JPH0123481B2 - - Google Patents

Info

Publication number
JPH0123481B2
JPH0123481B2 JP54083435A JP8343579A JPH0123481B2 JP H0123481 B2 JPH0123481 B2 JP H0123481B2 JP 54083435 A JP54083435 A JP 54083435A JP 8343579 A JP8343579 A JP 8343579A JP H0123481 B2 JPH0123481 B2 JP H0123481B2
Authority
JP
Japan
Prior art keywords
parts
emulsion
hydrosol
water
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54083435A
Other languages
Japanese (ja)
Other versions
JPS568407A (en
Inventor
Hideaki Imura
Takeshi Maniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP8343579A priority Critical patent/JPS568407A/en
Publication of JPS568407A publication Critical patent/JPS568407A/en
Publication of JPH0123481B2 publication Critical patent/JPH0123481B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は新規な乳化重合物の製造法に関するも
ので、その目的とするところは性能のすぐれた乳
化重合物を容易にしかも安定に製造することにあ
る。乳化重合物の製造法としては各種界面活性剤
を乳化剤として乳化重合する方法が古くから実施
されているが、この方法では乳化剤が得られる乳
化重合物に対して、実用面で耐水性、接着性、光
沢、耐食性等に悪影響を及ぼしていた。これらの
欠点を解決するため、乳化剤を少くするとかある
いはなくする方法が種々提案されており、反応性
乳化剤を使用する方法、高分子水溶性物質(アク
リル系、ジエン系、アルキツド系、等)を乳化剤
として使用する方法等が知られている。しかしな
がらこれらの方法を用いても、高分子分散剤(乳
化剤)は親水性のカルボキシル基や水酸基等を含
有し、一般に低分子界面活性剤より多く必要と
し、多く用いるとやはり耐水性、耐食性は不十分
であり、逆にその使用量を少くすると乳化物の安
定性が悪くなり、エマルジヨンの安定性と樹脂物
性のバランスが完全に解決されない。本発明はこ
れらの欠点を解消した、安定で且つ優秀な塗膜性
能を有する乳化重合物の製造法を提供するもので
ある。即ち上記諸問題は、酸価30〜150のラジカ
ル重合性モノマー混合物を乳化剤0.3重量%以下
(対モノマー)の存在下で乳化重合后、アルカリ
で中和して得たハイドロゾルを用い、本ハイドロ
ゾル中の固形分が10〜80重量%でラジカル重合性
モノマーが90〜20重量%となる量のラジカル重合
性モノマーを、前記ハイドロゾル中で常法により
乳化重合することによつて達成される。 ここでハイドロゾルとは、分散質の粒子径が
0.001〜0.1μの水性分散物であつて、一般の乳化
重合体、水性分散体における分散質の粒子径が
0.1〜5μ程度であるのに比較すると、分散質は超
微粒子状である。 本発明において使用されるハイドロゾルについ
てまず説明すると、ハイドロゾルを得るに当りラ
ジカル重合性モノマー(以下プレ乳化モノマーと
いう)の酸価を30以上にすることがハイドロゾル
化に必須であり、それより少ないとハイドロゾル
化が困難か、あるいは出来ても安定性が不十分
で、后の乳化重合が安定に行なえない。酸価が
150を越えるとハイドロゾル化工程で中和に要す
るアルカリが増加し、完全可溶化して、高粘度と
なり、乳化共重合がしにくく、高固形分の乳化重
合物が得にくく、又乳化重合物の耐水、耐アルカ
リ性も悪くなるので好ましくない。酸価は30〜
150更に好ましくは30〜110であり、この範囲にプ
レ乳化モノマーの組成を調整するのがよい。 ここで酸価とは、ラジカル重合性モノマー混合
物1gを中和するのに要するKOHのmg数であ
る。プレ乳化モノマーとして用いる酸モノマーと
しては例えばアクリル酸、メタクリル酸、イタコ
ン酸、マレイン酸(無水マレイン酸)、マレイン
酸半エステル等が使用できる。酸以外のモノマー
としては例えばアクリル酸エステル(メチル、エ
チル、プロピル、ブチル、イソブチル、ターシヤ
リブチル、シクロヘキシル、2―エチルヘキシ
ル、ラウリル、トリデシル、ステアリル等のアク
リル酸エステル)、メタクリル酸エステル(メチ
ル、エチル、プロピル、ブチル、イソブチル、タ
ーシヤリブチル、シクロヘキシル、2―エチルヘ
キシル、ラウリル、トリデシル、ステアリル等の
メタクリル酸エステル)、アクリロニトリル、メ
タアクリルニトリル、スチレン、ビニルトルエン
等が主として使用できる。又目的、用途によつて
は少量の官能性モノマー例えばヒドロキシアルキ
ルアクリレートあるいはメタクリレート(2―ヒ
ドロキシエチル、2―ヒドロキシプロピル、3―
ヒドロキシプロピル)、ポリアルキレングリコー
ルのモノアクリレートあるいはメタクリレート
(ポリエチレングリコール、ポリプロピレングリ
エールのモノアクリレートあるいはメタクリレー
ト)、N―メチロールアクリルアミド、及びこれ
らの脂肪族アルコールによるエーテル化物、アク
リルアミド、グリシジルアクリレートあるいはメ
タクリレート、ダイアセトンアクリルアミド、ヒ
ドロキシダイアセトンアクリルアミドの他酢酸ビ
ニル、ビニルエーテル類、ビニルピロリドン等も
使用することができる。これらの混合モノマーは
乳化剤として通常用いられるノニオン、アニオ
ン、両性界面活性剤をモノマーに対し0.3重量%
以下の量で、水溶性ラジカル開始剤例えば過硫酸
アニモン、カリウムの如き過硫酸塩や水溶性過酸
化物開始剤を用いて周知の方法により通常重合で
きる。重合時に使用する乳化剤の量は、モノマー
に対し0.3重量%以下好しくは0.01〜0.2重量%が
良く0.3重量%以上では、得られるエマルジヨン
の耐水性、耐食性、光沢等に悪影響を及ぼす。乳
化剤が少ないと一般にはエマルジヨンの安定性が
悪く、製造中に凝固物が出来やすいが、本発明で
は后のハイドロゾル化工程でエマルジヨンが自己
分散性となり安定化するので、凝固物が出来て
も、これもハイドロゾル化され安定化するので何
ら問題はない。 ハイドロゾルは上記で得たエマルジヨン(以下
ハイドロゾルベースエマルジヨンという)をアン
モニア、アミン等で酸成分の0.5〜1.5g当量を中
和し、高温で撹拌することによつて得られる。本
発明が目的とする乳化重合物の応用時における乾
燥性のコントロールあるいはレベリング改良のた
めに水と混和可能な有機溶剤(アルコール系、ケ
トン系、セロソルブ系)や凍結安定性のためのグ
リコール類あるいは成膜助剤として用いられる有
機溶剤類を、アルカリ中和后少量添加すること
は、ハイドロゾル化を助長、促進するので有用で
ある。又多価金属(塩)例えば亜鉛、カルシウ
ム、又はアルミニウムなどの酸化物とアンモニア
又はアミノカルボン酸(例えばグリシン)の錯化
合物をハイドロゾル化時、又はハイドロゾル化前
后に添加し、あるいは酸成分の一部を多価金属塩
とすることも、后のエマルジヨンのフイルム物性
の向上のために有用な手段である。 有機溶剤の中で溶液重合し、アルカリで中和后
水に溶剤置換することによつてもハイドロゾルは
得られるが、このような方法では溶剤置換の工程
が増え経済的にも製造面でも含理的でないし、ま
た得られたハイドロゾルの分子量が低いためか、
耐水性や接着力といつた性能面でも乳化重合によ
る本発明方法より劣る。 さて本発明においては上記ハイドロゾル中でそ
の固形分が10〜80重量%でラジカル重合性モノマ
ーが90〜20重量%となる量のラジカル重合性モノ
マーを常法によつて乳化重合することが必要であ
るが、これについてさらに具体的に説明する。 ハイドロゾルにおける固形分濃度を最終乳化重
合物の目的とする固形分に応じ10〜40重量%に調
整し、重合開始剤及びラジカル重合性モノマーを
連続的あるいは間けつ的に添加しながら重合す
る。重合温度は30〜95℃とすることが望ましい。
重合開始剤としては過硫酸塩(アンモニウム塩、
カリウム塩)が使用できるが、この場合は系のPH
を低下させ、ハイドロゾルの安定性を阻害する場
合があるので、少量の使用とするか、あるいはハ
イドロゾルのPHを事前に高めておくことが好まし
い。 この他過酸化水素、t―ブチルパーオキシマレ
イン酸、t―ブチルハイドロパーキサイドの如き
水溶性過酸化物や水溶性アゾ系開始剤〔アゾビス
シアノ吉草酸、アゾビス(2―アミデイノプロパ
ン)ハイドロクロライド〕も使用できる。この場
合、開始剤分解物がPHを下げるおそれがある場合
は過硫酸塩と同様の注意を払うことが望ましい。
重合開始剤の量はラジカル重合性モノマーに対し
0.01〜2重量%程度使用される。この他油溶性過
酸化物開始剤をラジカル重合性モノマーに混合溶
解して前記水溶性重合開始剤と併用して使用する
ことも有効である。さらにこれら水溶性開始剤を
還元剤(例えば亜硫酸ソーダーアスコルビン酸
塩、次亜硫酸ソーダのホルマリンアダクトなど)
を併用して、いわゆるレドツクス系で重合するこ
ともできる。 ラジカル重合性モノマーとしては、プレ乳化モ
ノマーとして既述列挙したものから選ばれる。ア
クリル酸エステル、メタクリル酸エステル、スチ
レン、ビニルトルエン、アクリロニトリル、メタ
クリロニトリルの組合せによるものを主成分と
し、必要に応じて前記列挙官能性モノマー(ヒド
ロキシル基、グリシジル基、メチロール基、アミ
ド基含有モノマー)や上記以外の非官能性モノマ
ーも少量使用できる。又前記列挙酸モノマーは不
要であるが、必要に応じて併用することも可能で
ある。その場合の望ましい量は全モノマー中およ
そ2重量%以下であり、またこの種のモノマーは
重合系のPHを下げ安定性を阻害する傾向を示すの
で、アルカリ塩として添加するかあるいはハイド
ロゾルのPHを事前に酸モノマーによるPH低下分だ
け高めておくことが望ましい。ハイドロゾル中の
固形分濃度とラジカル重合性モノマーの割合(10
〜80重量%/90〜20重量%)の限定理由について
記すとハイドロゾルの固形分が10重量%より少な
い場合は乳化重合の反応が遅く、末反応モノマー
が多く残り重合中に凝固物の生成量が多く、さら
にできたエマルジヨンの安定性が乏しく、粒子径
が大きく、フイルムの耐水性も劣る。一方80重量
%より多いときは、エマルジヨンの安定性は良い
が、高固形分(低粘度)のエマルジヨンが得にく
く、全ポリマー中のカルボキシル基が多くなる結
果耐水性、耐アルカリ性が損われ実用的価値の乏
しいものとなる。固形分とモノマーの特に好適な
割合はハイドロゾル中の固形分濃度30〜60重量%
でラジカル重合性モノマー70〜40重量%である。 かくして本発明の方法により得られるエマルジ
ヨンは親水性ハイドロゾルを多く含有するにも拘
らず、公知の低分子乳化剤や水溶性高分子物質を
乳化分散剤として得られるエマルジヨンよりも耐
水性が良好であり、高固形分で長期の貯蔵に対し
て安定なものであり、各種の表面コーテイング
材、バインダー、接着剤として利用できるもので
ある。 以下実施例及び比較例をあげて本発明をさらに
具体的に説明する。 以下に用いる記号の説明 MMA メチルメタクリレート ST スチレン AN アクリロニトリル EA エチルアクリレート MA メチルアクリレート BA ブチルアクリレート IBA イソブチルアクリレート HA 2―エチルヘキシルアクリレー
ト MAA メタクリル酸 AA アクリル酸 ITA イタコン酸 GMA グリシジルメタクリレート N―MAM N―メチロールアクリルアミド APS 過硫酸アンモン DM ドデシルメルカプタン t―BHPO ターシヤリーブチルハイドロパ
ーオキサイド ロンガリツト 次亜硫酸ソーダのフオルマリン
アダクト HEMA β―ヒドロキシエチルメタクリ
レート なお、部はすべて重量部であり、%はすべて重
量%である。 実施例 1 撹拌機、温度計、冷却管、滴下ロートを装備し
た44ツ口フラスコに水532部を仕込み90℃に
昇温した。続いてMMA80部EA192部、IBA96
部、AA24部、GMA8部、DM4部の混合物(混合
モノマーの酸価46.8)をラウリル硫酸ソーダ0.8
部、水360部でプレ乳化しAPS2.4部、水40部の開
始剤水溶液と共に3時間かかつて連続的に滴下し
た。この間重合温度は90±2℃に保持し、滴下終
了后さらに1時間同温度で撹拌を続けてハイドロ
ゾルベースエマルジヨンを得た。同温度に保持し
酢酸亜鉛の20%水溶液を6部と25%アンモニア水
27.2部を除々に滴下し、30分間撹拌して半透明状
のハイドロゾルを得た。次いで液温を70℃に保持
し、BA300部、MMA300部の混合モノマー(こ
の混合モノマーとハイドロゾル中の固形分の割合
は60%と40%である)にt―BHPO0.9部を溶解
したものと、ロンガリツト0.9部を水70部に溶解
したものを別個に調製し同時に、3時間にわたつ
て連続的に適下した。さらに同温度で1時間保持
して重合を完結させた。冷却后200メツシユろ布
でろ過し取出したが凝固物は殆んど認められず、
できたエマルジヨンは固形分50.6%、B型粘度計
による粘度520CPS/30℃、PH8.05で6カ月間室
温放置后も変化なく安定であつた。 実施例 2 実施例1と同じ装置、同操作により次の組成の
ハイドロゾルを得た。 フラスコに水1062部を仕込み90℃に昇温した。 プレ乳化モノマー 〔MMA120部、EA288部、IBA144部、AA36
部、DMA12部、DM6部、ラウリル硫酸ソーダー
1.2部、水500部(混合モノマーの酸価は46.8)〕 とAPS/水=3.6部/60部の水溶液を3時間で連
続的に適下し、さらに1時間撹拌した。 25%アンモニア水 51部 酢酸亜鉛(20%水溶液) 9部を徐々に適下し
30分撹拌しハイドロゾルを得た。 次に70℃に保持し、モノマー/t―BHPO溶
液(BA40部、MMA360部、t―BHPO0.6部)
とロンガリツト0.6部/水40部の水溶液を3時間
で連続的に滴下し、さらに1時間撹拌を続け重合
を完結させた。(ハイドロゾル中の固形分とラジ
カル重合性モノマーの割合は60%と40%である)
得られたエマルジヨンは凝固物は殆んどなく、固
形分35.9%、B型粘度計による粘度120CPS/30
℃、PH8.20で6ケ月以上安定なものであつた。 実施例 3 実施例1と同様にしてフラスコに水850部を仕
込み90℃として、次に示すプレ乳化モノマーと
APSを3時間にわたつて連続的に滴下した。 プレ乳化モノマー 〔MMA255部、St50部、EA150部、MAA45
部、DM5部、ドデシルベンゼンスルホン酸アミ
ン塩0.5部、水500部(混合モノマーの酸価58.7)〕 APS/水=5部/50部 さらに1時間撹拌を続けた后、25%アンモニア
水53部、ブチルカルビトールアセテート10部を添
加し1時間撹拌してハイドロゾルを得た。次に
BA500部(このモノマーとハイドロゾル中の固
形分の割合は各50%である)にt―BHPO1.0部
を溶解したものとロンガリツト水溶液(ロンガリ
ツト/水=1.0部/50部)を3時間で連続的に添
加し、さらに1時間撹拌を継続して重合を完結し
た。得られたエマルジヨンは、殆んど凝固物がな
く固形分40.1%、B型粘度計による粘度
1840CPS/30℃、PH8.15で、6カ月間安定であつ
た。 実施例 4 前記の実施例と全く同様にして次の組成でハイ
ドロゾルベースエマルジヨン得た。 フラスコ仕込水 934部 プレ乳化モノマー 〔MMA245部、EA35部、MA35部、ITA35
部、DM5.25部、ラウリル硫酸ソーダ0.175部、水
350部(モノマー酸価86.3)〕 APS水溶液(APS2.8部、水35部) 続いて次の薬液を添加してハイドロゾル化し
た。 25%アンモニア水 40部 ジエチレングリコール 60部 ブチルカルビトールアセテート 20部 続いて70℃に保ちHA585部、St65部(この混
合モノマーとハイドロゾル中の固形分の割合は65
%と35%である)、t―BHPO0.65部とロンガリ
ツト水溶液(ロンガリツト1.3部/水65部)を実
施例1と同様連続的に滴下し、乳化重合した。得
られたエマルジヨンは固形分39.7%、B型粘度計
による粘度1200CPS/30℃、PH7.65で6ケ月間安
定であつた。 実施例 5 実施例1と全く同様にして、次の組成でハイド
ロゾルベースエマルジヨンを得た。 フラスコ仕込水 375部 プレ乳化モノマー 〔MMA250部、AN25部、MA100部、BA50
部、MAA25部、DM5部、水480部ポリオキシエ
チレンノニルフエノールエーテル(HLB=15.5)
0.75部(混合モノマーの酸価は32.6)〕 APS水溶液(APS5部、水50部) 次に25%アンモニア水20部を添加し、1時間加
熱撹拌して半透明状のハイドロゾルを得た。続い
て70℃でN―MAN5部を添加した后BA400部、
MMA85部、HEMA10部の混合モノマー(この
混合モノマーとハイドロゾル中の固形分の割合は
各50%である)にt―BHPO0.75部を溶解したも
のとロンガリツト水溶液(ロンガリツト0.75部、
水75部)を3時間で連続的に滴下し、さらに1時
間撹拌して重合を完結させた。得られたエマルジ
ヨンは、殆んど凝固物がなく固形分50.1%、B型
粘度計による粘度16500CPS/30℃、PH8.5で6
ケ月間安定であつた。 比較例 1 実施例と同様にして次の組成のハイドロゾルベ
ースエマルジヨンを製造した。 ベースエマルジヨン組成 〔MMA/EA/MAA/DM=200部/280部/
20部/5部(混合モノマーの酸価26.1)ドデシル
ベンゼンスルフオン酸ソーダ 1部 APS 2.5部 水 1360部〕 次に25%アンモニア水23.7部を加えたが、ハイ
ドロゾル化しなかつたのでさらにイソプロパノー
ル100部を加えてハイドロゾル化した。 次に重合温度70℃で次の組成の原料を実施例1
と同様の操作で滴下し乳化重合した。 〔BA/MMA=250部/250部(この混合モノ
マーとハイドロゾル中の固形分の割合は各50%で
ある)、t―BHPO1部 ロンガリツト/水=1部/20部〕 得られたエマルジヨンは、凝固物が総固形分に
対し12%もあり安定性に欠けるものであつた。 その結果、目標固形分40%に対し36%のものし
か得られなかつた。 比較例 2 実施例1と同様に次の組成のハイドロゾルベー
スエマルジヨンを得た。 〔MMA/EA/MAA/DM=100部/250部/
150部/5部(混合モノマーの酸価196)ドデジル
ベンゼンスルフオン酸ソーダ 1部 APS 2.5部 水 1397部〕 次に25%アンモニア水106.7部を添加しハイド
ロゾルを得たが粘度が高いため、さらに水400部
加えた。次に重合温度70℃で次の組成の原料を加
え乳化重合した。 〔BA/MMA=250部/250部(この混合モノ
マーとハイドロゾル中の固形分の割合は各50%で
ある)、t―BHPO1部 ロンガリツト/水=1部/20部〕 得られたエマルジヨンは凝固物は殆んどなかつ
たが固形分33%、B型粘度計による粘度
38000CPS,PH7.62であつた。 比較例 3 実施例3に使用したハイドロゾルと同組成のも
のを製造し、本ハイドロゾル195部(固形分50部)
を水765部で稀釈し、次の原料を乳化重合した。 〔MMA/BA=380部/570部(この混合モノ
マーとハイドロゾル中の固形分の割合は95%と5
%である)、t―BHPO1.9部 ロンガリツト/水=1.9部/36部〕 得られたエマルジヨンは凝固物が総固形分に対
し23%と多く重合安定性の劣るものであつた。
又、重合后もモノマー臭が非常に強いものであつ
た。 比較例 4 比較例3と同じハイドロゾル3307部(固形分
850部)中で次の原料を滴下し乳化重合した。 〔BA150部(このモノマーとハイドロゾル中
の固形分の割合は15%と85%である)t―
BHPO0.2部、ロンガリツト/水=0.2部/20部〕 この場合はモノマー滴下時間は60分とした。得
られたエマルジヨンは固形分28.5%、B型粘度計
による粘度8600CPS,PH8.15であつた。 実施例 6 実施例及び比較例で得られたエマルジヨンをア
ルミ板に塗布し80℃で20分乾燥し、膜厚約15〜
20μの塗膜を作成した。実施例1,2,5につい
てはさらに150℃で3分間焼付した。塗膜のえん
ぴつ硬度、密着性(ゴバン目セロテープ剥離テス
ト)耐水性(白化プリスター観察)を測定した。
又、固形分30%以上のものについては水で固形分
30%に調整し、30%エマルジヨン100部と市販軽
質炭酸カルシウム200部を混練し塗料の流動性、
凝集の有無より顔料との混和性を判定した。 結果を第1表に示すが、本発明により得られた
エマルジヨンは、耐水性、密着性、顔料混和性が
優秀であることが判る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing emulsion polymers, and its purpose is to easily and stably produce emulsion polymers with excellent performance. As a method for producing emulsion polymers, emulsion polymerization using various surfactants as emulsifiers has been carried out for a long time, but this method does not improve the water resistance and adhesive properties of the emulsion polymers from which the emulsifier is obtained. , which had an adverse effect on gloss, corrosion resistance, etc. In order to solve these drawbacks, various methods have been proposed to reduce or eliminate the amount of emulsifier, including methods using reactive emulsifiers, and methods using water-soluble polymeric substances (acrylic, diene, alkyd, etc.). Methods of using it as an emulsifier are known. However, even if these methods are used, polymer dispersants (emulsifiers) contain hydrophilic carboxyl groups, hydroxyl groups, etc., and are generally required in larger amounts than low-molecular surfactants, and if too much is used, water resistance and corrosion resistance may deteriorate. On the other hand, if the amount used is small, the stability of the emulsion deteriorates, and the balance between the stability of the emulsion and the physical properties of the resin cannot be completely resolved. The present invention eliminates these drawbacks and provides a method for producing an emulsion polymer that is stable and has excellent coating performance. That is, the above-mentioned problems can be solved by using a hydrosol obtained by emulsion polymerizing a radically polymerizable monomer mixture with an acid value of 30 to 150 in the presence of 0.3% by weight or less (based on the monomer) and then neutralizing it with an alkali. This is achieved by carrying out emulsion polymerization in the above-mentioned hydrosol by a conventional method of a radically polymerizable monomer in an amount such that the solid content is 10 to 80% by weight and the radically polymerizable monomer is 90 to 20% by weight. Here, hydrosol means that the particle size of the dispersoid is
It is an aqueous dispersion of 0.001 to 0.1μ, and the particle size of the dispersoid in a general emulsion polymer or aqueous dispersion is
Compared to this, the dispersoids are in the form of ultrafine particles, which are about 0.1 to 5μ. First, to explain the hydrosol used in the present invention, in order to obtain a hydrosol, it is essential to make the acid value of the radically polymerizable monomer (hereinafter referred to as pre-emulsifying monomer) 30 or more for hydrosolization; It is difficult to form a polymer, or even if it is possible, the stability is insufficient and subsequent emulsion polymerization cannot be carried out stably. Acid value
If it exceeds 150, the amount of alkali required for neutralization in the hydrosolization process increases, complete solubilization results in high viscosity, it is difficult to carry out emulsion copolymerization, it is difficult to obtain an emulsion polymer with a high solid content, and the emulsion polymer becomes difficult to obtain. Water resistance and alkali resistance are also deteriorated, which is not preferable. Acid value is 30~
150, more preferably 30 to 110, and the composition of the pre-emulsifying monomer is preferably adjusted within this range. Here, the acid value is the number of mg of KOH required to neutralize 1 g of the radically polymerizable monomer mixture. As the acid monomer used as the pre-emulsifying monomer, for example, acrylic acid, methacrylic acid, itaconic acid, maleic acid (maleic anhydride), maleic acid half ester, etc. can be used. Examples of monomers other than acids include acrylic esters (acrylic esters such as methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, cyclohexyl, 2-ethylhexyl, lauryl, tridecyl, stearyl, etc.), methacrylic esters (methyl, ethyl, etc.). , propyl, butyl, isobutyl, tertiarybutyl, cyclohexyl, 2-ethylhexyl, lauryl, tridecyl, stearyl, etc.), acrylonitrile, methacrylonitrile, styrene, vinyltoluene, etc. can be mainly used. Depending on the purpose and use, small amounts of functional monomers such as hydroxyalkyl acrylate or methacrylate (2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl,
hydroxypropyl), polyalkylene glycol monoacrylate or methacrylate (polyethylene glycol, polypropylene glycol monoacrylate or methacrylate), N-methylol acrylamide, and their etherified products with aliphatic alcohols, acrylamide, glycidyl acrylate or methacrylate, diacetone acrylamide , hydroxy diacetone acrylamide, vinyl acetate, vinyl ethers, vinyl pyrrolidone, etc. can also be used. These mixed monomers contain 0.3% by weight of nonionic, anionic, and amphoteric surfactants, which are commonly used as emulsifiers, based on the monomers.
Polymerization can be conventionally carried out by well-known methods using water-soluble radical initiators such as persulfate salts such as animony persulfate, potassium or water-soluble peroxide initiators in the following amounts. The amount of emulsifier used during polymerization is 0.3% by weight or less, preferably 0.01 to 0.2% by weight, based on the monomer, and if it is more than 0.3% by weight, it will adversely affect the water resistance, corrosion resistance, gloss, etc. of the resulting emulsion. If the amount of emulsifier is small, emulsion stability is generally poor and coagulation is likely to occur during production, but in the present invention, the emulsion becomes self-dispersible and stabilized in the subsequent hydrosolization step, so even if coagulation occurs, This is also hydrosolized and stabilized, so there is no problem. The hydrosol can be obtained by neutralizing the emulsion obtained above (hereinafter referred to as hydrosol base emulsion) with ammonia, amine, etc. in an amount of 0.5 to 1.5 g equivalent of the acid component, and stirring the mixture at a high temperature. Water-miscible organic solvents (alcohol-based, ketone-based, cellosolve-based) and glycols or It is useful to add a small amount of organic solvents used as film-forming aids after neutralization of the alkali, as this facilitates and promotes hydrosolization. In addition, a complex compound of an oxide of a polyvalent metal (salt) such as zinc, calcium, or aluminum and ammonia or an aminocarboxylic acid (such as glycine) may be added during or before hydrosolization, or a part of the acid component may be added. Using a polyvalent metal salt as a polyvalent metal salt is also a useful means for improving the film properties of the subsequent emulsion. Hydrosols can also be obtained by solution polymerizing in an organic solvent, neutralizing with an alkali, and then replacing the solvent with water, but this method requires more steps for solvent replacement, making it uneconomical and difficult to manufacture. This may be because the molecular weight of the obtained hydrosol is low.
It is also inferior to the method of the present invention using emulsion polymerization in terms of performance such as water resistance and adhesive strength. In the present invention, it is necessary to emulsion polymerize the radically polymerizable monomer in an amount such that the solid content of the hydrosol is 10 to 80% by weight and the radically polymerizable monomer is 90 to 20% by weight by a conventional method. However, I will explain this in more detail. The solid content concentration in the hydrosol is adjusted to 10 to 40% by weight depending on the desired solid content of the final emulsion polymer, and polymerization is carried out while continuously or intermittently adding a polymerization initiator and a radically polymerizable monomer. The polymerization temperature is preferably 30 to 95°C.
Persulfates (ammonium salts,
Potassium salt) can be used, but in this case the pH of the system
Since this may lower the pH of the hydrosol and inhibit the stability of the hydrosol, it is preferable to use a small amount or to increase the pH of the hydrosol in advance. In addition, water-soluble peroxides such as hydrogen peroxide, t-butyl peroxymaleic acid, and t-butyl hydroperoxide, and water-soluble azo initiators [azobiscyanovaleric acid, azobis(2-amidinopropane) hydrochloride] can also be used. In this case, if there is a risk that the initiator decomposition product may lower the pH, it is desirable to take the same precautions as with persulfates.
The amount of polymerization initiator is based on the radically polymerizable monomer.
It is used in an amount of about 0.01 to 2% by weight. In addition, it is also effective to mix and dissolve an oil-soluble peroxide initiator in a radically polymerizable monomer and use it in combination with the water-soluble polymerization initiator. Furthermore, these water-soluble initiators can be combined with reducing agents (e.g., sodium sulfite ascorbate, sodium hyposulfite formalin adduct, etc.).
It is also possible to carry out polymerization in a so-called redox system by using these in combination. The radically polymerizable monomer is selected from those listed above as pre-emulsifying monomers. The main component is a combination of acrylic ester, methacrylic ester, styrene, vinyltoluene, acrylonitrile, and methacrylonitrile, and if necessary, the listed functional monomers (hydroxyl group, glycidyl group, methylol group, amide group-containing monomer) ) and non-functional monomers other than those mentioned above can also be used in small amounts. Further, although the acid monomers listed above are not necessary, they can be used in combination if necessary. In that case, the desired amount is approximately 2% by weight or less based on the total monomers, and since this type of monomer tends to lower the pH of the polymerization system and inhibit stability, it is necessary to add it as an alkali salt or to lower the pH of the hydrosol. It is desirable to increase the pH in advance by the amount of pH reduction caused by the acid monomer. Solid content concentration and ratio of radically polymerizable monomer in hydrosol (10
~80% by weight / 90~20% by weight) If the solid content of the hydrosol is less than 10% by weight, the emulsion polymerization reaction will be slow, and a large amount of end-reacted monomer will remain, resulting in an increase in the amount of coagulates produced during polymerization. Furthermore, the stability of the resulting emulsion is poor, the particle size is large, and the water resistance of the film is also poor. On the other hand, when the amount is more than 80% by weight, the stability of the emulsion is good, but it is difficult to obtain an emulsion with a high solids content (low viscosity), and the amount of carboxyl groups in the total polymer increases, resulting in a loss of water resistance and alkali resistance, making it impractical. It becomes worthless. A particularly preferred ratio of solids to monomer is a solids concentration in the hydrosol of 30 to 60% by weight.
The radically polymerizable monomer content is 70 to 40% by weight. Thus, although the emulsion obtained by the method of the present invention contains a large amount of hydrophilic hydrosol, it has better water resistance than an emulsion obtained using a known low-molecular emulsifier or water-soluble polymer substance as an emulsifying dispersant, It has a high solid content and is stable for long-term storage, and can be used as a variety of surface coating materials, binders, and adhesives. EXAMPLES The present invention will be explained in more detail below with reference to Examples and Comparative Examples. Explanation of symbols used below MMA Methyl methacrylate ST Styrene AN Acrylonitrile EA Ethyl acrylate MA Methyl acrylate BA Butyl acrylate IBA Isobutyl acrylate HA 2-Ethylhexyl acrylate MAA Methacrylic acid AA Acrylic acid ITA Itaconic acid GMA Glycidyl methacrylate N-MAM N-Methylol acrylamide APS Ammonium persulfate DM Dodecyl mercaptan t-BHPO Tertiary butyl hydroperoxide Rongarit Sodium hyposulfite formalin adduct HEMA β-hydroxyethyl methacrylate All parts are parts by weight, and all % are weight %. Example 1 532 parts of water was charged into a 44-necked flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping funnel, and the temperature was raised to 90°C. Next is MMA80, EA192, and IBA96.
A mixture of 24 parts of AA, 8 parts of GMA, and 4 parts of DM (acid value of mixed monomer 46.8) was mixed with 0.8 parts of sodium lauryl sulfate.
The mixture was pre-emulsified with 360 parts of water and continuously added dropwise for 3 hours together with an aqueous initiator solution of 2.4 parts of APS and 40 parts of water. During this time, the polymerization temperature was maintained at 90±2°C, and after the completion of the dropwise addition, stirring was continued at the same temperature for an additional hour to obtain a hydrosol base emulsion. Maintain the same temperature and add 6 parts of a 20% aqueous solution of zinc acetate and 25% ammonia water.
27.2 parts was gradually added dropwise and stirred for 30 minutes to obtain a translucent hydrosol. Next, the liquid temperature was maintained at 70°C, and 0.9 part of t-BHPO was dissolved in a mixed monomer of 300 parts of BA and 300 parts of MMA (the ratio of solid content in this mixed monomer and the hydrosol was 60% and 40%). A solution of 0.9 parts of Rongalit dissolved in 70 parts of water was prepared separately and simultaneously added continuously over a period of 3 hours. The polymerization was further maintained at the same temperature for 1 hour to complete the polymerization. After cooling, it was filtered through a 200-mesh filter cloth, but almost no coagulum was observed.
The resulting emulsion had a solid content of 50.6%, a viscosity of 520 CPS/30°C as measured by a B-type viscometer, and a pH of 8.05, and remained stable without any change after being left at room temperature for 6 months. Example 2 A hydrosol having the following composition was obtained using the same equipment and operation as in Example 1. A flask was charged with 1062 parts of water and the temperature was raised to 90°C. Pre-emulsifying monomer [MMA120 parts, EA288 parts, IBA144 parts, AA36
part, 12 parts DMA, 6 parts DM, sodium lauryl sulfate
1.2 parts of water, 500 parts of water (the acid value of the mixed monomer is 46.8)] and an aqueous solution of APS/water = 3.6 parts/60 parts were continuously added over 3 hours, and the mixture was further stirred for 1 hour. Gradually drop in 51 parts of 25% ammonia water and 9 parts of zinc acetate (20% aqueous solution).
After stirring for 30 minutes, a hydrosol was obtained. Next, keep at 70℃ and monomer/t-BHPO solution (40 parts BA, 360 parts MMA, 0.6 parts t-BHPO)
An aqueous solution of 0.6 parts of Rongalit/40 parts of water was continuously added dropwise over 3 hours, and stirring was continued for another 1 hour to complete the polymerization. (The ratio of solid content and radically polymerizable monomer in the hydrosol is 60% and 40%)
The obtained emulsion has almost no coagulated matter, has a solid content of 35.9%, and has a viscosity of 120 CPS/30 as measured by a B-type viscometer.
It was stable for more than 6 months at ℃ and PH8.20. Example 3 In the same manner as in Example 1, 850 parts of water was placed in a flask and heated to 90°C, and the following pre-emulsified monomer and
APS was continuously added dropwise over 3 hours. Pre-emulsifying monomer [MMA255 parts, St50 parts, EA150 parts, MAA45
part, 5 parts of DM, 0.5 parts of dodecylbenzenesulfonic acid amine salt, 500 parts of water (acid value of mixed monomer 58.7)] APS/water = 5 parts/50 parts After stirring for another hour, 53 parts of 25% ammonia water , 10 parts of butyl carbitol acetate was added and stirred for 1 hour to obtain a hydrosol. next
A solution of 1.0 part of t-BHPO dissolved in 500 parts of BA (the solid content of this monomer and the solid content in the hydrosol is 50% each) and a Rongarit aqueous solution (Rongalit/water = 1.0 parts/50 parts) were added continuously for 3 hours. and stirring was continued for an additional hour to complete the polymerization. The obtained emulsion had almost no coagulum, had a solid content of 40.1%, and had a viscosity measured by a B-type viscometer.
It remained stable for 6 months at 1840CPS/30℃ and PH8.15. Example 4 A hydrosol base emulsion having the following composition was obtained in exactly the same manner as in the previous example. Flask preparation water 934 parts Pre-emulsified monomer [MMA 245 parts, EA 35 parts, MA 35 parts, ITA 35
part, DM5.25 part, sodium lauryl sulfate 0.175 part, water
350 parts (monomer acid value 86.3)] APS aqueous solution (APS 2.8 parts, water 35 parts) Subsequently, the following chemical solution was added to form a hydrosol. 25% ammonia water 40 parts Diethylene glycol 60 parts Butyl carbitol acetate 20 parts Next, keep at 70℃ HA585 parts, St65 parts (The ratio of solids in this mixed monomer and hydrosol is 65
% and 35%), 0.65 part of t-BHPO and a Rongarit aqueous solution (1.3 parts of Rongarit/65 parts of water) were continuously added dropwise in the same manner as in Example 1, and emulsion polymerization was carried out. The resulting emulsion had a solid content of 39.7%, a viscosity of 1200 CPS/30° C. as measured by a B-type viscometer, and a pH of 7.65, and was stable for 6 months. Example 5 In exactly the same manner as in Example 1, a hydrosol base emulsion was obtained with the following composition. Flask preparation water 375 parts Pre-emulsified monomer [MMA 250 parts, AN 25 parts, MA 100 parts, BA 50
parts, MAA 25 parts, DM 5 parts, water 480 parts Polyoxyethylene nonylphenol ether (HLB=15.5)
0.75 parts (acid value of mixed monomer is 32.6)] APS aqueous solution (APS 5 parts, water 50 parts) Next, 20 parts of 25% ammonia water was added, and the mixture was heated and stirred for 1 hour to obtain a translucent hydrosol. Subsequently, 5 parts of N-MAN was added at 70°C, followed by 400 parts of BA.
A solution of 0.75 part of t-BHPO dissolved in a monomer mixture of 85 parts of MMA and 10 parts of HEMA (the proportion of solid content in this mixed monomer and the hydrosol is 50% each) and a Rongarit aqueous solution (0.75 part of Rongarit,
75 parts of water) was continuously added dropwise over 3 hours, and the mixture was further stirred for 1 hour to complete the polymerization. The obtained emulsion had almost no coagulates, had a solid content of 50.1%, and had a viscosity of 16,500 CPS measured by a B-type viscometer at 30°C and PH 8.5.
It remained stable for several months. Comparative Example 1 A hydrosol base emulsion having the following composition was produced in the same manner as in Example. Base emulsion composition [MMA/EA/MAA/DM=200 parts/280 parts/
20 parts/5 parts (acid value of mixed monomer 26.1) Sodium dodecylbenzenesulfonate 1 part APS 2.5 parts Water 1360 parts] Next, 23.7 parts of 25% aqueous ammonia was added, but since no hydrosolization occurred, an additional 100 parts of isopropanol was added. was added to form a hydrosol. Next, at a polymerization temperature of 70°C, raw materials with the following composition were added to Example 1.
Dropwise emulsion polymerization was carried out in the same manner as above. [BA/MMA = 250 parts/250 parts (the proportion of solid content in this mixed monomer and hydrosol is 50% each), 1 part of t-BHPO, Rongarit/water = 1 part/20 parts] The obtained emulsion was The coagulated material accounted for 12% of the total solid content and lacked stability. As a result, a solids content of only 36% was obtained compared to the target solid content of 40%. Comparative Example 2 A hydrosol base emulsion having the following composition was obtained in the same manner as in Example 1. [MMA/EA/MAA/DM=100 copies/250 copies/
150 parts/5 parts (acid value of mixed monomer 196) Sodium dodecylbenzenesulfonate 1 part APS 2.5 parts Water 1397 parts] Next, 106.7 parts of 25% aqueous ammonia was added to obtain a hydrosol, but the viscosity was high. Added another 400 parts of water. Next, raw materials having the following composition were added and emulsion polymerization was carried out at a polymerization temperature of 70°C. [BA/MMA = 250 parts/250 parts (the proportion of solid content in this mixed monomer and hydrosol is 50% each), 1 part of t-BHPO, Rongarit/water = 1 part/20 parts] The obtained emulsion is coagulated. There was almost no solid content, but the solid content was 33%, and the viscosity was measured using a B-type viscometer.
It was 38000CPS and PH7.62. Comparative Example 3 A hydrosol with the same composition as that used in Example 3 was produced, and 195 parts of this hydrosol (solid content 50 parts) was prepared.
was diluted with 765 parts of water, and the following raw materials were emulsion polymerized. [MMA/BA=380 parts/570 parts (The solid content ratio of this mixed monomer and hydrosol is 95% and 5%.
%), t-BHPO 1.9 parts Rongarit/water = 1.9 parts/36 parts] The resulting emulsion contained a large amount of coagulum at 23% of the total solid content and had poor polymerization stability.
Moreover, even after polymerization, the monomer odor was very strong. Comparative Example 4 3307 parts of the same hydrosol as Comparative Example 3 (solid content
(850 parts), the following raw materials were added dropwise for emulsion polymerization. [150 parts of BA (the proportion of this monomer and the solid content in the hydrosol is 15% and 85%) t-
0.2 parts of BHPO, Rongarit/water = 0.2 parts/20 parts] In this case, the monomer dropping time was 60 minutes. The resulting emulsion had a solid content of 28.5%, a viscosity of 8600 CPS as measured by a B-type viscometer, and a pH of 8.15. Example 6 The emulsions obtained in Examples and Comparative Examples were applied to an aluminum plate and dried at 80°C for 20 minutes, resulting in a film thickness of about 15~
A 20μ coating film was created. Examples 1, 2, and 5 were further baked at 150°C for 3 minutes. The pencil hardness and adhesion (cello tape peeling test) of the coating film and water resistance (observation of whitening pristar) were measured.
Also, for products with a solid content of 30% or more, reduce the solid content with water.
30% and knead 100 parts of 30% emulsion and 200 parts of commercially available light calcium carbonate to improve the fluidity of the paint.
Miscibility with the pigment was determined based on the presence or absence of aggregation. The results are shown in Table 1, and it can be seen that the emulsion obtained according to the present invention has excellent water resistance, adhesion, and pigment miscibility. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 酸価30〜150のラジカル重合性モノマー混合
物を、ラジカル重合性モノマー混合物に対し0.3
重量%以下の乳化剤の存在下で乳化重合後、アル
カリで中和して得られるハイドロゾルを使用し、
その固形分が10〜80重量%でラジカル重合性モノ
マーが90〜20重量%となる量のラジカル重合性モ
ノマーを、前記ハイドロゾル中で乳化重合するこ
とを特徴とする乳化重合物の製造法。
1 Add a radically polymerizable monomer mixture with an acid value of 30 to 150 at a rate of 0.3 to the radically polymerizable monomer mixture.
Using a hydrosol obtained by neutralizing with an alkali after emulsion polymerization in the presence of an emulsifier of up to % by weight,
A method for producing an emulsion polymer, comprising emulsion polymerizing an amount of a radically polymerizable monomer in the hydrosol in an amount such that the solid content thereof is 10 to 80% by weight and the radically polymerizable monomer is 90 to 20% by weight.
JP8343579A 1979-07-03 1979-07-03 Preparation of emulsion polymer Granted JPS568407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8343579A JPS568407A (en) 1979-07-03 1979-07-03 Preparation of emulsion polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8343579A JPS568407A (en) 1979-07-03 1979-07-03 Preparation of emulsion polymer

Publications (2)

Publication Number Publication Date
JPS568407A JPS568407A (en) 1981-01-28
JPH0123481B2 true JPH0123481B2 (en) 1989-05-02

Family

ID=13802347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8343579A Granted JPS568407A (en) 1979-07-03 1979-07-03 Preparation of emulsion polymer

Country Status (1)

Country Link
JP (1) JPS568407A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125167A (en) * 1975-02-14 1976-11-01 Shinetsu Sakusan Vinyl Kk Preparation of improved aqueous polymer emulsion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125167A (en) * 1975-02-14 1976-11-01 Shinetsu Sakusan Vinyl Kk Preparation of improved aqueous polymer emulsion

Also Published As

Publication number Publication date
JPS568407A (en) 1981-01-28

Similar Documents

Publication Publication Date Title
US4894397A (en) Stable emulsion polymers and methods of preparing same
US5804632A (en) Production of polymer emulsions
US3513120A (en) Production of dispersions of polymers of styrene and esters of acrylic or methacrylic acid
JPH0649153A (en) Copolymer containing crotonic acid ester, its preparation and its application
EP1682586A2 (en) Aqueous dispersions containing multi-stage emulsion polymers
EP0157928A1 (en) Aqueous dispersion of vinyl copolymer resin
JP2003529645A (en) Polymerizable compounds and uses thereof
JPH09328502A (en) Water-base polymer dispersion as binder for nonblocking, scratch-resistant elastic coating material
CA1299306C (en) Multilobals
US4665142A (en) Emulsion polymers free from emulsifiers and protective colloids, a process for their preparation and their use
EP1082370A1 (en) Starch degradation/graft polymerisation composition, process, and uses thereof
EP0257567B1 (en) Resin-fortified emulsion polymers and methods of preparing the same
EP1099712B1 (en) Emulsion polymers
JP2002155229A (en) Method for producing aqueous resin composition for dispersing pigment
JPS5842608A (en) Plastic dispersion comprising acryl monomer majorly as plastic component and manufacture
WO2020127857A1 (en) Polymodal and alkali soluble resin supported emulsion polymers
JP2986909B2 (en) Stable emulsion polymer and method for producing the same
JPH0123481B2 (en)
JP3676572B2 (en) Vinylidene chloride emulsion and aqueous resin composition for undercoat
JPS63258913A (en) Hardening water-based resin dispersion
JP3711628B2 (en) Method for producing aqueous resin dispersion
JPS6150516B2 (en)
JPH11124530A (en) Emulsion for aqueous coating
JPH06107713A (en) Copolymer aqueous emulsion and primer using the emulsion and used for silicone-coated paper
DE19912191A1 (en) Process for the preparation of high solids aqueous polymer dispersions