JPH01236579A - Set battery - Google Patents

Set battery

Info

Publication number
JPH01236579A
JPH01236579A JP63064336A JP6433688A JPH01236579A JP H01236579 A JPH01236579 A JP H01236579A JP 63064336 A JP63064336 A JP 63064336A JP 6433688 A JP6433688 A JP 6433688A JP H01236579 A JPH01236579 A JP H01236579A
Authority
JP
Japan
Prior art keywords
electrode plate
cadmium
discharge
neg
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63064336A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshimura
公志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63064336A priority Critical patent/JPH01236579A/en
Publication of JPH01236579A publication Critical patent/JPH01236579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prolong the charging/discharging cycle life by forming the surface of a current collector of a Cd neg. electrode plate chiefly from cadmium. CONSTITUTION:The surface of a current collector of a Cd neg. electrode plate is composed chiefly of cadmium. The phenomenon that the potential with oxygen gas generation becomes very noble when Cd neg. electrode plate is to be overdischarged, is utilized. In case the discharge of an alkaline secondary battery using such a Cd neg. electrode plate is restricted by the capacity of neg. electrode, the potential of the neg. electrode plate varies greatly when the reaction at the neg. electrode transfers from the discharge reaction of active substance to the oxygen gas generating reaction. Thus the voltage of unit cell drops remarkably when discharge of the neg. electrode plate is going to finish, and even finish of discharging of only one unit cell constituting a set battery drops its total output power remarkably. Thus drop of the total output power when set battery is discharged is sensed to stop discharging, and thereby overdischarge of unit cell with small discharge capacity is prevented certainly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ二次電池を電気的に直列に接続した
組電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a battery assembly in which alkaline secondary batteries are electrically connected in series.

従未の技術 カドミウム負極板を用いたアルカリ二次電池には、ニッ
ケルーカドミウム電池や硫酸銀−カドミウム電池等があ
る。これらのアルカリ二次電池は、小形で大電流の放電
が可能であるという特徴がある。特にニッケルーカドミ
ウム電池はその特徴を生かして電動工具、ビデオカメラ
、カセットテープレコーダーなどの種々のポータプルな
電子機器の電源としてさかんに用いられている。これら
の機器は、種々の電圧で作動するので、その電源にアル
カリ二次電池を使用する場合には、複数のアルカリ二次
電池を電気的に直列に接続した組電池を用いる場合が多
い。
Conventional alkaline secondary batteries using cadmium negative electrode plates include nickel-cadmium batteries and silver sulfate-cadmium batteries. These alkaline secondary batteries are characterized by being small and capable of discharging large currents. In particular, nickel-cadmium batteries are widely used as power sources for various portable electronic devices such as power tools, video cameras, and cassette tape recorders due to their characteristics. Since these devices operate at various voltages, when using alkaline secondary batteries as their power sources, assembled batteries in which a plurality of alkaline secondary batteries are electrically connected in series are often used.

アルカリ二次電池をこのような組電池にして用いる場合
には、1個だけのいわゆる単電池として用いる場合とは
異なる次のような問題が発生する。
When an alkaline secondary battery is used in such an assembled battery, the following problems occur, which are different from when used as a single so-called single battery.

すなわち、組電池を構成する複数の単電池には必ず放電
容量のバラツキがある。そしてこの組電池を放電すると
、その出力総電圧が正の値であっても、組電池を構成し
ている容量が小さい一部の単電池が転極して過放電され
ガス発生が起こることがある。このガスは電解液の水の
電気分解によって発生したものであるから、過放電を繰
り返すと、この容量の小さい単電池がいわゆる「液溜れ
」の状態になって内部抵抗が著しく高くなり、 M1電
池の出力総電圧が低下して、放電容量が著しく低下する
That is, there is always variation in discharge capacity among the plurality of single cells that constitute a battery pack. When this assembled battery is discharged, even if the total output voltage is a positive value, some of the small capacity cells that make up the assembled battery may reverse polarity and over-discharge, causing gas generation. be. This gas is generated by the electrolysis of water in the electrolyte, so if over-discharge is repeated, this small-capacity unit cell becomes a so-called "liquid pool" and its internal resistance increases significantly, causing M1 The total output voltage of the battery decreases, and the discharge capacity decreases significantly.

カドミウム負極板を備える従来のアルカリ二次電池では
、この問題を解決する方法の一つとして、Antipo
lar Methodが知られている。これは、正極板
または負極板に反対極性の活物質を添加する方法である
。この方法によれば、本来の極性の活物質の放電が終了
した後に反対極性の活物質の充電反応が進行し、その後
にガス発生反応が起こる。
In conventional alkaline secondary batteries equipped with cadmium negative electrode plates, Antipo
lar Method is known. This is a method in which active materials of opposite polarity are added to the positive or negative electrode plate. According to this method, after the discharge of the active material of the original polarity is completed, the charging reaction of the active material of the opposite polarity proceeds, and then the gas generation reaction occurs.

従って、反対極性の活物質の容量を単電池の放電容量の
バラツキの大きさよりも大きくしておけば、組電池を構
成する全ての単電池の放電が終了するまで容量が最も小
さい単電池の極板からガス発生反応が起こることはない
Therefore, if the capacity of the active material of the opposite polarity is made larger than the variation in the discharge capacity of the cells, the electrode of the cell with the smallest capacity can be No gas-generating reaction occurs from the plate.

発明が解決しようとする課題 Antipolar HethOaは、この様な巧妙な
方法であるが、電池の使用条件によっては、必ずしも所
期の効果を発揮しない。その使用条件とは、電池の放電
がカドミウム負極板の容量によって制限される場合であ
る。すなわち、負極板にその対極物質である水酸化ニッ
ケルや金属銀を添加する場合には正極板にその対極物質
である水酸化カドミウムを添加する場合と比較して、過
放電時にガス発生反応を遅らせる効果が著しく小さい、
そこで、従来は負極板の放電容量を正極板の放電容量よ
り6大きくして電池の放電を正極で制限し、正極板に対
i物質を添加して過放電時のガス発生を防止していた。
Problems to be Solved by the Invention Although Antipolar HethOa is such an ingenious method, it does not necessarily exhibit the desired effect depending on the usage conditions of the battery. The conditions of use are when the discharge of the battery is limited by the capacity of the cadmium negative plate. In other words, when adding nickel hydroxide or metallic silver, which are counter electrode materials, to the negative electrode plate, the gas generation reaction is delayed during overdischarge compared to when adding cadmium hydroxide, which is the counter electrode material, to the positive electrode plate. The effect is extremely small,
Therefore, in the past, the discharge capacity of the negative electrode plate was made 6 larger than the discharge capacity of the positive electrode plate, and the discharge of the battery was limited by the positive electrode, and an anti-i material was added to the positive electrode plate to prevent gas generation during overdischarge. .

しかし、カドミウム負極板は、充放電を繰り返したり、
大電流で放電する場合に放電容量が低下するという性質
がある。それゆえ、例えば電動工具のようにl0CAと
いった大電流放電を伴う充放電を繰り返す用途では、充
放電サイクルが進行すると、電池の放電が負極で制限さ
れて^nt−1polar Methodの効果が十分
に発揮されず、放電容量が著しく低下するという問題が
あった。
However, the cadmium negative electrode plate cannot be repeatedly charged and discharged,
There is a property that the discharge capacity decreases when discharging with a large current. Therefore, for example, in applications where charging and discharging are repeated with large current discharge such as 10CA, such as power tools, as the charging and discharging cycle progresses, the discharge of the battery is limited by the negative electrode, and the effect of the ^nt-1 polar method is fully demonstrated. However, there was a problem in that the discharge capacity was significantly reduced.

課題を解決するための手段 本発明はこの様な問題を解決するために、カドミウム負
極板を備える複数のアルカリ二次電池を電気的に直列に
接続する組電池において、そのカドミウム負極板の集電
体の表面が主としてカドミウムからなることを特徴とし
ている。
Means for Solving the Problems In order to solve such problems, the present invention provides an assembled battery in which a plurality of alkaline secondary batteries each having a cadmium negative electrode plate are electrically connected in series, and a current collector of the cadmium negative electrode plate is used. It is characterized by its body surface mainly consisting of cadmium.

また、本発明の効果をより一層確実なものとするために
は、集電体を除く負極板に含まれる金属ニッケルの含有
率を負極活物質の全カドミウムに対して、重量比で0.
5重量%以下に制限することが効果的である。
In addition, in order to further ensure the effects of the present invention, the content of metallic nickel contained in the negative electrode plate excluding the current collector should be set to 0.000% by weight with respect to the total cadmium of the negative electrode active material.
It is effective to limit the amount to 5% by weight or less.

作用 カドミウムメツキした負i集電体を用いる技術は既に開
示(特開昭46−16450号公報)されている。その
内容は、水素過電圧を高めることによってカドミウム負
極板の自己放電を抑制させるというものである。しかし
、本発明は、この公報に記載された4A電体と類似する
ものを用いるものの、この公報にはまったく記載されて
いない過放電時の酸素発生電位が著しく責になるという
新たな現象を発見し、この現象を組電池の放電制御に応
用するものである。
A technique using a negative i current collector plated with cadmium has already been disclosed (Japanese Unexamined Patent Publication No. 16450/1983). The idea is to suppress self-discharge of the cadmium negative electrode plate by increasing the hydrogen overvoltage. However, although the present invention uses something similar to the 4A electric body described in this publication, we have discovered a new phenomenon that is not described in this publication at all, in which the oxygen generation potential during overdischarge becomes a significant problem. However, this phenomenon is applied to the discharge control of assembled batteries.

以下、本発明の作用について説明する。Hereinafter, the effects of the present invention will be explained.

従来の組電池に用いるカドミウム負極板ではその集電体
にニッケル焼結体やニッケルメッキした穿孔鋼板や発泡
ニッケルメタルやニッケル繊維メタルが用いられており
、集電体の表面は主としてニッケルであった。
In conventional cadmium negative electrode plates used in assembled batteries, nickel sintered bodies, nickel-plated perforated steel plates, foamed nickel metal, or nickel fiber metal are used as current collectors, and the surface of the current collectors is mainly made of nickel. .

このようなカドミウム負極板を過放電する場合−に、酸
素ガスが発生する電位の具体的な値は、例えば比重1.
250(20°C)水酸化カリウム水溶液中では酸化銀
電極を基準として+0.55〜+〇、60Vである。
When overdischarging such a cadmium negative electrode plate, the specific value of the potential at which oxygen gas is generated is, for example, a specific gravity of 1.
In a 250 (20°C) potassium hydroxide aqueous solution, the voltage is +0.55 to +0, 60V based on the silver oxide electrode.

一方、本発明の組電池に用いるカドミウム負極板は、表
面が主としてカドミウムからなる集電体を有しているが
、この負極板を過放電する場合には、酸素ガスが発生す
る電位は、従来のカドミウム負極板に比して著しく責で
ある。例えば、カドミウムメツキした穿孔鋼板にカドミ
ウム活物質を保持させた負極板を先と同じ条件で過充電
した場合に、酸素ガスが発生ずる電位は、酸化水銀電極
を基準として、+1.2〜+1.3vである。
On the other hand, the cadmium negative electrode plate used in the assembled battery of the present invention has a current collector whose surface is mainly made of cadmium, but when this negative electrode plate is overdischarged, the potential at which oxygen gas is generated is lower than that of the conventional one. This is significantly more expensive than the cadmium negative electrode plate. For example, when a negative electrode plate in which a cadmium active material is held on a cadmium-plated perforated steel plate is overcharged under the same conditions as before, the potential at which oxygen gas is generated is +1.2 to +1. It is 3v.

本発明は、カドミウム負極板を過放電するときに、酸素
ガスが発生する電位がこのように著しく責になる現象を
利用する。
The present invention utilizes a phenomenon in which the potential generated by oxygen gas becomes extremely harmful when overdischarging a cadmium negative electrode plate.

すなわち、カドミウム負極板を用いるアルカリ二次電池
の放電が負極の容量で制限される場合ににおいて、本発
明の電池の負極板の電位は、負極の反応が活物質の放電
反応から酸素ガス発生反応へ移行する際に大きく変化す
る。したがって、本発明の組電池を構成する単電池の電
圧は、従来のものと比較して負極板の放電が終了する際
に著しく低下し、その結果、組電池の中のわずかに1個
の単電池の放電が終了するだけでも、組電池の出力総電
力が著しく低下する。
In other words, when the discharge of an alkaline secondary battery using a cadmium negative electrode plate is limited by the capacity of the negative electrode, the potential of the negative electrode plate of the battery of the present invention is such that the reaction of the negative electrode changes from the discharge reaction of the active material to the oxygen gas generation reaction. It changes significantly when moving to . Therefore, the voltage of the single cells constituting the assembled battery of the present invention decreases significantly when the discharge of the negative electrode plate ends compared to the conventional one, and as a result, only one single cell in the assembled battery drops significantly. Even when the discharge of the battery ends, the total output power of the assembled battery decreases significantly.

それゆえ、本発明の組電池では、組電池を放電する際の
出力総電力の低下を検出して組電池の放電を停止させ、
放電容量が小さい単電池の過充電を確実に防止すること
ができる。このようにして、本発明の組電池では、電池
の放電が負極の放電容量で制限される場合に、従来の組
電池と比較して著しく長いサイクルか命が得られる。
Therefore, in the assembled battery of the present invention, a decrease in the total output power when discharging the assembled battery is detected, and the discharging of the assembled battery is stopped.
Overcharging of single cells with small discharge capacity can be reliably prevented. In this manner, the assembled battery of the present invention provides a significantly longer cycle life than conventional assembled batteries when the discharge of the battery is limited by the discharge capacity of the negative electrode.

また、この現象は負極板に含まれる金属ニッケルの含有
率を負極活物質の全カドミウム量に対して重量比で0.
5重1%以下とすることで信顆性よく再現できることが
わかったの、で、このことも利用する。なお、ここでい
う全カドミウム量とは、負極板に含まれるCd原子の総
量である。
Additionally, this phenomenon is caused by the fact that the content of metallic nickel contained in the negative electrode plate is 0.0% by weight relative to the total amount of cadmium in the negative electrode active material.
It was found that it was possible to reproduce the results with good reliability by using a quintuple weight of 1% or less, so we will also take advantage of this fact. Note that the total amount of cadmium here refers to the total amount of Cd atoms contained in the negative electrode plate.

実施例 以下、本発明を好適な実施例を用いて説明する。Example The present invention will be explained below using preferred embodiments.

0組電池(^)](本発明実施例) 酸化カドミウム粉末100部と金属カドミウム粉末20
部と長さ1nnのポリプロピレン製の短繊維0.3部と
を 1.5重量%のポリビニルアルコールを含むエチレ
ングリコール401で混練してペースト状にする。この
ペーストを厚さ5μlのカドミウムメツキを施した穿孔
鋼板に塗着し、乾燥、加圧して酸化カドミウムの理論容
量が約2600nAh、金属カドミウムの理論容量が約
59011Ah、寸法が0.64 x215 x34(
nn)の負極板(a)を製作した。
0 set battery (^)] (Example of the present invention) 100 parts of cadmium oxide powder and 20 parts of metal cadmium powder
and 0.3 parts of short polypropylene fibers having a length of 1 nn are kneaded with ethylene glycol 401 containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste was applied to a cadmium-plated perforated steel plate with a thickness of 5 μl, dried, and pressurized to obtain a material with a theoretical capacity of cadmium oxide of approximately 2600 nAh, a theoretical capacity of metal cadmium of approximately 59011 Ah, and dimensions of 0.64 x 215 x 34 (
A negative electrode plate (a) of nn) was manufactured.

次に、多孔度が約80%の焼結式ニッケル基板にコバル
トの含有率が8%の硝酸コバルトと、硝酸ニッケルとの
混合水溶液[PH=2.比重1.50(20℃)1を含
浸したのち、比重1.200+20℃)の水酸化ナトリ
ウム水溶液に含浸し、湯洗、乾燥するという操作を繰り
返して理論容量が1650〜170QiAh、寸法が0
.68 x170 x34(mi)の正極板を製作した
Next, a mixed aqueous solution of cobalt nitrate with a cobalt content of 8% and nickel nitrate [PH=2. After impregnating with a specific gravity of 1.50 (20℃) 1, impregnating with a sodium hydroxide aqueous solution with a specific gravity of 1.200 + 20℃), washing with hot water, and drying, the process was repeated until the theoretical capacity was 1650 to 170QiAh and the dimensions were 0.
.. A positive electrode plate of 68 x 170 x 34 (mi) was manufactured.

そして、ポリプロピレン製の不繊布からなるセパレータ
ーを介在させて上述の負極板(a)および正極板を渦巻
状に巻いた後に、鉄にニッケルメッキした円筒形のケー
スに挿入し、これに電解液として比重1.300(20
’C)の水酸化カリウム水溶液3.8nlを加え、安全
弁を取り付は封口するという方法で公称容量1,5^h
のSCC内円筒形単電池約100個装作した。
Then, after winding the negative electrode plate (a) and the positive electrode plate in a spiral shape with a separator made of nonwoven polypropylene fabric interposed between them, they are inserted into a cylindrical case made of nickel-plated iron, and the electrolyte is used as an electrolyte. Specific gravity 1.300 (20
Add 3.8 nl of the potassium hydroxide aqueous solution of 'C), install the safety valve and seal it to a nominal capacity of 1.5 h.
Approximately 100 cylindrical cells were installed in the SCC.

これらの単電池を1/10 CAの電流で20時間充電
した後に、IOC^の電流で放電して容量を測定し、そ
の中で4分の放電持続時間を有する単電池9個と3.5
分の放電持続時間を有する単電池1個とを選んで、これ
らを電気的に直列に接続して本発明による組電池(^)
を製作した。
After charging these cells with a current of 1/10 CA for 20 hours, they were discharged with a current of IOC^ to measure the capacity, among which 9 cells with a discharge duration of 4 minutes and 3.5
An assembled battery according to the present invention (^) is created by selecting one single cell with a discharge duration of 10 minutes and electrically connecting them in series.
was produced.

[組電池(B) ]  (本発明実施例)組電池(^)
における負極板(a)の集電体であるカドミウムメツキ
した穿孔鋼板の代わりに厚さ1Oμlのカドミウムメツ
キを施した発泡ニッケルを用いた以外は全て組電池(A
)と同様な本発明の組電池(B)を製作した。
[Assembled battery (B)] (Embodiment of the present invention) Assembled battery (^)
All of the assembled batteries (A
) A battery pack (B) of the present invention similar to that of the battery pack (B) was manufactured.

[組電池(C) ]  (本発明実施例)組電池(^)
における負極板(a)の集電体であるカドミウムメツキ
した穿孔鋼板の代わりに厚さ2μlのカドミウムメツキ
を施した発泡鋼を用いた以外は全て組電池(A)と同様
な本発明の組電池(C)を製作した。
[Assembled battery (C)] (Embodiment of the present invention) Assembled battery (^)
The assembled battery of the present invention is the same as the assembled battery (A) except that a cadmium-plated foamed steel having a thickness of 2 μl is used instead of the cadmium-plated perforated steel plate that is the current collector of the negative electrode plate (a). (C) was produced.

[組電池([))コ (比較例) 本発明と比較するために、組電池(^)において用いた
負極板(a)の集電体であるカドミウムメツキした穿孔
鋼板の代わりに厚さ5μlのニッケルメッキを施した穿
孔鋼板を用いた以外は全て負極板(^)と同様なカドミ
ウム負極板(d)を製作し、それを用いた以外は組電池
(A)と同様にして従来の組電池(D)を製作した。
[Assembled battery ([))] (Comparative example) For comparison with the present invention, a 5 μl thick perforated steel plate plated with cadmium was used as the current collector of the negative electrode plate (a) used in the assembled battery (^). A cadmium negative electrode plate (d), which is the same as the negative electrode plate (^), except that a nickel-plated perforated steel plate was used, was used. A battery (D) was manufactured.

なお、以上の10C^での電が全て負極板の容量で制限
されていることを、電池内に照合極を挿入して単極電位
を測定することによって確かめた。
It was confirmed by inserting a reference electrode into the battery and measuring the single electrode potential that the above charge at 10 C^ was all limited by the capacity of the negative electrode plate.

次に、本発明の特徴を明確にするために、カドミウム負
極板!a)と(d)との放電特性について述べる。
Next, in order to clarify the characteristics of the present invention, we will introduce a cadmium negative electrode plate! The discharge characteristics of a) and (d) will be described.

比重1.250(20″C)水酸化カリウム水溶液中で
対極としてニラゲル平板を用い、150n+Aの電流で
12時間充電したのち、15001Aの電流で酸素ガス
が発生するまで放電した後の放電電位特性を第1図に示
す。
Using a Niragel flat plate as a counter electrode in a potassium hydroxide aqueous solution with a specific gravity of 1.250 (20″C), the discharge potential characteristics after being charged at a current of 150n+A for 12 hours and then discharging at a current of 15001A until oxygen gas was generated. Shown in Figure 1.

参照電極は酸化水銀電極である。The reference electrode is a mercury oxide electrode.

第1図から、過放電して酸素ガスが発生ずる電位は、従
来の組電池(D)に用いる負極板fd)の場合には約+
0.55Vであるのに対し、本発明の組電池(^)に用
いる負極板(a)の場合には約+1.28Vであること
がわかる。したがって、本発明の組電池に用いる負極板
は、従来のものに比して放電が終了するときの放電電位
の変化が著しく大きいといえる。
From Figure 1, the potential at which oxygen gas is generated due to overdischarge is approximately +
It can be seen that while the voltage is 0.55V, it is approximately +1.28V in the case of the negative electrode plate (a) used in the assembled battery (^) of the present invention. Therefore, it can be said that the negative electrode plate used in the assembled battery of the present invention has a significantly larger change in discharge potential at the end of discharge than the conventional negative electrode plate.

次に、組電池を大電流で放電したときの組電池および単
電池の放電電圧特性を比較する。
Next, the discharge voltage characteristics of the assembled battery and the single cell will be compared when the assembled battery is discharged with a large current.

本発明の組電池(^)と従来の組電池(0)とを公称容
量を基準として1.50の電流で1時間充電したのち、
10Cの電流で放電したときの組電池の出力総量圧と各
単電池の端子電圧とを第2図に示す。
After charging the assembled battery of the present invention (^) and the conventional assembled battery (0) for 1 hour at a current of 1.50 based on the nominal capacity,
FIG. 2 shows the total output pressure of the assembled battery and the terminal voltage of each cell when discharged with a current of 10C.

なお、容量制限価は負極板であった。Note that the capacity limit value was the negative electrode plate.

第2図の中の各記号の意味は以下の通りである。The meaning of each symbol in FIG. 2 is as follows.

fA′):本発明の組電池(A)の中で最も放電容量が
少ない電池の端子電圧。
fA'): Terminal voltage of the battery with the smallest discharge capacity among the assembled batteries (A) of the present invention.

(D’ ):従来の組電池(ロ)の中で最も放電容量が
少ない電池の端子電圧。
(D'): Terminal voltage of a battery with the lowest discharge capacity among conventional assembled batteries (b).

(A″);本発明の組電池fA)の中で放電容量が多い
9個の単電池の平均端子電圧。
(A″): Average terminal voltage of nine single cells with large discharge capacity among the assembled battery fA) of the present invention.

(D″);従来の組電池(D)の中で放電容量が多い9
個の単電池の平均端子電圧。
(D″); High discharge capacity among conventional assembled batteries (D) 9
Average terminal voltage of a single cell.

×I:本発明の組電池(A)の中の最も放電容量が少な
い単電池のカドミウム負極板から酸素ガスの発生が始ま
る電圧。
×I: Voltage at which oxygen gas starts to be generated from the cadmium negative electrode plate of the unit cell with the lowest discharge capacity among the battery packs (A) of the present invention.

×2;従来の組電池(D)の中の最も放電容量が少ない
単電池のカドミウム負極板から酸素ガスの発生が始まる
電圧。
×2: Voltage at which oxygen gas starts to be generated from the cadmium negative electrode plate of the single cell with the lowest discharge capacity among the conventional battery packs (D).

第2図から次のことがわかる。すなわち、本発明の組電
池(^)および従来の組電池(D)の放電時の出力総量
圧は、放電時間が約3.6分になって電圧が急激に低下
するまではほぼ等しい。しかし電圧が2激に低下したの
ちの電圧平坦部は、前者の組電池では約7.3vの出力
総量圧から始まり、後者では約8.2vから始まる。そ
してこれらのMi電池の出力総量圧の急激な低下は最も
容量の少ない電池の放電が終了するときに起こっている
。このように、本発明の組電池(A)では、従来の組電
池(D)と比較して、最も容量が少ない単電池の放電が
終了して、その負極板から酸素ガスの発生が始まるまで
の出力総量圧の変化が著しく大きい。したがって、組電
池の出力総量圧が8vに達したときに放電を停止するよ
うな場合には、従来の組電池TO)では、容量が最も小
さい単電池が過放電されるが、本発明の組電池(A)で
は、容量が最も小さい単電池は全く過放電されない。
The following can be seen from Figure 2. That is, the total output pressure during discharge of the assembled battery of the present invention (^) and the conventional assembled battery (D) is approximately equal until the voltage suddenly drops when the discharge time reaches approximately 3.6 minutes. However, after the voltage drops dramatically, the voltage plateau starts at a total output pressure of about 7.3V for the former assembled battery, and about 8.2V for the latter. A sudden drop in the total output pressure of these Mi batteries occurs when the battery with the lowest capacity finishes discharging. In this way, in the assembled battery (A) of the present invention, compared to the conventional assembled battery (D), until the discharge of the unit cell with the lowest capacity is completed and oxygen gas starts to be generated from the negative electrode plate, The change in the total output pressure is extremely large. Therefore, when discharging is stopped when the total output pressure of the assembled battery reaches 8V, in the conventional assembled battery TO), the unit cell with the smallest capacity is over-discharged, but in the assembled battery of the present invention, the unit cell with the smallest capacity is over-discharged. In battery (A), the unit cell with the smallest capacity is not over-discharged at all.

次に本発明の組電池と従来の組電池とを用いて、大電流
による放電を伴う充放電をサイクル試験を行った結果に
ついて述べる。
Next, the results of a charging/discharging cycle test involving discharging with a large current using the assembled battery of the present invention and a conventional assembled battery will be described.

本発明の組電池(^)〜(C)と従来の組電池(D)と
を2.25A(1,5C^)の電流で1時間の充電を行
った後に、15A(10CA)の電流で8vまで放電す
るという充放電サイクルを行った。
After charging the assembled batteries (^) to (C) of the present invention and the conventional assembled battery (D) with a current of 2.25A (1.5C^) for 1 hour, they were charged with a current of 15A (10CA). A charge/discharge cycle was performed in which the battery was discharged to 8V.

第3図に充放電サイクル中の放電容量の推移を示す、な
お、放電は全て負極制限になっていた・。
Figure 3 shows the change in discharge capacity during the charge/discharge cycle, and all discharges were limited to the negative electrode.

同図から本発明の組電池(^)〜(C)は300サイク
ルロの容量が約0.75 Ahであるのに対し、従来の
組電池(D)は約0.6^hに低下していることがわか
る。このように本発明によればサイクル性能の良好な組
電池を得ることができる。本発明の組電池の放電容量が
従来の組電池と比較して著しく減少することがないのは
、本発明の組電池に含まれる容量の少ない単電池の過放
電が効果的に防止されていることによるものである。
As can be seen from the figure, the assembled batteries (^) to (C) of the present invention have a capacity of about 0.75 Ah after 300 cycles, while the capacity of the conventional assembled battery (D) has decreased to about 0.6^h. I know that there is. As described above, according to the present invention, an assembled battery with good cycle performance can be obtained. The reason why the discharge capacity of the assembled battery of the present invention does not decrease significantly compared to the conventional assembled battery is that over-discharge of the small capacity unit cells included in the assembled battery of the present invention is effectively prevented. This is due to a number of reasons.

また、本発明の実施例では負極板の集電体としてカドミ
ウムメツキした穿孔鋼板及び発泡メタルを用いたが、こ
れ以外にもカドミウムメツキしたエクスパンデッドメタ
ルや金属繊維の集合体からなる多孔体でも同じ効果が得
られた。
In addition, in the examples of the present invention, a cadmium-plated perforated steel plate and a foamed metal were used as the current collector of the negative electrode plate, but in addition to these, cadmium-plated expanded metal or a porous material made of an aggregate of metal fibers may also be used. The same effect was obtained.

なお、以上の実施例の電池は遊離の電解液を有していな
いいわゆる液制限形の電池であるため、電池ケースの内
面が金属ニッケルであっても何等問題ない。一方、開放
形電池のように遊離の電解液を有する場合には、電池ケ
ースの内面をカドミウムとするか、あるいは合成樹脂に
すると好適である。
Note that since the batteries of the above embodiments are so-called liquid-limited batteries that do not have free electrolyte, there is no problem even if the inner surface of the battery case is made of metal nickel. On the other hand, when the battery has a free electrolyte such as an open type battery, it is preferable to use cadmium or synthetic resin for the inner surface of the battery case.

以上述べたように本発明の効果を得るためには表面が主
としてカドミウムからなる集電体を有するカドミウム負
極板を用いる必要がある。そして、この効果を一層確実
にするためには、負極板中に含まれる金属ニッケルの量
を限定することが効果的である。その理由は金属ニッケ
ルの量が多い場合には、前述の実施例で示したような大
きな酸素過電圧が充放電サイクルの初期には現れないた
めである。この場合にも数10サイクルの充放電を行う
と、金属ニッケルの表面がカドミウムで覆われて酸素過
電圧が大きくなることもある。しかし、この場合には充
放電サイクルの初期には単電池の過放電を防止すること
ができず、この点において望ましくない。
As described above, in order to obtain the effects of the present invention, it is necessary to use a cadmium negative electrode plate having a current collector whose surface is mainly made of cadmium. In order to further ensure this effect, it is effective to limit the amount of metallic nickel contained in the negative electrode plate. The reason for this is that when the amount of metallic nickel is large, a large oxygen overvoltage as shown in the above embodiment does not appear at the beginning of the charge/discharge cycle. In this case, if several tens of cycles of charging and discharging are performed, the surface of the metal nickel may be covered with cadmium, and the oxygen overvoltage may become large. However, in this case, over-discharge of the unit cell cannot be prevented at the beginning of the charge/discharge cycle, which is undesirable in this respect.

そこで、次に金属ニッケル粉末の添加量の影響について
述べる。酸化カドミウム粉末100部、金属カドミウム
粉末30部と長さ 11′lIのポリプロピレン製の短
繊fi0.3部と添加量を変えた金属ニッケル粉末とを
1.5重量%のポリビニルアルコールを含むエチレング
リコール401で混練してベースト状にする。このペー
ストを厚さ5μmのカドミウムメツキレな穿孔鋼板に塗
着、乾燥、加圧してペースト式カドミウム負極板とした
Next, we will discuss the effect of the amount of metallic nickel powder added. 100 parts of cadmium oxide powder, 30 parts of metal cadmium powder, 0.3 parts of short filament made of polypropylene with a length of 11'lI, and metal nickel powder with varying amounts added to ethylene glycol containing 1.5% by weight of polyvinyl alcohol. Knead at 401 to form a base. This paste was applied to a cadmium-plated perforated steel plate with a thickness of 5 μm, dried, and pressurized to obtain a paste-type cadmium negative electrode plate.

これを40x 40fnn)の寸法に切断し、比重1.
250(20℃)水酸化カリウム水溶液中で対極にニッ
ケル平板2枚を用いて充放電を行った。極板1枚当たり
の酸化カドミウムの理論容量は約5801Ahであり、
金属カドミウムの理論容量は約200nAhである。
This was cut into a size of 40x40fnn), and the specific gravity was 1.
Charging and discharging were performed in a 250° C. (20° C.) potassium hydroxide aqueous solution using two nickel flat plates as counter electrodes. The theoretical capacity of cadmium oxide per electrode plate is approximately 5801 Ah,
The theoretical capacity of metal cadmium is about 200 nAh.

また、充電は33nAで10時間行い、放電は3301
^で過放電状態に至るまで行った。第4図に金属ニッケ
ルの添加量と過放電時に酸素ガスが発生する電位との関
係を示した。同図より、酸素ガスが発生する電位は、全
カドミウムに対する金属ニッケルの含有率が約0.5重
量%よりも大きくなると著しく卑になっている。したが
って、導YS f’kを除く負極板に含まれる金属ニッ
ケルの含有率を全カドミウムに対して0.5重量%以下
とすることは、本発明の効果の信頼性を高める上で効果
的である。
In addition, charging was performed at 33 nA for 10 hours, and discharging was performed at 3301
^ until it reached an overdischarge state. FIG. 4 shows the relationship between the amount of metallic nickel added and the potential at which oxygen gas is generated during overdischarge. As can be seen from the figure, the potential at which oxygen gas is generated becomes significantly less noble when the content of metallic nickel relative to the total cadmium is greater than about 0.5% by weight. Therefore, it is effective to reduce the content of metallic nickel contained in the negative electrode plate excluding the conductive YS f'k to 0.5% by weight or less based on the total cadmium, in order to increase the reliability of the effect of the present invention. be.

発明の効果 以上述べたように、本発明によれば放電が負極の容量で
制限される場合にも、容量が少ない単電池の放電の終了
が確実に検出できるほど出力総電圧の変化が大きい組電
池を得ることができる。そしてこれにより従来の組電池
に比べて充放電サイクル寿命が著しく長い組電池を提供
することができる。
Effects of the Invention As described above, according to the present invention, even when discharge is limited by the capacity of the negative electrode, the change in the total output voltage is large enough to reliably detect the end of discharge of a single cell with a small capacity. You can get batteries. As a result, it is possible to provide an assembled battery that has a significantly longer charge/discharge cycle life than conventional assembled batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるカドミウム負極板と従来のカド
ミウム負極板との放電電位特性を比較した図、第2図は
本発明組電池と従来の組電池を放電した場合の出力総電
圧および単電池の端子電圧を比較した図、第3図は本発
明の組電池と従来の組電池との充放電サイクル中の放電
容量を比較した図、第4図はカドミウム負極板を過充電
したときに酸素ガスが発生する電位におよぼす金属ニッ
ケルの添加量の影響をあられした図である。 賽 1 図 原像 呼量 (分) 斧 7 閃 6      /      2     3    
 4     5を 3 図 文歌ンivイフル歌(田) 等 4 閃
Figure 1 is a diagram comparing the discharge potential characteristics of the cadmium negative electrode plate used in the present invention and a conventional cadmium negative electrode plate, and Figure 2 shows the total output voltage and unit voltage when the assembled battery of the present invention and the conventional assembled battery are discharged. Figure 3 is a diagram comparing the terminal voltages of the batteries, Figure 3 is a diagram comparing the discharge capacity during charge/discharge cycles between the assembled battery of the present invention and the conventional assembled battery, and Figure 4 is a diagram comparing the discharge capacity during the charge/discharge cycle of the assembled battery of the present invention and the conventional assembled battery. FIG. 3 is a diagram showing the influence of the amount of metal nickel added on the potential at which oxygen gas is generated. Dice 1 Original image Call amount (minutes) Ax 7 Flash 6 / 2 3
4 5 3 Zubunkaun iv Ihuruuta (Tian) etc. 4 Sensation

Claims (1)

【特許請求の範囲】 1、カドミウム負極板を備える複数のアルカリ二次電池
を電気的に直列に接続した組電池において、そのカドミ
ウム負極板の集電体の表面が主としてカドミウムからな
ることを特徴とする組電池。 2、集電体を除く負極板に含まれる金属ニッケルの含有
量が、負極活物質の全カドミウム量に対して重量比で0
.5重量%以下であることを特徴とする請求項1記載の
組電池。
[Claims] 1. An assembled battery in which a plurality of alkaline secondary batteries each having a cadmium negative electrode plate are electrically connected in series, characterized in that the surface of the current collector of the cadmium negative electrode plate is mainly made of cadmium. Assembled battery. 2. The content of metallic nickel contained in the negative electrode plate excluding the current collector is 0 in terms of weight ratio to the total amount of cadmium in the negative electrode active material.
.. The assembled battery according to claim 1, characterized in that the content is 5% by weight or less.
JP63064336A 1988-03-17 1988-03-17 Set battery Pending JPH01236579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064336A JPH01236579A (en) 1988-03-17 1988-03-17 Set battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064336A JPH01236579A (en) 1988-03-17 1988-03-17 Set battery

Publications (1)

Publication Number Publication Date
JPH01236579A true JPH01236579A (en) 1989-09-21

Family

ID=13255298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064336A Pending JPH01236579A (en) 1988-03-17 1988-03-17 Set battery

Country Status (1)

Country Link
JP (1) JPH01236579A (en)

Similar Documents

Publication Publication Date Title
EP0354966B1 (en) Alkaline secondary battery and process for its production
US20040041542A1 (en) Charger for a rechargeable nickel-zinc battery
JPS6255274B2 (en)
JP3390309B2 (en) Sealed alkaline storage battery
JP3109559B2 (en) Chemical formation of sealed alkaline storage batteries.
JPH01236579A (en) Set battery
JPS58129789A (en) Flat type nickel-cadmium battery
JP3033153B2 (en) Battery charging control method
JP3456217B2 (en) Nickel-based secondary battery
JP3339327B2 (en) Storage battery
JP2926288B2 (en) Nickel-cadmium battery
JPH10154504A (en) Battery pack
JP4999309B2 (en) Alkaline storage battery
JP3558082B2 (en) Nickel-cadmium secondary battery
Kordesch et al. Rechargeable alkaline zinc manganese dioxide batteries
JPH05314983A (en) Manufacture of alkaline storage battery
JPWO2022201638A5 (en)
JPH01134862A (en) Alkaline zinc storage battery
KR870001471B1 (en) Solid battery
JP2022128641A (en) Method for manufacturing nickel hydrogen storage battery
JP2005166324A (en) Sealed storage battery
JPH10189035A (en) Nickel-cadmium battery
JPH0536437A (en) Method for initial charge and discharge of alkaline storage battery
JP2000012075A (en) Nickel/metal hydride battery
JPH1092463A (en) Manufacture of alkaline storage battery