JPH01238207A - Temperature compensating and amplifying circuit - Google Patents

Temperature compensating and amplifying circuit

Info

Publication number
JPH01238207A
JPH01238207A JP63063581A JP6358188A JPH01238207A JP H01238207 A JPH01238207 A JP H01238207A JP 63063581 A JP63063581 A JP 63063581A JP 6358188 A JP6358188 A JP 6358188A JP H01238207 A JPH01238207 A JP H01238207A
Authority
JP
Japan
Prior art keywords
current
temperature
circuit
amplifier
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63063581A
Other languages
Japanese (ja)
Inventor
Hideshi Yamamoto
山本 日出士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63063581A priority Critical patent/JPH01238207A/en
Publication of JPH01238207A publication Critical patent/JPH01238207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To compensate the change of the temperature of an amplification and to obtain a stable reproduced output by forming the reference voltage of a differential amplifier by a current obtained by connecting respective current mirror circuits constituted of plural NPN and PNP transistors. CONSTITUTION:The value of a resistance 22 is defined to be R2 and the area of the emitter of the NPN transistor(TR) 21 is defined to be (n) times as large as the NPN TRs 19, 23. When the mirror ratio of the current mirror constituted of the PNP TRs 24, 25 is defined to be '1', this combination forms a band gap reference circuit to have a circuit current of I2=(kT/q).ln(n)/R2 (q is an electron charge, T is an absolute temperature and k is a Boltzmann constant). This current is caused to pass to a resistance 26 connected between a non- inversion input terminal and a source voltage and have the reference voltage. Since a direct current feed back is applied so as to make both the input terminal potentials of an amplifier 14 equal, the current I2 is passed to a resistance 16 in the potential of the non-inversion input terminal of a differential amplifier 13 to change the temperature. The amplification of a cascode amplifier does not include the term of the change of the temperature to obtain an amplified output having no change of the temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主として磁気記録再生装[(VTR)に用い
られる温度補償増幅回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates primarily to a temperature-compensated amplifier circuit used in a magnetic recording/reproducing device (VTR).

(従来の技術) 従来の増幅回路例を第2図に示す0図において1は入力
端子であり、NPNトランジスタ6のベースに接続して
いる。このNPN トランジスタ6゜ベースに定電圧源
5が接続されたNPNトランジスタ7、および抵抗8は
、正電源端子2と接地端子3の間に直列接続されてカス
コード増幅器を構成している。差動増幅器14の反転入
力端子には前記カスコード増幅器の出力が、非反転入力
端子には定電圧源15がそれぞれ接続され、該差動増幅
器14の出力を出力端子4とし、且つ、差動増幅器13
の反転入力端子に接続する。差動増幅器13の非反転入
力端子には定電圧源12を接続し、その出力を抵抗9,
10を介してNPN)−ランジスタロのベースに接続し
、抵抗9,10の接続点には他端接地の容ff1llを
接続する。前記カスコード増幅器の増幅度は、フィード
バックされて決定される回路電流11と負荷抵抗値R工
により1次式で示される。
(Prior Art) An example of a conventional amplifier circuit is shown in FIG. An NPN transistor 7 having a constant voltage source 5 connected to the base of the NPN transistor 6°, and a resistor 8 are connected in series between the positive power supply terminal 2 and the ground terminal 3 to form a cascode amplifier. The output of the cascode amplifier is connected to the inverting input terminal of the differential amplifier 14, and the constant voltage source 15 is connected to the non-inverting input terminal, and the output of the differential amplifier 14 is connected to the output terminal 4. 13
Connect to the inverting input terminal of A constant voltage source 12 is connected to the non-inverting input terminal of the differential amplifier 13, and its output is connected to a resistor 9,
It is connected to the base of the NPN)-rangistaro through the resistor 10, and the capacitor ff1ll whose other end is grounded is connected to the connection point of the resistors 9 and 10. The amplification degree of the cascode amplifier is expressed by a linear equation using the circuit current 11 determined by feedback and the load resistance value R.

G、=2Oflog (−1−XI、XR,)   ・
・・■T 通常、増幅度を確定させるため、定電圧源12の電圧値
と出力端子の電位が等しい時に、差動増幅器14の面入
力端子電位が等しくなるように構成されている。この場
合、カスコード増幅器の増幅度は、電源電圧をvoとし
て、定電圧源15の電圧値をvl、で表わすと、次式で
示される。
G, = 2Oflog (-1-XI, XR,) ・
... ■T Usually, in order to determine the degree of amplification, when the voltage value of the constant voltage source 12 and the potential of the output terminal are equal, the surface input terminal potential of the differential amplifier 14 is made equal. In this case, the amplification degree of the cascode amplifier is expressed by the following equation, where the power supply voltage is vo and the voltage value of the constant voltage source 15 is vl.

G 1= 20Qog (−ニー(Vllll−Vl、
))  ・・・ ■T ここでqは電子電荷、Tは絶対温度、kはボルツマン定
数である。
G 1 = 20Qog (-knee (Vlll-Vl,
)) ... ■T Here, q is the electron charge, T is the absolute temperature, and k is the Boltzmann constant.

最終出力増幅度は、差動増幅器14の増幅度を02とす
れば1次式で示される。
The final output amplification degree is expressed by a linear equation, assuming that the amplification degree of the differential amplifier 14 is 02.

G=G1+G、            ・・・■ここ
では、Gの値に温度特性はないものとする。
G=G1+G,... ■Here, it is assumed that the value of G has no temperature characteristics.

交流的なフィードバックは、容量llで交流接地されて
いるため行なわれない。
AC feedback is not performed because it is AC grounded with a capacity 11.

(発明が解決しようとする課題) しかしながら、第2図に示した回路構成では0式に示し
たように、温度変化に対し、増幅度が変化する。このた
めVTRのヘッド出力再生においては、後段に自動増幅
度制御回路を用いて、この温度変化に対する増幅度の変
化を吸収しているが。
(Problems to be Solved by the Invention) However, in the circuit configuration shown in FIG. 2, as shown in equation 0, the degree of amplification changes with respect to temperature changes. For this reason, in VTR head output reproduction, an automatic amplification control circuit is used in the latter stage to absorb changes in amplification due to temperature changes.

他要因のばらつきも含めて、制御範囲を広くとらなけれ
ばならない。また、ハイファイオーディオヘッド出力再
生においては、通常、自動増幅度制御回路を信号処理以
前に設けないので、増幅度は湿度変化に大きく影響され
る。
The control range must be wide enough to include variations in other factors. Furthermore, in high-fidelity audio head output reproduction, an automatic amplification degree control circuit is usually not provided before signal processing, so the amplification degree is greatly affected by changes in humidity.

本発明は、この増幅度の温度変化を補償し、安定な再生
出力を得ることのできる増幅回路を提供するものである
The present invention provides an amplifier circuit that can compensate for temperature changes in the degree of amplification and obtain stable reproduction output.

(ill1題を解決するための手段) 本発明は、第1のNPNトランジスタのベースを入力信
号端子とし、正電源端子と接地間に抵抗、第2のNPN
トランジスタおよび前記第1のNPNトランジスタを直
列接続して構成されるカスコード増幅器の出力を、その
出力を増幅回路の出力端子とする差動増幅器の反転入力
端子に接続し、その増幅度を確定する非反転入力端子の
電位を、電源電圧に接続した抵抗に、複数のNPNトラ
ンジスタで構成したいわゆるカレントミラー回路と複数
のPNPトランジスタで構成されたカレントミラー回路
の各電路を接続して得られる電流を流すことにより与え
るようにした構成の温度補償増幅回路である。
(Means for Solving Problem 1) In the present invention, the base of the first NPN transistor is used as the input signal terminal, and a resistor is connected between the positive power supply terminal and the ground.
The output of a cascode amplifier configured by connecting a transistor and the first NPN transistor in series is connected to an inverting input terminal of a differential amplifier whose output is used as an output terminal of an amplifier circuit, and a non-conductor is used to determine the amplification degree. A current obtained by connecting the electric potential of the inverting input terminal to a resistor connected to the power supply voltage through a so-called current mirror circuit made up of multiple NPN transistors and a current mirror circuit made up of multiple PNP transistors is passed. This is a temperature-compensated amplifier circuit configured to provide the following characteristics.

(作 用) NPNトランジスタで構成されたカレントミラー回路と
PNP トランジスタで構成されたカレントミラー回路
を交差接続させ、PNPトランジスタのカレントミラー
回路のミラー比を1とすると、回路電流にkT/(Iの
温度特性を持たせることができる。この回路電流で差動
増幅器の基準電圧をつくることにより、カスコード増幅
器で生じたq/kTの温度特性を持つ増幅度の温度変化
を補償することができる。
(Function) If a current mirror circuit composed of NPN transistors and a current mirror circuit composed of PNP transistors are cross-connected, and the mirror ratio of the current mirror circuit of PNP transistors is 1, the circuit current will be kT/(I of By using this circuit current to create a reference voltage for the differential amplifier, it is possible to compensate for the temperature change in the amplification factor that occurs in the cascode amplifier and has a temperature characteristic of q/kT.

(実施例) 以下、本発明の温度補償増幅回路の一実施例を第1図に
基づいて説明する。差動増幅器14の反転入力端子にN
PNトランジスタ6のベースを入力信号端子1とし電源
電圧端子2と接地3間にNPNトランジスタ6.7と負
荷抵抗8を直列接続して構成したカスコード増幅器の出
力を接続し、その増幅度を確定する非反転入力端子の電
位を、電源電圧に接続した抵抗26に、NPNトランジ
スタ19、21.23で構成されたカレントミラー回路
とPNPトランジスタ24.25で構成されるカレント
ミラー回路の各電路を接続して得られる電流を流すこと
で、前記問題点の温度変化に対する増幅度変動を補償す
る回路構成となっている。
(Embodiment) Hereinafter, one embodiment of the temperature compensation amplifier circuit of the present invention will be described based on FIG. 1. N to the inverting input terminal of the differential amplifier 14
The base of the PN transistor 6 is used as the input signal terminal 1, and the output of a cascode amplifier configured by connecting the NPN transistor 6.7 and the load resistor 8 in series is connected between the power supply voltage terminal 2 and the ground 3, and the amplification degree is determined. The potential of the non-inverting input terminal is connected to the resistor 26 connected to the power supply voltage, and each electric path of the current mirror circuit consisting of the NPN transistors 19 and 21.23 and the current mirror circuit consisting of the PNP transistors 24.25 is connected. The circuit is configured to compensate for the amplification variation due to temperature change, which is the problem mentioned above, by flowing a current obtained by the above-described current.

次に、第1図の実施例について動作説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

第1図において、抵抗22の値をR3とし、NPNトラ
ンジスタ21のエミッタ面積をNPNトランジスタ19
およびz3のn倍とする。PNP)−ランジスタ24.
25で構成されたカレントミラーのミラー比を1とすれ
ば、この組合せはバンドギャップリファレンス回路を構
成し、回路電流は次式で示される。
In FIG. 1, the value of the resistor 22 is R3, and the emitter area of the NPN transistor 21 is the NPN transistor 19.
and n times z3. PNP) - transistor 24.
If the mirror ratio of the current mirror made up of 25 is 1, this combination constitutes a bandgap reference circuit, and the circuit current is expressed by the following equation.

この電流をカレントミラーで、差動増幅器14の非反転
入力端子と電源電圧の間に接続された抵抗26に流し、
増幅度を確定する電圧を与える。その電圧値vAは、抵
抗26の値をR1とすれば、次式で示される。
This current is passed through a resistor 26 connected between the non-inverting input terminal of the differential amplifier 14 and the power supply voltage using a current mirror.
Give a voltage to determine the degree of amplification. The voltage value vA is expressed by the following equation, assuming that the value of the resistor 26 is R1.

差動増幅器14の面入力端子電位を等しくなるように直
流フィードバックをかけるため、差動増幅器13の非反
転入力端子の電位にも、■式で示される回路電流を抵抗
16に流し、温度変化を持たせる。
In order to apply DC feedback so that the surface input terminal potentials of the differential amplifier 14 are equalized, a circuit current shown by the formula Have it.

この状態で、電源電圧に接続されたカスコード増幅器の
負荷抵抗8の両端電位差と、同じく電源電圧に接続され
た抵抗26の両端電位差は等しくなる。
In this state, the potential difference across the load resistor 8 of the cascode amplifier connected to the power supply voltage becomes equal to the potential difference across the resistor 26, which is also connected to the power supply voltage.

すなわち、 R□I、=R,I2           ・・・■と
なる。
That is, R□I,=R,I2...■.

■式と■式および0式より、この回路構成でのカスコー
ド増幅器の増幅度は次式で示される。
From equations (1), (2), and (0), the amplification degree of the cascode amplifier in this circuit configuration is expressed by the following equation.

第1図に示した実施例の温度補償増幅回路は、■式で示
すように温度変化の項を、カスコード増幅器の増幅度の
式を含まず、湿度変化のない安定な再生増幅出力を得る
ことができる。
The temperature-compensated amplifier circuit of the embodiment shown in FIG. 1 does not include the temperature change term and the amplification degree equation of the cascode amplifier, as shown in equation (2), and can obtain a stable regenerative amplification output without humidity changes. Can be done.

回路図中のNPN トランジスタ18と定電圧源15は
、バンドギャップリファレンス回路のスタート回路であ
り、安定動作に入るとNPNトランジスタ18はOFF
するように、定電圧源15の値と抵抗20の値は設定さ
れる。
The NPN transistor 18 and constant voltage source 15 in the circuit diagram are the start circuit of the bandgap reference circuit, and when stable operation begins, the NPN transistor 18 is turned off.
The value of constant voltage source 15 and the value of resistor 20 are set so that.

(発明の効果) 本発明によれば、VTRのヘッド出力等の微小信号の再
生において、再生増幅器の増幅度の温度変化を解消する
ことができるものである。
(Effects of the Invention) According to the present invention, temperature changes in the amplification degree of the reproducing amplifier can be eliminated in reproducing minute signals such as the head output of a VTR.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における温度補償増幅回路の
回路図、第2図は従来例における増幅回路の回路例であ
る。 1・・・入力端子、2・・・電源電圧端子、3・・・接
地端子、4・・・出力端子、5.12.15・・・定電
圧源、6 、7 、18.19.21.23・・・NP
Nトランジスタ、8 、9 、10.16.20゜22
、26・・・抵抗、11・・・容量、13.14・・・
差動増幅器、17.24.25−P N P トランジ
スタ。
FIG. 1 is a circuit diagram of a temperature compensated amplifier circuit according to an embodiment of the present invention, and FIG. 2 is a circuit example of a conventional amplifier circuit. 1... Input terminal, 2... Power supply voltage terminal, 3... Ground terminal, 4... Output terminal, 5.12.15... Constant voltage source, 6, 7, 18.19.21 .23...NP
N transistor, 8, 9, 10.16.20°22
, 26...Resistance, 11...Capacity, 13.14...
Differential amplifier, 17.24.25-PNP transistor.

Claims (1)

【特許請求の範囲】[Claims] 第1のNPNトランジスタのベースを入力信号端子とし
、正電源端子と接地間に抵抗、第2のNPNトランジス
タおよび前記第1のNPNトランジスタを直列接続して
構成されるカスコード増幅器の出力を、その出力を増幅
回路の出力端子とする差動増幅器の反転入力端子に接続
し、その増幅度を確定する非反転入力端子の電位を、電
源電圧に接続した抵抗に、複数のNPNトランジスタで
構成したカレントミラー回路と複数のPNPトランジス
タで構成されたカレントミラー回路の各電路を接続して
得られる電流を流すことにより与えるようにしたことを
特徴とする温度補償増幅回路。
The output of a cascode amplifier is configured by using the base of the first NPN transistor as an input signal terminal, connecting a resistor between the positive power supply terminal and ground, and connecting the second NPN transistor and the first NPN transistor in series. is connected to the inverting input terminal of the differential amplifier, which serves as the output terminal of the amplifier circuit, and the potential of the non-inverting input terminal, which determines the degree of amplification, is connected to the resistor connected to the power supply voltage. 1. A temperature-compensated amplifier circuit, characterized in that a current is applied by connecting a circuit and each electric path of a current mirror circuit composed of a plurality of PNP transistors and causing a current to flow therethrough.
JP63063581A 1988-03-18 1988-03-18 Temperature compensating and amplifying circuit Pending JPH01238207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63063581A JPH01238207A (en) 1988-03-18 1988-03-18 Temperature compensating and amplifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63063581A JPH01238207A (en) 1988-03-18 1988-03-18 Temperature compensating and amplifying circuit

Publications (1)

Publication Number Publication Date
JPH01238207A true JPH01238207A (en) 1989-09-22

Family

ID=13233374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63063581A Pending JPH01238207A (en) 1988-03-18 1988-03-18 Temperature compensating and amplifying circuit

Country Status (1)

Country Link
JP (1) JPH01238207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217104A (en) * 1990-12-18 1992-08-07 Sanyo Electric Co Ltd Signal amplifier circuit
JPH05167355A (en) * 1991-12-19 1993-07-02 Japan Radio Co Ltd Input impedance stabilizing circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217104A (en) * 1990-12-18 1992-08-07 Sanyo Electric Co Ltd Signal amplifier circuit
JPH05167355A (en) * 1991-12-19 1993-07-02 Japan Radio Co Ltd Input impedance stabilizing circuit

Similar Documents

Publication Publication Date Title
US5103353A (en) Low noise amplifier with short circuit protection for signals from magnetoresistive element
US5548453A (en) Reproducing circuit for magneto-resistive head having an initial amplifying stage, a differential amplifying stage, and means for controlling the time of operation thereof
JP4523168B2 (en) Linearization amplifier core
JPH03259611A (en) Active filter
JP3118393B2 (en) Differential amplifier circuit
JPH04273610A (en) Filter circuit for integrated circuit
JPH04369107A (en) Differential amplifier
JPH01238207A (en) Temperature compensating and amplifying circuit
JP2788869B2 (en) Common emitter type amplifier circuit
JP2661607B2 (en) Differential amplifier with differential output
JPH0374922A (en) Filter circuit
US4356454A (en) Equalizer amplifier
JP2694767B2 (en) Integrator
JPS5816206B2 (en) constant current circuit
JP3107590B2 (en) Current polarity conversion circuit
JP2557398B2 (en) Amplifier circuit
JPS641785Y2 (en)
JPH0363847B2 (en)
JPS646583Y2 (en)
JP3627368B2 (en) Amplifier
JPH03284004A (en) Emitter-follower circuit
JPS63133707A (en) Differential amplifier circuit
KR840000940B1 (en) Equalizer amplifier
JPS6259926B2 (en)
JPH02137510A (en) Current controlled gain variable amplifier