JPH0123734B2 - - Google Patents

Info

Publication number
JPH0123734B2
JPH0123734B2 JP1189884A JP1189884A JPH0123734B2 JP H0123734 B2 JPH0123734 B2 JP H0123734B2 JP 1189884 A JP1189884 A JP 1189884A JP 1189884 A JP1189884 A JP 1189884A JP H0123734 B2 JPH0123734 B2 JP H0123734B2
Authority
JP
Japan
Prior art keywords
rdi
cracks
sintered ore
crack length
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1189884A
Other languages
Japanese (ja)
Other versions
JPS60157048A (en
Inventor
Tsuneo Myashita
Noboru Sakamoto
Hiroshi Fukuyo
Yoshito Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP1189884A priority Critical patent/JPS60157048A/en
Publication of JPS60157048A publication Critical patent/JPS60157048A/en
Publication of JPH0123734B2 publication Critical patent/JPH0123734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、焼結鉱のRDI測定方法に関する。[Detailed description of the invention] The present invention relates to a method for measuring RDI of sintered ore.

焼結鉱は、主たる高炉原料であり、高炉操業を
安定しておこなうためには焼結鉱の品質管理が重
要である。焼結鉱の品質は、一般に被還元性
(RI)、還元粉化性(RDI)、常温強度、高温荷重
軟化性などの指数で評価される。これら指数のう
ちRDIは、RIとともに高炉シヤフト部での原料
の被還元性を向上し、通気性を維持する上でとく
に重要な指数である。
Sintered ore is the main raw material for blast furnaces, and quality control of sintered ore is important for stable blast furnace operation. The quality of sintered ore is generally evaluated using indexes such as reducibility (RI), reduced pulverizability (RDI), room temperature strength, and high temperature load softening properties. Among these indices, RDI is a particularly important index for improving the reducibility of raw materials in the blast furnace shaft and maintaining air permeability, along with RI.

従来のRDI測定方法は、焼結鉱試料を取出し、
これを所定の条件下で試験しておこなつていた。
このため測定値は正確であるが、測定に時間がか
かり、測定結果を焼結プロセスに反映することが
難かしく、精密な制御をおこなうことができな
い。
The conventional RDI measurement method takes a sintered ore sample and
This was tested under specified conditions.
Therefore, although the measured values are accurate, it takes time to measure, and it is difficult to reflect the measurement results in the sintering process, making it impossible to perform precise control.

この問題を解決する方法として、近時焼結鉱組
織を画像解析して、焼結鉱中の特定の鉱物相の含
有割合を測定し、これら測定値からRDIを推定す
る方法がいくつか提案されている。例えば測定装
置として特開昭56−168550号、推定方法として特
開昭58−42732号がある。しかしRDIは、特定の
鉱物相によつてのみ決められるものではなく、焼
結鉱を構成する全ての鉱物相が互いに影響しあつ
ている。このため上記方法は、RDIを測定できる
ものの、測定精度に問題がある。
As a way to solve this problem, several methods have recently been proposed in which the sintered ore structure is image-analyzed, the content of specific mineral phases in the sintered ore is measured, and the RDI is estimated from these measured values. ing. For example, there is Japanese Patent Application Laid-Open No. 56-168550 as a measuring device, and Japanese Patent Application Laid-Open No. 58-42732 as an estimation method. However, RDI is not determined only by a specific mineral phase, but all mineral phases that make up sintered ore influence each other. Therefore, although the above method can measure RDI, there is a problem in measurement accuracy.

本発明は、焼結鉱の還元粉化現象が次の過程で
生じると考えた。まず還元によつて各組織内に応
力を発生させる歪が生じ、次いで組織がこの歪に
耐えられなくなつた時点でクラツクの伝幡となり
粉化に至る。また組織内に発生するクラツクの場
所、伝幡距離は、ランダムに発生していることは
高温顕微鏡観察で明らかとなつている。
The present invention considered that the phenomenon of reduction and powdering of sintered ore occurs in the following process. First, due to reduction, a strain is generated that generates stress in each tissue, and then, when the tissue can no longer withstand this strain, cracks propagate and the material becomes powder. Furthermore, observation using a high-temperature microscope has revealed that the locations and propagation distances of cracks that occur within tissues occur randomly.

本発明は、これらの知見にもとづいてなされた
もので、その目的とするところは、迅速かつ精度
よくRDIを測定することができる焼結鉱のRDI測
定方法を得んとするものである。
The present invention has been made based on these findings, and its purpose is to provide a method for measuring RDI of sintered ore that can quickly and accurately measure RDI.

すなわち、本発明は、焼結鉱を構成する各単一
組織または単一組織の複合せる組織につき予じめ
クラツク長さの分布を求めるとともに組織の破壊
に至る臨界クラツク長さを越えるクラツク数と
RDIとの関係を求めておき、次いでRDI測定用焼
結鉱試料を画像解析して各組織を判別するととも
に上記クラツク長さの分布を用いて統計的処理に
より臨界クラツク長さを越えるクラツク数をカウ
ントし、しかる後このクラツク数から上記臨界ク
ラツク長さを越えるクラツク数とRDIとの関係を
用いてRDIを求めることを特徴とする。
That is, the present invention obtains the distribution of crack lengths in advance for each single structure or composite structure of single structures constituting sintered ore, and also determines the number of cracks that exceed the critical crack length that would lead to structure destruction.
The relationship with RDI is determined, and then the sintered ore sample for RDI measurement is image-analyzed to identify each structure, and the number of cracks exceeding the critical crack length is calculated by statistical processing using the above-mentioned crack length distribution. The method is characterized in that the number of cracks is counted, and then the RDI is determined from the number of cracks using the relationship between the number of cracks exceeding the critical crack length and the RDI.

以下本発明を図面を参照して詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

本発明では予じめ焼結鉱を構成する各単一組織
につきクラツク長さの分布を求めておく、 即ち焼結鉱を構成する主な組織として、ガラス
質スラグS−3、2次ヘマタイトH−10、微細
型ヘマタイトH−2、針状カルシウムフエライト
CF−8、短冊状カルシウムフエライトCF−2
4、微細型カルシウムフエライトCF−5などが
ある。これら単一組織のみからなる焼結鉱試料を
それぞれ作製する。各試料について所定の歪を与
えて、発生したクラツク長さを調べる。この試料
方法は、例えば試料にビツカース試験による圧痕
(500gの荷重)を15秒の保持時間で加えてクラツ
クを発生することにより行なう。このようにして
得られたクラツク長さの分布の一例を第1図に示
す。
In the present invention, the crack length distribution is determined in advance for each single structure constituting the sintered ore. That is, the main structures constituting the sintered ore are glassy slag S-3 and secondary hematite H. -10, fine hematite H-2, acicular calcium ferrite
CF-8, rectangular calcium ferrite CF-2
4. There are fine calcium ferrite CF-5, etc. Each sintered ore sample consisting of only these single structures is prepared. A predetermined strain is applied to each sample, and the length of the crack that occurs is examined. This sample method is carried out, for example, by applying a Vickers test impression (load of 500 g) to the sample for a holding time of 15 seconds to generate cracks. An example of the crack length distribution thus obtained is shown in FIG.

また組織の破壊に至る臨界クラツク長さを越え
るクラツク数とRDIとの関係を予じめ求めてお
く。臨界クラツク長さは、各組織に発生するクラ
ツクを観察することにより実験的に得られるもの
で、通常30〜50μ程度である。RDIは実測して求
められるものである。このRDIと臨界クラツクを
越えるクラツク数との関係の一例を第2図に示
す。
In addition, the relationship between the RDI and the number of cracks that exceed the critical crack length leading to tissue destruction is determined in advance. The critical crack length is obtained experimentally by observing the cracks that occur in each tissue, and is usually about 30 to 50 microns. RDI is determined by actual measurement. An example of the relationship between this RDI and the number of cracks exceeding the critical crack is shown in FIG.

次にRDI測定用焼結鉱試料につき画像解析をお
こない、画面上に表わされる組織がなんであるか
を識別するとともに、画面上に表われた組織に対
し例えばモンテカルロシミユレーシヨンなどの統
計的手法により確率論的に臨界クラツク長さを越
えるクラツク数をカウントする。
Next, image analysis is performed on the sintered ore sample for RDI measurement to identify the structure represented on the screen, and statistical methods such as Monte Carlo simulation are applied to the structure shown on the screen. The number of cracks exceeding the critical crack length is counted probabilistically.

即ち画面上の焼結鉱組織に対して模凝的に還元
粉化の発生原因となる歪応力を発生させる。次い
でこの歪応力によりクラツクが発生するか否かを
確率論的に設定する。各組織のクラツク発生確率
は、各単一組織に発生したクラツクの割合を組織
観察することにより、予じめ設定しておく。クラ
ツクが発生した場合、第1図に示す確率密度分布
にもとずき、そのクラツク長さを設定する。そし
てクラツク長さが所定の臨界クラツク長さを越え
ているとき、その個数をカウントする。このよう
な操作を所定回数行なつて臨界クラツク長さを越
えるクラツクの個数を設定する。このシミユレー
シヨン方式のフローチヤートを第3図に示す。こ
のクラツク数を第2図に示すクラツク数をRDIと
の関係にもとづいてRDIに換算する。なお直接指
数化することも可能である。
That is, strain stress that causes reduction and powdering is generated in the sintered ore structure on the screen in a simulated manner. Next, it is determined probabilistically whether or not a crack will occur due to this strain stress. The probability of crack occurrence in each tissue is set in advance by observing the percentage of cracks occurring in each single tissue. When a crack occurs, the length of the crack is set based on the probability density distribution shown in FIG. When the crack length exceeds a predetermined critical crack length, the number of cracks is counted. This operation is repeated a predetermined number of times to set the number of cracks that exceed the critical crack length. A flowchart of this simulation method is shown in FIG. This number of cracks is converted into RDI based on the relationship between the number of cracks shown in FIG. 2 and RDI. Note that direct indexing is also possible.

以上説明したように本発明によれば、画像解析
により各組織を識別し、例えばモンテカルロシミ
ユレーシヨン等の手法により確率論的に還元粉化
の原因となるクラツク数を設定し、このクラツク
数からRDIを求めるので、迅速かつ精度よくRDI
を求めることができる。このため測定結果を焼結
プロセスに反映して精密な制御をおこなうことが
できる。
As explained above, according to the present invention, each tissue is identified by image analysis, and the number of cracks that cause reduction powdering is stochastically set using a method such as Monte Carlo simulation. Since the RDI is calculated from
can be found. Therefore, measurement results can be reflected in the sintering process for precise control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結鉱を構成する各単一組織における
クラツク長さの確率密度関数の一例を示す特性
図、第2図は臨界クラツク長さを越えるクラツク
数とRDIとの関係の一例を示す特性図、第3図は
本発明に係るシミユレーシヨンの手法の一例を示
すフローチヤート図である。
Figure 1 is a characteristic diagram showing an example of the probability density function of crack length in each single structure constituting sintered ore, and Figure 2 is an example of the relationship between the number of cracks exceeding the critical crack length and RDI. The characteristic diagram and FIG. 3 are flowcharts showing an example of the simulation method according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 焼結鉱を構成する各単一組織及び単一組織の
複合せる組織につき予じめクラツク長さの分布を
求めるとともに組織の破壊に至る臨界クラツク長
さを越えるクラツク数とRDIとの関係を求めてお
き、次いでRDI測定用焼結鉱試料を画像解析して
各組織を判別するとともに上記クラツク長さの分
布にもとづき統計的な処理を行ない臨界クラツク
長さを越えるクラツク数をカウントし、しかる後
このクラツク数から上記臨界クラツク長さを越え
るクラツク数とRDIとの関係を用いて指数化し、
RDIを求めることを特徴とする焼結鉱のRDI測定
方法。
1. Obtain the distribution of crack lengths in advance for each single structure and composite structure of single structures that make up the sintered ore, and calculate the relationship between the number of cracks exceeding the critical crack length that leads to structure destruction and RDI. Next, image analysis of the sintered ore sample for RDI measurement is performed to identify each structure, and statistical processing is performed based on the above crack length distribution to count the number of cracks that exceed the critical crack length. After that, this number of cracks is indexed using the relationship between the number of cracks exceeding the critical crack length and RDI.
A method for measuring RDI of sintered ore, which is characterized by determining RDI.
JP1189884A 1984-01-27 1984-01-27 Rdi measuring method of sintered ore Granted JPS60157048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189884A JPS60157048A (en) 1984-01-27 1984-01-27 Rdi measuring method of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189884A JPS60157048A (en) 1984-01-27 1984-01-27 Rdi measuring method of sintered ore

Publications (2)

Publication Number Publication Date
JPS60157048A JPS60157048A (en) 1985-08-17
JPH0123734B2 true JPH0123734B2 (en) 1989-05-08

Family

ID=11790545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189884A Granted JPS60157048A (en) 1984-01-27 1984-01-27 Rdi measuring method of sintered ore

Country Status (1)

Country Link
JP (1) JPS60157048A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489293B1 (en) * 2002-08-22 2005-05-17 주식회사 포스코 Method for real time analysis of reduction degradation of sintered ore using synchrotron
KR101290347B1 (en) * 2011-08-30 2013-07-26 현대제철 주식회사 Estimation method of reduction degradation within furnace based on reduction time
JP6565449B2 (en) * 2014-10-15 2019-08-28 日本製鉄株式会社 Measuring apparatus and measuring method for evaluating reduced powdering

Also Published As

Publication number Publication date
JPS60157048A (en) 1985-08-17

Similar Documents

Publication Publication Date Title
CN1013461B (en) Nondestructive test to the ferromagnetic workpiece creep impairment
Jones et al. The relationship between transverse strength and testing methods for dental ceramics
JPH0123734B2 (en)
JP3523806B2 (en) Defect inspection method in concrete structure
Fett et al. Creep parameters of alumina containing a glass phase determined in bending creep tests
Gazda Variations in CTE as a function of prestressing
Osterminski et al. Development of a laser-based line scan measurement system for the surface characterization of reinforcing steel
Lugovy et al. Time dependent mechanical properties of ZrB2-SiC ceramic composites: room temperature fatigue parameters
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JP2003065978A (en) Method for assessing remaining life of heat resisting material
Neighbour et al. Acoustic emission responses from cyclic loading of a nuclear graphite
JPH10123123A (en) Method for estimating creep life of gas turbine high-temperature part
US3003352A (en) Testing method for ascertaining the saturation value of grey cast iron
Loo Propagation of microcracks in concrete under uniaxial compression
JPH0148510B2 (en)
Cotter et al. Improving the Reliability of High‐Performance Ceramics Using Nondestructive Evaluation
Cowan et al. Effect of Temperature on Modulus of Elasticity of Porcelain Enameled Steel
Chokshi et al. A comparative study of superplastic deformation and cavitation failure in a yttria stabilized zirconia and a zirconia alumina composite
Sasaki et al. Measuring strains for hematite phase in sinter ore by electron backscattering diffraction method
Zhao et al. Detection technology of micro residual core in small inner cavity of complex castings
POROJAN et al. Evaluation of areas susceptible to failure in hot-pressed ceramic crowns
Cotter et al. Predicting failure stress of silicon nitride ceramics using microfocus radiography
SU1364956A1 (en) Method of determining destruction toughness of materials
Ranachowski et al. Foundations of mechanoacoustic method of material degradation research
Yamashita et al. Nondestructive evaluation of fatigue and creep-fatigue damage in 12% Cr stainless steel by the induced current focusing potential drop technique