thyristor 6 is turned on until the time when the secondary winding output of the current transformer 2 zero-crosses from negative to positive. That is, the Zener diode 4 in FIG. 2(e)
From the operating voltage level Vz to the voltage level Vzo,
It outputs a constant direct current.

誘導電源装置を上記回路構成とすることにより、架空地
線電流が大きく変化しても、ツェナーダイオードZDに
流れる電流Izは無視し得るほど小さくなり、非常に小
さな素子で回路を構成することができる。又、サイリス
タ6には、変流器2の二次巻線2aの出力を短絡したと
きに電流が流れるが、サイリスタ6の順方向のインピー
ダンスは小さいので、その消費電力は僅かであり、全体
の回路構成は、極めてコンパクトになる。
By making the induction power supply device have the above circuit configuration, even if the overhead ground wire current changes greatly, the current Iz flowing through the Zener diode ZD becomes negligibly small, and the circuit can be configured with extremely small elements. . Also, current flows through the thyristor 6 when the output of the secondary winding 2a of the current transformer 2 is short-circuited, but since the forward impedance of the thyristor 6 is small, its power consumption is small and the overall power consumption is small. The circuit configuration becomes extremely compact.

上記実施例では、架空地線電流を利用した場合について
説明したが、送電線本線の電流を直接に利用した場合で
も、全くその効果は同じである。
In the above embodiment, the case where the overhead ground wire current is used has been described, but the effect is exactly the same even when the current of the main power transmission line is directly used.

[発明の効果] 以上述べたように、本発明の誘導電源装置は、変流器出
力を所定電圧レベル時に短絡する回路構成としたもので
あるから、低電流領域から大電流領域まで安定した直流
電源を、簡単にしかも経済的に得ることができる。
[Effects of the Invention] As described above, the induction power supply device of the present invention has a circuit configuration in which the current transformer output is short-circuited at a predetermined voltage level. Power can be obtained easily and economically.

また、架空地線電流から、センサ等を駆動できる良質な
直流電力を作ることができることから、送電線鉄塔に容
易に設備状態を監視できるセンサを設置するとかでき、
送電線の保守監視に大きな効果を発揮する。特に、送電
線設備を監視するセンサとして、鉄塔上に設置する例が
多い風向風速センサの電源として用いれば、その効果は
更に大きい。
In addition, since it is possible to generate high-quality DC power that can drive sensors, etc. from overhead ground wire current, it is possible to easily install sensors on power transmission line towers to monitor equipment conditions.
It is highly effective for maintenance monitoring of power transmission lines. In particular, the effect will be even greater if it is used as a power source for wind speed and direction sensors, which are often installed on steel towers as sensors for monitoring power transmission line equipment.

更に、送電線電流を電源としているため、送電線の電流
が流れている限り本誘導電源装置は動作し続けることか
ら、極めて効率良く、無保守拳無交換の電源が得られる
Furthermore, since the current in the power transmission line is used as a power source, this induction power supply device continues to operate as long as the current in the power transmission line is flowing, so that an extremely efficient power source that requires no maintenance or replacement can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の誘導電源装置の回路構成例を示す図、
第2図(a)〜(f)はその動作説明図に供する図、第
3図は従来の誘導電源装置の構成例を示す図、第4図(
a)〜(d)はその動作説明図に供する図である。 図中、1は送電線本線、laは架空地線、2は変流器、
2aは変流器の二次巻線、3は整流回路、4は定電圧素
子、5は制限抵抗、6はサイリスタ(スイッチング素子
)、7は電圧レギュレータを示す。
FIG. 1 is a diagram showing an example of the circuit configuration of the inductive power supply device of the present invention,
2(a) to 2(f) are diagrams for explaining the operation, FIG. 3 is a diagram showing a configuration example of a conventional induction power supply device, and FIG. 4 (
a) to (d) are diagrams for explaining the operation. In the diagram, 1 is the main power transmission line, la is the overhead ground wire, 2 is the current transformer,
2a is a secondary winding of a current transformer, 3 is a rectifier circuit, 4 is a constant voltage element, 5 is a limiting resistor, 6 is a thyristor (switching element), and 7 is a voltage regulator.

Claims (1)

【特許請求の範囲】 1、送電線に流れている電流を電源として、送電線の監
視センサを駆動する電力を得る誘導電源装置において、
架空地線電流から交流電圧を得る変流器と、該変流器の
二次巻線出力端子に接続した整流回路と、該整流回路に
接続され整流回路の出力が一定の電圧レベルに達した時
に信号を出力する定電圧素子と、上記整流回路に接続し
た電圧レギュレータと、上記変流器の二次巻線出力端子
に並列に接続されており、上記定電圧素子からの信号を
制御入力端子に受けて導通し、導通時における変流器の
二次巻線出力の交流電圧極性が反転すると非導通となる
スイッチイング素子とを備えたことを特徴とする送電線
監視センサ用の誘導電源装置。 2、前記スイッチング素子がサイリスタである請求項1
記載の送電線監視センサ用の誘導電源装置。
[Claims] 1. In an induction power supply device that uses current flowing in a power transmission line as a power source to obtain power for driving a monitoring sensor of the power transmission line,
A current transformer that obtains alternating voltage from overhead ground wire current, a rectifier circuit connected to the secondary winding output terminal of the current transformer, and a rectifier circuit connected to the rectifier circuit whose output reaches a certain voltage level. A constant voltage element that outputs a signal at the same time, a voltage regulator connected to the rectifier circuit, and a secondary winding output terminal of the current transformer are connected in parallel, and the signal from the constant voltage element is connected to the control input terminal. an inductive power supply device for a power transmission line monitoring sensor, comprising: a switching element that becomes conductive when the AC voltage polarity of the secondary winding output of a current transformer is reversed when the current transformer is conductive; . 2. Claim 1, wherein the switching element is a thyristor.
An inductive power supply device for the power transmission line monitoring sensor described above.
JP63060504A 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor Expired - Lifetime JPH0789693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63060504A JPH0789693B2 (en) 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060504A JPH0789693B2 (en) 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor

Publications (2)

Publication Number Publication Date
JPH01238414A true JPH01238414A (en) 1989-09-22
JPH0789693B2 JPH0789693B2 (en) 1995-09-27

Family

ID=13144205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060504A Expired - Lifetime JPH0789693B2 (en) 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor

Country Status (1)

Country Link
JP (1) JPH0789693B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013212A (en) * 2019-07-04 2021-02-04 矢崎エナジーシステム株式会社 Power supply
CN112986710A (en) * 2019-12-17 2021-06-18 新疆金风科技股份有限公司 Converter fault detection method and device and computer equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7282553B2 (en) * 2019-03-14 2023-05-29 矢崎エナジーシステム株式会社 power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995159A (en) * 1973-01-18 1974-09-10
JPS5030581U (en) * 1973-06-29 1975-04-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995159A (en) * 1973-01-18 1974-09-10
JPS5030581U (en) * 1973-06-29 1975-04-05

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013212A (en) * 2019-07-04 2021-02-04 矢崎エナジーシステム株式会社 Power supply
CN112986710A (en) * 2019-12-17 2021-06-18 新疆金风科技股份有限公司 Converter fault detection method and device and computer equipment

Also Published As

Publication number Publication date
JPH0789693B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US11336198B2 (en) System for generating a power output and corresponding use
US6160689A (en) Two wire solid state AC/DC circuit breaker
US4180745A (en) Power regulating supply system for AC electrical loads
JPH01238414A (en) Induction power supply device for transmission line monitoring sensor
JPH08331748A (en) Circuit breaker
US3371248A (en) Overcurrent protection apparatus
KR20090078187A (en) Transformer with ground wire applying direct current circuit breaker
US2564279A (en) Vibrator system for supplying a plurality of direct currents with different voltages
CN112968617B (en) Power supply circuit for alternating-current transmission line on-line monitoring device
KR100501802B1 (en) High-Tc Superconducting Fault Current Limiter Controlling Amplitude of the Applied Magnetic Field Using Power Switch
CN1133508A (en) Switch type power source with protective circuit
US4240025A (en) Feeding system for incandescent lamps by overhead wires of transmission lines
US3531710A (en) High voltage dc transmission terminal circuit
US4090235A (en) Power frequency converter
SU1005239A1 (en) Device for protecting synchronous generator field winding
RU2031978C1 (en) Cathode station control apparatus
SU957335A1 (en) Device for single-system relay protection apparatus current circuit power suppl
SU599703A1 (en) Device for protecting earth stake of glazed frost melting device by direct current
SU919010A1 (en) Device for protection of electrical machine thyristor excitation circuit
SU809469A1 (en) Thyristorized converter control device
SU1597797A1 (en) Method of determining places of shorting to sheath in case of break-down in cable lines
SU970538A1 (en) Device for protecting three-phase electric receiver from alternating and disturbance of phases of supply mains
SU390619A1 (en)
RU1809484C (en) Device for prevention of sleet formation on wires of electric power lines in networks with insulated neutral
SU698096A1 (en) Arrangement for current protection of electric equipment in ac mains