JPH01236582A - Fused carbonate type fuel cell - Google Patents

Fused carbonate type fuel cell

Info

Publication number
JPH01236582A
JPH01236582A JP63064043A JP6404388A JPH01236582A JP H01236582 A JPH01236582 A JP H01236582A JP 63064043 A JP63064043 A JP 63064043A JP 6404388 A JP6404388 A JP 6404388A JP H01236582 A JPH01236582 A JP H01236582A
Authority
JP
Japan
Prior art keywords
electrolyte
carbonate
mol
mixed
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63064043A
Other languages
Japanese (ja)
Inventor
Hideyuki Ozu
秀行 大図
Hakaru Ogawa
斗 小川
Yoshihiro Akasaka
芳浩 赤坂
Hiroshi Tateishi
浩史 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63064043A priority Critical patent/JPH01236582A/en
Priority to US07/310,309 priority patent/US4895774A/en
Publication of JPH01236582A publication Critical patent/JPH01236582A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To constrain the increase of the internal resistance and the occurrence of a crossover following the outflow of an electrolyte by composing an electrolyte plate with the electrolyte composed of mixed alkaline carbonate, a supporting material, and the mixture of magnesium carbonate and one selected from barium carbonate, calcium carbonate, and strontium carbonate. CONSTITUTION:An electrolyte plate is composed of the electrolyte composed of mixed alkaline carbonate, a supporting material, and the mixture of magnesium carbonate and at least one kind selected from barium carbonate, calcium carbonate, and strontium carbonate. Consequently the outflow of an electrolyte (electrolyte loss) can be reduced since the melting of the electrolyte in the electrolyte plate at the time of running and the viscosity in a liquid state can be increased without the damage of a power generation property. This enables long time running with the resistance increase of the electrolyte plate following an electrolyte loss and the occurrence of a crossover constrained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、溶融炭酸塩型燃料電池に関し、特に燃料極と
空気極の間に介在される電解質板を改良した溶融炭酸塩
型燃料電池に係わる。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a molten carbonate fuel cell, and particularly relates to a molten carbonate fuel cell with an improved electrolyte plate interposed between a fuel electrode and an air electrode. Related to salt fuel cells.

(従来の技術) 溶融炭酸塩型燃料電池は、対向して配置された一対のガ
ス拡散電極、つまり燃料極及び空気極の間に電解質とし
て炭酸塩を保持させて単位電池とし、この単位電池をイ
ンターコネクタを介在させて複数積層して構成されてい
る。電解質は、通常、電解質タイルと呼ばれる電解質板
が使用されている。かかる構成の溶融炭酸塩型燃料電池
は、高温下で電解質板のアルカリ炭酸塩を溶融させ、積
層体の燃料極に水素及び−酸化炭素含む燃料ガスを、空
気極に酸素及び二酸化炭素を含む混合ガスを夫々流通さ
せることにより運転される。
(Prior Art) A molten carbonate fuel cell is a unit cell in which carbonate is held as an electrolyte between a pair of gas diffusion electrodes, that is, a fuel electrode and an air electrode, which are arranged opposite to each other. It is constructed by laminating a plurality of layers with interconnectors interposed therebetween. As the electrolyte, an electrolyte plate called an electrolyte tile is usually used. A molten carbonate fuel cell having such a structure melts the alkali carbonate of the electrolyte plate under high temperature, and supplies a fuel gas containing hydrogen and carbon oxide to the fuel electrode of the stack, and a mixture containing oxygen and carbon dioxide to the air electrode. It is operated by circulating gas respectively.

ところで、上記溶融炭酸塩型燃料電池に使用される電解
質板は従来より混合アルカリ炭酸塩からなる電解質と、
高温運転時に液体となる該電解質の流出を防止するため
の保持材とから構成されている。混合アルカリ炭酸塩は
、Li Co3、K2COq及びNa2COqの3種の
うちの2種又は3種の混合塩の形で使用される。保持材
としては、粒径が0.05〜0.5 (t mの7−L
I A、CO2やβ−LIAIO2からなる微粉末が使
用される。
By the way, the electrolyte plate used in the above-mentioned molten carbonate fuel cell has conventionally contained an electrolyte made of a mixed alkali carbonate,
A holding material is used to prevent the electrolyte, which becomes liquid during high-temperature operation, from flowing out. The mixed alkali carbonates are used in the form of mixed salts of two or three of the following three: LiCo3, K2COq and Na2COq. As a holding material, a particle size of 0.05 to 0.5 (7-L of t m
A fine powder consisting of IA, CO2 or β-LIAIO2 is used.

電解質板は、炭酸イオンの移動を媒介とするだけでなく
、燃料極及び空気極間の反応ガスの直接混合(ガイクロ
スオーバ)を阻止するためのガス透過障壁層としても機
能を果たす。こうした機能を果たすには、電解質板中に
電解質が充分に保持されていることが必要であり、電解
質の流出(電解質ロス)は内部抵抗の増大を招くばかり
か、ガスクロスオーバの発生原因となる。上記組成の電
解質板では、数千時間の運転中で電解質のロスが進行し
、電池の長寿命化を妨げる最大の原因となっている。こ
うした電解質のロスは、■気体状態での蒸発、■液体状
態での流出の2種の形態でなされるが、■の要因に比べ
て■の要因によるロスが支配的であると考えられている
。液体状態での電解質の流出は、主に保持材の炭酸塩に
対する保持機能が不充分なために生じる。
The electrolyte plate not only mediates the movement of carbonate ions, but also functions as a gas permeation barrier layer for preventing direct mixing of the reaction gas (gyrocrossover) between the fuel electrode and the air electrode. In order to perform these functions, it is necessary that electrolyte is sufficiently retained in the electrolyte plate, and electrolyte outflow (electrolyte loss) not only increases internal resistance but also causes gas crossover. . In the electrolyte plate having the above composition, electrolyte loss progresses during several thousand hours of operation, which is the biggest cause of impediments to extending the life of the battery. These electrolyte losses occur in two forms: (1) evaporation in the gaseous state, and (2) outflow in the liquid state, but the loss due to the factor (2) is thought to be more dominant than the factor (2). . The outflow of the electrolyte in the liquid state is mainly caused by the insufficient carbonate retention function of the retention material.

このようなことから、電解質仮に含有させる保持材の材
質を改良したり、或いは比表面積を高めるといった手法
が採用されているが、電解質の流 出を効果的に防止で
きるものではなかった。
For this reason, methods have been adopted such as improving the material of the holding material that temporarily contains the electrolyte or increasing the specific surface area, but these methods have not been able to effectively prevent electrolyte outflow.

(発明が解決しようとする課wJ) 本発明は、上記従来の課題を解決するためになされたも
ので、電解質板中の電解質の流出を低減して、電解質の
流出に伴う内部抵抗の増大、クロスオーバの発生を抑制
し得る溶融炭酸塩型燃料電池を提供しようとするもので
ある。
(Issue to be Solved by the Invention wJ) The present invention was made to solve the above-mentioned conventional problems, and it reduces the outflow of electrolyte in the electrolyte plate, and reduces the increase in internal resistance due to the outflow of electrolyte. The present invention aims to provide a molten carbonate fuel cell that can suppress the occurrence of crossover.

[発明の構成コ (課題を解決するための手段) 本発明は、電解質及び保持材を含む電解質板を備えた溶
融炭酸塩型燃料電池において、前記電解質板を、混合ア
ルカリ炭酸塩からなる電解質と、保持材と、炭酸マグネ
シウムと炭酸バリウム、炭酸カルシウム及び炭酸ストロ
ンチウムから選ばれる少なくとも1種との混合物とによ
り構成したことを特徴とする溶融炭酸塩型燃料電池であ
る。
[Configuration of the Invention (Means for Solving the Problems) The present invention provides a molten carbonate fuel cell equipped with an electrolyte plate containing an electrolyte and a holding material, in which the electrolyte plate is an electrolyte made of a mixed alkali carbonate. , a holding material, and a mixture of magnesium carbonate and at least one selected from barium carbonate, calcium carbonate, and strontium carbonate.

上記混合アルカリ炭酸塩としては、例えばL1□CO3
とに2CO3の混合物、 LI □co3とNa2CO3の混合物、Li 2 C
O3とに2CO3とNa2CO3の混合物等を挙げるこ
とができる。
As the mixed alkali carbonate, for example, L1□CO3
mixture of 2CO3, LI □mixture of co3 and Na2CO3, Li 2 C
Examples of O3 include a mixture of 2CO3 and Na2CO3.

上記保持材としては、例えば粒径が0.05〜0.5μ
mの7−Li Aノ02やβ−LiAノ02からなる微
粉末を挙げることができる。この保持材としては、1g
当りの初期比表面積が7〜40yyt2のものを用いる
ことが望ましい。かかる保持材の混合アルカリ炭酸塩(
電解質)に対する配合量は、電解質ロスの低減化の観点
から30〜50重量%とすることが望ましい。
The above-mentioned holding material has a particle size of 0.05 to 0.5μ, for example.
Examples include fine powders of 7-Li A-02 and β-LiA-02. As this holding material, 1g
It is desirable to use a material having an initial specific surface area of 7 to 40 yyt2. Mixed alkali carbonates of such retaining materials (
From the viewpoint of reducing electrolyte loss, it is desirable that the blending amount with respect to the electrolyte is 30 to 50% by weight.

上記炭酸マグネシウムと炭酸バリウム、炭酸カルシウム
及び炭酸ストロンチウムから選ばれる少なくとも1種と
の混合物は、上記混合アルカリ炭酸塩に対して5〜20
モル%の範囲(但し、混合物中の炭酸マグネシウムは2
モル%以上含む)で配合することが望ましい。この理由
は、前記混合物の配合量を5モル%未満にすると、その
配合効果である電解質ロスの低減化が達成し難く、一方
その配合量が20モル%を越えると電解質板としの初期
特性が劣化する恐れがあるからである。また、前記混合
物中の炭酸マグネシウムの量を2モル%未満にすると電
解質ロスの低減化が達成し難くなる恐れがあるからであ
る。前記混合物の混合アルカリ炭酸塩に対するより好ま
しい配合量は、7〜15モル%である。また、前記混合
物の中で特に炭酸マグネシウムと炭酸ストロンチウムの
混合物が電解質の流出を効果的に低減できるために有効
である。
The mixture of the above magnesium carbonate and at least one selected from barium carbonate, calcium carbonate and strontium carbonate has a content of 5 to 20% relative to the mixed alkali carbonate.
mol% range (however, magnesium carbonate in the mixture is 2
It is desirable that the amount of mol% or more is included. The reason for this is that if the amount of the mixture is less than 5 mol%, it is difficult to achieve the effect of reducing electrolyte loss, while if the amount exceeds 20 mol%, the initial properties of the electrolyte plate will deteriorate. This is because there is a risk of deterioration. Further, if the amount of magnesium carbonate in the mixture is less than 2 mol %, it may be difficult to reduce electrolyte loss. A more preferable amount of the mixture based on the mixed alkali carbonate is 7 to 15 mol%. Further, among the mixtures described above, a mixture of magnesium carbonate and strontium carbonate is particularly effective because it can effectively reduce electrolyte outflow.

上記電解質板は、通常のフレキシブルペースト法、ドク
ターブレード法、ホットプレス法などの成形手段により
製造することができる。
The electrolyte plate can be manufactured by a conventional molding method such as a flexible paste method, a doctor blade method, or a hot press method.

(作用) 本発明によれば、電解質板を混合アルカリ炭酸塩からな
る電解質と、保持材と、炭酸マグネシウムと炭酸バリウ
ム、炭酸カルシウム及び炭酸ストロンチウムから選ばれ
る少なくとも1種との混合物とにより構成することによ
って、発電特性を損うことなく、運転時での電解質板中
の電解質の溶融、液体状態における粘度を増大できるた
め、電解質の流出(電解質ロス)を低減できる。事実、
混合アルカリ炭酸塩からなる電解質と、保持材と、炭酸
マグネシウムと炭酸バリウム、炭酸カルシウム及び炭酸
ストロンチウムから選ばれる少なくとも1種との混合物
の組成からなる模擬流動体について該混合物の配合量を
変えた時の850℃下での粘度を測定し、同時にその組
成の電解質板を用いて発電試験を行なったところ、第1
図に示すように粘度の増加と電解質ロスの減少との間に
明瞭な相関関係があること、が判明した。このような炭
酸マグネシウムと炭酸バリウム、炭酸カルシウム及び炭
酸ストロンチウムから選ばれる少なくとも1種との混合
物の電解質板中への配合による液体状態下での粘度向上
機構については、明かではないが、前記混合アルカリ土
類金属系炭酸塩の配合により電解質である混合アルカリ
炭酸塩自体の粘度が増加すること、保持材であるLiA
、1702の表面を覆う溶媒和層が厚くなって見掛は上
の容積濃度が増加して系としての粘度が増加することに
よるものと推定される。従って、電解質板中の電解質の
流出を抑制できるため、該電解質ロスに伴う電解質板の
抵抗増大、クロスオーバの発生を抑制でき、長時間の運
転が可能な長寿命の溶融炭酸塩型燃料電池を得ることが
できる。
(Function) According to the present invention, the electrolyte plate is composed of an electrolyte made of a mixed alkali carbonate, a holding material, and a mixture of magnesium carbonate and at least one selected from barium carbonate, calcium carbonate, and strontium carbonate. As a result, the electrolyte in the electrolyte plate can be melted during operation and the viscosity in the liquid state can be increased without impairing the power generation characteristics, so that electrolyte outflow (electrolyte loss) can be reduced. fact,
When changing the blending amount of a simulated fluid consisting of a mixture of an electrolyte made of mixed alkali carbonates, a holding material, and at least one member selected from magnesium carbonate, barium carbonate, calcium carbonate, and strontium carbonate. When we measured the viscosity at 850℃ and at the same time conducted a power generation test using an electrolyte plate with the same composition, we found that the first
As shown in the figure, it was found that there is a clear correlation between an increase in viscosity and a decrease in electrolyte loss. Although it is not clear how the viscosity increases in a liquid state by incorporating a mixture of magnesium carbonate and at least one member selected from barium carbonate, calcium carbonate, and strontium carbonate into an electrolyte plate, the mixed alkali The viscosity of the mixed alkali carbonate itself, which is an electrolyte, increases due to the addition of earth metal carbonates, and the viscosity of the mixed alkali carbonate itself, which is an electrolyte, increases.
, 1702 becomes thicker, the apparent volume concentration increases, and the viscosity of the system increases. Therefore, since it is possible to suppress the outflow of electrolyte in the electrolyte plate, it is possible to suppress the increase in resistance of the electrolyte plate and the occurrence of crossover due to electrolyte loss, thereby creating a molten carbonate fuel cell with a long life that can operate for a long time. Obtainable.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1−1〜1−4 まず、電解質としての混合アルカリ炭酸塩(Ll 2 
CO3;82モル%、K2 CO3;38モル%)にM
gCO3及びSr CO3を各々2.5モル%(合計5
モル%)、5モル%(合計10モル%)、7.5モル%
(合計15%モル)、10モル%(合計20モル%)配
合して4種の混合粉末を調製した。
Examples 1-1 to 1-4 First, mixed alkali carbonate (Ll 2
CO3; 82 mol%, K2 CO3; 38 mol%)
2.5 mol% each of gCO3 and Sr CO3 (total 5
mol%), 5 mol% (total 10 mol%), 7.5 mol%
(total 15% mole) and 10 mole% (total 20 mole%) to prepare four types of mixed powders.

なお、MgCO3は塩基性炭酸マグネシウム(4M g
 CO3・Mg(OH)z Φ5H20)を使用し、M
gCO3換算で前記モル数となるように配合した。つづ
いて、前記各混合粉末にLIAノ02を35重量%夫々
配合し、アルミナポットに入れ、アセトンを添加して2
0時間の混合・粉砕を行なった後、乾燥した。次いで、
乾燥後に465℃、300KFl/Cdの条件で1時間
プレス成形して厚さ2.3mmの4種のタイル状電解質
板を製造した。
Note that MgCO3 is basic magnesium carbonate (4M g
CO3・Mg(OH)z Φ5H20), M
They were blended to have the above number of moles in terms of gCO3. Next, 35% by weight of LIA-02 was added to each of the above mixed powders, placed in an alumina pot, and acetone was added.
After mixing and pulverizing for 0 hours, the mixture was dried. Then,
After drying, it was press-molded for 1 hour at 465° C. and 300 KFl/Cd to produce four types of tile-shaped electrolyte plates each having a thickness of 2.3 mm.

比較例1 電解質としての混合アルカリ炭酸塩 (Ll 2  C03;62モル%、K2 CO3,3
8モル%)にLiAl!02を35重量96配合し、ア
ルミナポットに入れ、アセトンを添加して20時間の混
合費粉砕を行なった後乾燥したMgCO3及びS「CO
3無添加の組成物を用いた以外、実施例1と同様な方法
によりタイル状電解質板を製造した。
Comparative Example 1 Mixed alkali carbonate (Ll2C03; 62 mol%, K2CO3,3 as electrolyte)
8 mol%) and LiAl! 02 was blended at 35% by weight, placed in an alumina pot, acetone was added, and pulverized for 20 hours, followed by dry MgCO3 and S
A tile-shaped electrolyte plate was manufactured in the same manner as in Example 1, except that a composition containing no additives was used.

比較例2−1.2−2 電解質としての混合アルカリ炭酸塩 (Li 2  CO3; 62モル%、K2 C03;
38モル%)にMgCO3及びSr CO3を各々1モ
ル%(合計2モル%)、12モル%(合計24モル%)
配合して2種の混合粉末を調製し、これら混合粉末にL
IAノ02を35重量%夫々配合し、アルミナポットに
入れ、アセトンを添加して20時間の混合・粉砕を行な
った後乾燥した組成物を用いた以外、実施例1と同様な
方法により2種のタイル状電解質板を製造した。
Comparative Example 2-1.2-2 Mixed alkali carbonate (Li 2 CO3; 62 mol%, K2 CO3;
38 mol%) and 1 mol% each of MgCO3 and Sr CO3 (total 2 mol%), 12 mol% (total 24 mol%)
Blend to prepare two types of mixed powders, and add L to these mixed powders.
Two types were prepared in the same manner as in Example 1, except that 35% by weight of each IA-02 was blended, placed in an alumina pot, acetone was added, mixed and pulverized for 20 hours, and then dried. A tile-shaped electrolyte plate was manufactured.

得られた実施例1−1〜1−4及び比較例1.2−1.
2−1の各タイル状電解質板を電極と組合わせて燃料電
池を製作し、燃料側に水素と一酸化炭素の混合ガスを、
酸化剤側に空気と二酸化炭素の混合ガスを夫々流して6
50℃で150  tA/crlの負荷条件で発電試験
を行なった。発電試験は、2500時間の連続運転を行
ない、2500時間経過後の電池性能及び電解質ロス量
を調べた。第2図には、Mg CO3−Sr CO3系
混合炭酸塩(モル比にてMg CO3: Sr CO3
−1: l )の添加量と電解質ロス量との関係を示し
た。
The obtained Examples 1-1 to 1-4 and Comparative Example 1.2-1.
A fuel cell is manufactured by combining each of the tile-shaped electrolyte plates in 2-1 with electrodes, and a mixed gas of hydrogen and carbon monoxide is supplied to the fuel side.
6 by flowing a mixed gas of air and carbon dioxide to the oxidizer side.
A power generation test was conducted under a load condition of 150 tA/crl at 50°C. In the power generation test, continuous operation was performed for 2,500 hours, and the battery performance and electrolyte loss amount after 2,500 hours were examined. Figure 2 shows Mg CO3-Sr CO3 mixed carbonate (Mg CO3: Sr CO3 in molar ratio).
-1: The relationship between the addition amount of l) and the amount of electrolyte loss is shown.

Mg CO3−3r CO3系混合炭酸塩が無添加の電
解質板(比較例1)では、第2図より電解質ロス量が初
期値の40%に達し、しかも発電特性は0.85Vかう
o、s4v+、:なタテ310a+V低下した。また、
Mg CO3−3r CO3系混合炭酸塩の添加量が2
モル%の電解質板(比較例2−1)では、無添加の比較
例1と同程度の電解質ロスを生じ、かつ発電性能の著し
い低下を生じた。しかも、発電時のガスクロマトグラフ
ィーによる分析結果から反応ガスのクロスオーバが発生
していることが確認された。これに対し、Mg Co、
−3r CO3系混合炭酸塩の添加量が5モル96以上
の電解質板(実施例1−1〜1−4)では、電解質ロス
は初期値の20%程度しか減少せず、かつ発電特性の低
下も100  mVに止まり良好な性能を有する。特に
、電解質ロスはMg co3−Sr CO3系混合炭酸
塩の添加量の増大に伴って減少し、Mg Co3−5r
 CO3系混合炭酸塩の添加量力月0モル96.15モ
ル%、20モル%の電解質板(実施例1−2〜1−4)
では電解質ロス量が10%程度で発電性能の低下も50
 IIV程度の低下に止まる。
In the electrolyte plate (Comparative Example 1) without the addition of Mg CO3-3r CO3-based mixed carbonate, the amount of electrolyte loss reached 40% of the initial value as shown in Figure 2, and the power generation characteristics were 0.85V, s4v+, : Vertical 310a+V decreased. Also,
Mg CO3-3r The amount of CO3-based mixed carbonate added is 2
The electrolyte plate containing mol% (Comparative Example 2-1) caused the same level of electrolyte loss as Comparative Example 1 without additives, and also caused a significant decrease in power generation performance. Moreover, it was confirmed from the analysis results by gas chromatography during power generation that crossover of reactive gases occurred. On the other hand, Mg Co,
-3r In the electrolyte plates (Examples 1-1 to 1-4) in which the amount of CO3-based mixed carbonate added was 5 moles or more, the electrolyte loss decreased by only about 20% of the initial value, and the power generation characteristics decreased. It also has good performance, being only 100 mV. In particular, the electrolyte loss decreases as the amount of Mg co3-Sr CO3 mixed carbonate increases;
Electrolyte plate with the amount of CO3-based mixed carbonate added: 0 mol 96.15 mol%, 20 mol% (Examples 1-2 to 1-4)
In this case, the amount of electrolyte loss is about 10%, and the power generation performance decreases by 50%.
The decrease is limited to about IIV.

一方、初期特性についてはMg Co3−3r CO3
系混合炭酸塩の添加量が10モル%以内で変化が生じず
、10モル%を越えるとその添加量の増大に伴って減少
する傾向にあり、20モル%の添加では0.65Vとな
るが、許容し得る値である。
On the other hand, regarding the initial characteristics, Mg Co3-3r CO3
There is no change when the amount of mixed carbonate added is within 10 mol%, and when it exceeds 10 mol%, it tends to decrease as the amount added increases, and when 20 mol% is added, the value becomes 0.65V. , is an acceptable value.

これに対し、Mg CO3−5r CO3系混合炭酸塩
の添加量が24モル%の電解質板(比較例2−2)の場
合、150Il■/cIIlの負荷では安定した特性が
得られず、50mV/cmの負荷では0.25Vの電圧
を示し、電池として機能できなくなる。
On the other hand, in the case of an electrolyte plate (Comparative Example 2-2) in which the amount of Mg CO3-5r CO3-based mixed carbonate added was 24 mol %, stable characteristics could not be obtained at a load of 150 Il/cIIl, and the load was 50 mV/cIIl. At a load of cm, the battery exhibits a voltage of 0.25V and cannot function as a battery.

実施例2−1〜2−4 電解質としての混合アルカリ炭酸塩 (Ll 2 co3 ;e2モル%、K2 CO3,,
38モル%)にMgCO3及びBa CO3を各々2.
5モル%(合計5モル%)、5キル%(合計10モル%
)、7.5モル%(合;I’15%モル)、10モル%
(合計10モル%)配合して4種の混合粉末を調製した
Examples 2-1 to 2-4 Mixed alkali carbonate (Ll 2 co3 ; e2 mol%, K2 CO3,,
38 mol%) and 2.2% each of MgCO3 and BaCO3.
5 mol% (total 5 mol%), 5 kill% (total 10 mol%)
), 7.5 mol% (combined; I'15% mol), 10 mol%
(10 mol% in total) were blended to prepare four types of mixed powders.

なお、MgCO3は塩基性炭酸マグネシウム(4Mg 
C03・Mg(OH)2・5H20)を使用し、MgC
O3換算で前記モル数となるように配合した。つづいて
、前記各混合粉末にLI A、ff02を35重量%夫
々配合し、アルミナポットに入れ、アセトンを添加して
20時間の混合・粉砕を行ない、乾燥した後、実施例1
と同様な方法により厚さ2.3 uの4 PJのタイル
状電解質板を製造した。
Note that MgCO3 is basic magnesium carbonate (4Mg
C03・Mg(OH)2・5H20), MgC
They were blended to have the above number of moles in terms of O3. Subsequently, 35% by weight of LI A and ff02 were each added to each of the above mixed powders, placed in an alumina pot, acetone was added, mixed and pulverized for 20 hours, and after drying, Example 1 was prepared.
A tile-shaped electrolyte plate of 4 PJ with a thickness of 2.3 u was manufactured in a similar manner.

比較例3−1,3−2 電解質としての混合アルカリ炭酸塩 (Ll 2 C03:62モル%、K2 CO3,38
モル%)にMgCO3及びBa CO3を各々1モル%
(合計2モル%)、12モル%(合計24モル%)配合
して2種の混合粉末を調製し、これら混合粉末にLIA
、l!Ozを35重量%夫々配合し、アルミナポットに
入れ、アセトンを添加して20時間の混合・粉砕を行な
い、乾燥した組成物を用いた以外、実施例1と同様な方
法により2種のタイル状電解質板を製造した。
Comparative Examples 3-1, 3-2 Mixed alkali carbonate as electrolyte (Ll2C03: 62 mol%, K2CO3,38
(mol%) and 1 mol% each of MgCO3 and Ba CO3
(2 mol% in total) and 12 mol% (24 mol% in total) to prepare two types of mixed powders, and these mixed powders were added with LIA
, l! Two types of tiles were prepared in the same manner as in Example 1, except that 35% by weight of each Oz was blended, placed in an alumina pot, acetone was added, mixed and pulverized for 20 hours, and the dried composition was used. An electrolyte plate was manufactured.

得られた実施例2−1〜2−4及び比較例3−1.3−
2の各タイル状電解質板について、実施例1と同様な試
験を行なった後の電池性能及び電解質ロス量を調べた。
Obtained Examples 2-1 to 2-4 and Comparative Example 3-1.3-
For each tile-shaped electrolyte plate of No. 2, the same test as in Example 1 was conducted, and the battery performance and amount of electrolyte loss were investigated.

MgCO3−Ba CO3系混合炭酸塩(モル比にてM
g CO3: Ba CO3−1:1)の添加量と電解
質ロス量との関係を前述した第2図に併記した。
MgCO3-Ba CO3-based mixed carbonate (M in molar ratio
The relationship between the amount of addition of gCO3:BaCO3-1:1) and the amount of electrolyte loss is also shown in FIG. 2 mentioned above.

Mg CO3−Ba CO3系混合炭酸塩の添加量が2
モル%の電解質板(比較例3−1)では、第2図より電
解質ロス量が初期値の39%に達し、はぼ無添加の電解
質板と同程度の電解質ロスを生じる。しかも、発電特性
は初期特性に比べて220IV低下した。これに対し、
Mg co3−Ba CO3系混合炭酸塩の添加量が5
モル%以上の電解質板(実施例2−1〜2−4)では、
電解質ロスは初期値の30%程度しか減少せす、かつ発
電特性の低下も180  mVに止まり良好な性能を有
する。特に、電解質ロスはMgCO3−Ba CO3系
混合炭酸塩の添加量の増大に伴って減少し、Mg CO
3Ba co、系混合炭酸塩の添加量が10モル96の
電解質板(実施例2−2)では22%1.15モル%の
電解質板(実施例2−3)では16%、20モル%の電
解質板(実施例2−4)では14%となった。電解質ロ
スの低減化に伴って発電特性の低下も抑制され、15モ
ル%以上の電解質板(実施例2−3、実施例2−4)で
は特性低下が100 rn Vとなった。
Mg CO3-Ba CO3-based mixed carbonate added amount is 2
In the case of the mol % electrolyte plate (Comparative Example 3-1), the amount of electrolyte loss reaches 39% of the initial value as shown in FIG. Moreover, the power generation characteristics were lowered by 220 IV compared to the initial characteristics. On the other hand,
The amount of Mg co3-Ba CO3 mixed carbonate added is 5
In the electrolyte plates (Examples 2-1 to 2-4) with mol% or more,
Electrolyte loss is reduced by only about 30% of the initial value, and the deterioration in power generation characteristics is limited to 180 mV, resulting in good performance. In particular, electrolyte loss decreases as the amount of MgCO3-BaCO3 mixed carbonate increases, and
3Ba co, 22% in the electrolyte plate (Example 2-2) with a system mixed carbonate addition of 10 mol 96, 16% in the electrolyte plate (Example 2-3) with 1.15 mol %, and 16% in the 20 mol % In the electrolyte plate (Example 2-4), it was 14%. As the electrolyte loss was reduced, the deterioration of the power generation characteristics was also suppressed, and the deterioration of the characteristics was 100 rn V in the electrolyte plates of 15 mol % or more (Examples 2-3 and 2-4).

一方、初期特性についてはMg co、−Ba COB
系混合炭酸塩の添加量が15モル%以内で変化が生じず
、15モル%を越えるとその添加量の増大に伴って減少
する傾向にあり、20モル%の添加では0.70Vとな
るが、許容し得る値である。
On the other hand, regarding the initial characteristics, Mg co, -Ba COB
There is no change when the amount of mixed carbonate added is within 15 mol%, and when it exceeds 15 mol%, it tends to decrease as the amount added increases, and when 20 mol% is added, the value becomes 0.70V. , is an acceptable value.

これに対し、Mg CO3−Ba CO3系混合炭酸塩
の添加量が24モル%の電解質板(比較例3−2)の場
合、150 m V / ciの負荷では安定した特性
が得られず、50mV/c−dの負荷では0.35Vの
電圧を示して電池として機能できなくなる。
On the other hand, in the case of an electrolyte plate (Comparative Example 3-2) in which the amount of Mg CO3-Ba CO3 mixed carbonate added was 24 mol %, stable characteristics could not be obtained at a load of 150 mV/ci, and at 50 mV/ci. At a load of /c-d, the battery exhibits a voltage of 0.35V and cannot function as a battery.

実施例3−1〜3−4 電解質としての混合アルカリ炭酸塩 (Ll 2 co3.82モル%、K2 CO3,38
モル%)にMgCO3及びCaCO3を各々2,5モル
%(合計5モル%)、5モル%(合計10モル%)、7
.5モル%(合計15%モル)、10モル%(合計20
モル96)配合して4種の混合粉末を調製した。
Examples 3-1 to 3-4 Mixed alkali carbonate (Ll2co3.82 mol%, K2CO3,38
MgCO3 and CaCO3 were added to 2.5 mol% (total 5 mol%), 5 mol% (total 10 mol%), 7
.. 5 mol% (total 15% mol), 10 mol% (total 20 mol%)
mol 96) to prepare four types of mixed powders.

なお、MgC0,は塩基性炭酸マグネシウム(4MgC
O3・Mg(OH)2争5820)を使用し、MgCO
3換算で前記モル数となるように配合した。つづいて、
前記各混合粉末にLIAノ02を35重量%夫々配合し
、アルミナポットに入れ、アセトンを添加して20時間
の混合・粉砕を行ない、乾燥した後、実施例1と同様な
方法により厚さ2.3II!IIの4t4のタイル状電
解質板を製造した。
In addition, MgC0, is basic magnesium carbonate (4MgC
Using O3・Mg(OH)2 5820), MgCO
They were blended to have the above number of moles in terms of 3. Continuing,
35% by weight of LIA-02 was added to each of the above mixed powders, placed in an alumina pot, mixed with acetone, and mixed and pulverized for 20 hours. After drying, the powder was mixed to a thickness of 2. .3II! A 4t4 tile-shaped electrolyte plate of II was manufactured.

比較例4−1.4−2 電解質としての混合アルカリ炭酸塩 (Ll 2 CO3;62モル%、K2 CO3,38
モル%)にMgCO3及びCa CO3を各々1モル%
(合計2モル%)、12モル%(合計24モル%)配合
して2種の混合粉末を調製し、これら混合粉末にLI 
Aiozを35重二%夫々配合し、アルミナポットに入
れ、アセトンを添加して20時間の混合・粉砕を行ない
、乾燥した組成物を用いた以外、実施例1と同様な方法
により2種のタイル状電解質板を製造した。
Comparative Example 4-1.4-2 Mixed alkali carbonate (Ll2CO3; 62 mol%, K2CO3,38
(mol%) and 1 mol% each of MgCO3 and CaCO3
(total 2 mol%) and 12 mol% (total 24 mol%) to prepare two types of mixed powders, and LI
Two types of tiles were prepared in the same manner as in Example 1, except that Aioz was mixed at 35% and 2%, placed in an alumina pot, and acetone was added, mixed and pulverized for 20 hours, and the dried composition was used. A shaped electrolyte plate was manufactured.

得られた実施例3−1〜3−4及び比較例4−1.4−
2の各タイル状電解質板について、実施例1と同様な試
験を行なった後の電池性能及び電解質ロス量を調べた。
Obtained Examples 3-1 to 3-4 and Comparative Example 4-1.4-
For each tile-shaped electrolyte plate of No. 2, the same test as in Example 1 was conducted, and the battery performance and amount of electrolyte loss were investigated.

Mg CO3−Ca CO3系混合炭酸塩(モル比にて
Mg CO3: Sr CO3−1:1.)の添加量と
電解質ロス量との関係を前述した第2図に併記した。
The relationship between the amount of Mg CO3--Ca CO3-based mixed carbonate (molar ratio of Mg CO3:Sr CO3-1:1) and the amount of electrolyte loss is also shown in FIG. 2 described above.

Mgco3 CaCO3系混合炭酸塩の添加量が2モル
%の電解質板(比較例4−1)では、第2図より電解質
ロス量が初期値の4096に達し、はぼ無添加の電解質
板と同程度の電解質ロスを生じる。これに対し、Mg 
CO3−Ca CO3系混合炭酸塩の添加量が5モル%
以上の電解質板(実施例3−1〜3−4)では、電解質
ロスは初期値に比べての減少が少ない。特に、電解質ロ
スはMg CO3−Ca CO3系混合炭酸塩の添加量
の増大に伴って減少し、Mg CO3−Ca CO3系
混合炭酸塩の添加量が10モル%の電解質板(実施例3
−2)では19%、15モル%の電解質板(実施例3−
3)では13%、20モル%の電解質板(実施例3−4
)では12%となった。電解質ロスの低減化に伴って発
電特性の低下も抑制され、10モル%以上の電解質板(
実施例3−2)では特性低下が120 IIV、15モ
ル%Q電解質板(実施例3−3)では特性低下が60m
 Vとなった。
In the electrolyte plate (Comparative Example 4-1) in which the amount of Mgco3 CaCO3 mixed carbonate added is 2 mol %, the electrolyte loss amount reaches the initial value of 4096 as shown in Figure 2, which is about the same as the electrolyte plate without additives. causes electrolyte loss. On the other hand, Mg
CO3-Ca The amount of CO3-based mixed carbonate added is 5 mol%
In the above electrolyte plates (Examples 3-1 to 3-4), the electrolyte loss decreased less than the initial value. In particular, the electrolyte loss decreased as the amount of Mg CO3-Ca CO3 mixed carbonate added increased, and the electrolyte loss in the electrolyte plate containing 10 mol% of Mg CO3-Ca CO3 mixed carbonate (Example 3)
-2), 19% and 15 mol% electrolyte plate (Example 3-
3), 13%, 20 mol% electrolyte plate (Example 3-4
), it was 12%. Along with the reduction of electrolyte loss, the deterioration of power generation characteristics is also suppressed, and the electrolyte plate containing 10 mol% or more (
In Example 3-2), the characteristic decrease was 120 IIV, and in the 15 mol% Q electrolyte plate (Example 3-3), the characteristic decrease was 60 m.
It became V.

一方、初期特性についてはMg co3−Ca COB
系混合炭酸塩の添加量が10モル%以内で変化が生じず
、10モル%を越えるとその添加量の増大に伴って減少
する傾向にあり・、20モル%の添加では0.70Vと
なるが、許容し得る値である。
On the other hand, regarding the initial characteristics, Mg co3-Ca COB
There is no change when the amount of mixed carbonate added is within 10 mol%, and when it exceeds 10 mol%, it tends to decrease as the amount added increases, and when 20 mol% is added, it becomes 0.70V. is an acceptable value.

これに対し、Mg CO3−Ca CO3系混合炭酸塩
の添加量が24モル%の電解質板(比較例4−2)の場
合、150IIlv/C1jの負荷では安定した特性が
得られず、50Ilv/cdノ負荷テiiO,35V(
7)電圧を示して電池として機能できなくなる。
On the other hand, in the case of an electrolyte plate (Comparative Example 4-2) in which the amount of Mg CO3-Ca CO3-based mixed carbonate added was 24 mol %, stable characteristics could not be obtained at a load of 150 II lv/C1j, and 50 Ilv/cd No load teiiO, 35V (
7) It shows voltage and cannot function as a battery.

[発明の効果コ 以上詳述した如く、本発明によれば発電特性を損うこと
なく、電解質板中の電解質の流出を低減化し、電解質ロ
スに伸う電解質板の抵抗増大、クロスオーバの発生を抑
制でき、ひいては長時間の運転が11能な長寿命の溶融
炭酸塩型燃料電池を提供できるものである。
[Effects of the Invention] As detailed above, according to the present invention, the outflow of electrolyte in the electrolyte plate is reduced without impairing the power generation characteristics, and the resistance increase of the electrolyte plate, which leads to electrolyte loss, and the occurrence of crossover. Therefore, it is possible to provide a molten carbonate fuel cell that has a long life and can be operated for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は混合アルカリ炭酸塩からなる電解質と、保持材
と、炭酸マグネシウムと炭酸バリウム、炭酸カルシウム
及び炭酸ストロンチウムから選ばれる少なくとも1種と
の混合物の組成からなる模擬流動体の650℃下での粘
度とその組成の電解質板中の電解質ロス量との関係を示
す特性図、第2図は本実施例及び比較例における電解質
板の混合炭酸塩の添加量と電解質板中の電解質ロス量と
の関係を示す特性図である。 出願人代理人 弁理士 鈴江武彦 11糧芝穿し師JI等度    体゛イス゛)第1図
Figure 1 shows the composition of a simulated fluid at 650°C consisting of an electrolyte consisting of mixed alkali carbonates, a holding material, and a mixture of magnesium carbonate, barium carbonate, calcium carbonate, and strontium carbonate. A characteristic diagram showing the relationship between viscosity and the amount of electrolyte loss in the electrolyte plate of its composition. Figure 2 shows the relationship between the amount of mixed carbonate added to the electrolyte plate and the amount of electrolyte loss in the electrolyte plate in the present example and comparative example. It is a characteristic diagram showing a relationship. Applicant's agent Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)、電解質及び保持材を含む電解質板を備えた溶融
炭酸塩型燃料電池において、前記電解質板を、混合アル
カリ炭酸塩からなる電解質と、保持材と、炭酸マグネシ
ウムと炭酸バリウム、炭酸カルシウム及び炭酸ストロン
チウムから選ばれる少なくとも1種との混合物とにより
構成したことを特徴とする溶融炭酸塩型燃料電池。
(1) In a molten carbonate fuel cell equipped with an electrolyte plate including an electrolyte and a retaining material, the electrolyte plate includes an electrolyte made of a mixed alkali carbonate, a retaining material, magnesium carbonate, barium carbonate, calcium carbonate and A molten carbonate fuel cell comprising a mixture of strontium carbonate and at least one selected from strontium carbonate.
(2)、炭酸マグネシウムと炭酸バリウム、炭酸カルシ
ウム及び炭酸ストロンチウムから選ばれる少なくとも1
種との混合物を混合アルカリ炭酸塩に対して5〜20モ
ル%の範囲(但し、混合物中の炭酸マグネシウムは2モ
ル%以上含む)で配合したことを特徴とする請求項1記
載の溶融炭酸塩型燃料電池。
(2) at least one selected from magnesium carbonate, barium carbonate, calcium carbonate and strontium carbonate;
The molten carbonate according to claim 1, wherein the mixture with seeds is blended in a range of 5 to 20 mol % based on the mixed alkali carbonate (however, the mixture contains 2 mol % or more of magnesium carbonate). type fuel cell.
JP63064043A 1988-02-17 1988-03-17 Fused carbonate type fuel cell Pending JPH01236582A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63064043A JPH01236582A (en) 1988-03-17 1988-03-17 Fused carbonate type fuel cell
US07/310,309 US4895774A (en) 1988-02-17 1989-02-14 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064043A JPH01236582A (en) 1988-03-17 1988-03-17 Fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH01236582A true JPH01236582A (en) 1989-09-21

Family

ID=13246686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064043A Pending JPH01236582A (en) 1988-02-17 1988-03-17 Fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH01236582A (en)

Similar Documents

Publication Publication Date Title
Fu et al. Intermediate temperature fuel cells based on doped ceria–LiCl–SrCl2 composite electrolyte
WO2007139130A1 (en) High-voltage charge type nonaqueous electrolyte secondary battery
KR20160095083A (en) Electrochemical energy conversion devices and cells, and positive electrode-side materials for them
Aravindan et al. Polyvinylidene fluoride–hexafluoropropylene (PVdF–HFP)-based composite polymer electrolyte containing LiPF3 (CF3CF2) 3
Lü et al. Electrochemical performances of NdBa0. 5Sr0. 5Co2O5+ x as potential cathode material for intermediate-temperature solid oxide fuel cells
US4992342A (en) Stabilized carbonate fuel cell cathode
US20200194815A1 (en) Cathode for solid oxide fuel cell
US10256474B2 (en) Cathode composition, cathode and fuel cell including same
JP2000133280A (en) Anode for high performance solid oxide fuel cell
KR20190045622A (en) Sealant composition for solid oxide fuel cell, solid oxide fuel cell comprising sealant manufactured by the same and method for sealing thereof
CN109860574A (en) Composite positive pole and preparation method thereof and battery
JP2000323140A (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JPH01236582A (en) Fused carbonate type fuel cell
EP0921586B1 (en) Base material for a fuel cell
CN104852036B (en) The preparation method of ternary dynamic lithium battery and obtained ternary dynamic lithium battery
KR20160089884A (en) Oxide particle, air electrode comprising the same and fuel cell comprising the same
KR20160140496A (en) Oxide particle, air electrode comprising the same and fuel cell comprising the same
JP2006286277A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it
KR100224546B1 (en) Cathode for molten carbonate fuel cell to which alkali earth metal oxide is added and a process for preparing thereof
JPH01209667A (en) Molten carbonate fuel cell
JPS6084772A (en) Solid electrolyte battery
WO2020135668A1 (en) Non-aqueous electrolyte for lithium-ion battery, and lithium-ion battery
JPH092873A (en) Fluorite-type ceria-based solid electrolyte
JPS6056375A (en) Molten-carbonate-type fuel cell
US11626595B2 (en) Solid oxide fuel cell cathode materials