JPH01234558A - Formation of transparent conductive film - Google Patents

Formation of transparent conductive film

Info

Publication number
JPH01234558A
JPH01234558A JP5839588A JP5839588A JPH01234558A JP H01234558 A JPH01234558 A JP H01234558A JP 5839588 A JP5839588 A JP 5839588A JP 5839588 A JP5839588 A JP 5839588A JP H01234558 A JPH01234558 A JP H01234558A
Authority
JP
Japan
Prior art keywords
substrate
film
transparent conductive
gas
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5839588A
Other languages
Japanese (ja)
Inventor
Makoto Yoshida
誠 吉田
Kazuhiro Miyamoto
和弘 宮本
Akira Tazaki
田崎 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP5839588A priority Critical patent/JPH01234558A/en
Publication of JPH01234558A publication Critical patent/JPH01234558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily form a transparent conductive film having desired characteristics with good adhesiveness and reproducibility onto an unheated substrate by heating a base material to evaporate in a vacuum device, casting the vapor thereof to the substrate and casting a prescribed gas which is activated to the substrate. CONSTITUTION:The inside of a reaction chamber 1 is evacuated to a prescribed pressure by an evacuation device. The base material 17 contg. the constituting elements of the desired transparent conductive film is heated to evaporate by a heating source 16 of an evaporation device 6 in this reaction chamber 1 and the vapor thereof is cast to the substrate 3 by opening a shutter 4. The activated gas which is obtd. by ionizing a gas 9 for activation by an ion source 12 of a gas activation device 11 is accelerated by a power supply 13 for acceleration and is cast to the above-mentioned substrate 3. This activated gas collides against the substrate 3 and releases energy. The above-mentioned vapor is subjected to vapor deposition by the energy thereof. The film having the desired electrical conductivity and light transmittance and the good adhesiveness is thereby easily formed with the good reproducibility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は膜の形成方法に関し、特に透明導電膜の形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a film, and particularly to a method for forming a transparent conductive film.

[従来の技術] 透明導電膜の形成方法として真空蒸着やスパッタリング
が知られている。通常、透明導電膜は可視光(400−
800nn+)に対する80%以上の光透過率と数10
0Ω/口以下の電気抵抗率を有することか望まれる。亜
鉛酸化物(ZnOx)Hの形成を例にとって、説明する
[Prior Art] Vacuum deposition and sputtering are known as methods for forming transparent conductive films. Usually, the transparent conductive film is visible light (400-
800n+) light transmittance of 80% or more and number 10
It is desirable to have an electrical resistivity of 0 Ω/mouth or less. The formation of zinc oxide (ZnOx)H will be explained as an example.

真空蒸着では、膜を構成する物質またはその構成元素を
含む物質(母材)を加熱して蒸発させ、基板上に膜を堆
積させる。たとえば、第2A図に示すように1反応室2
8内にOカス−02ガスと不活性カスの混合ガス等の雰
囲気カス20を10−3〜1O−6Torr導入し、雰
囲気内でZn。
In vacuum evaporation, a substance constituting a film or a substance (base material) containing its constituent elements is heated and evaporated, and a film is deposited on a substrate. For example, as shown in FIG. 2A, one reaction chamber and two
Atmosphere scum 20 such as a mixed gas of O scum-02 gas and inert scum is introduced into 8 at a pressure of 10-3 to 1 O-6 Torr, and Zn is removed in the atmosphere.

ZnO等の母材21を電子ビーム加熱又は抵抗加熱によ
り蒸発させ、基板22上に蒸着させる。母材かZnの場
合は、雰囲気中の酸素と化合したZnoが、・母材がZ
nOの場合は、欠乏する酸素を雰囲気中の酸素から補給
したZnOか、基板上に堆積する6膜を強固に付着させ
、透明度をよくするためにはヒータ23で基板22を加
熱する。蒸着時に併せてクロー放電を起こし、飛翔中の
被膜物質を反応させなり励起させなりするイオンブレー
ティングも知られている。
A base material 21 such as ZnO is evaporated by electron beam heating or resistance heating and deposited on a substrate 22 . When the base material is Zn, the Zno combined with oxygen in the atmosphere is
In the case of nO, ZnO is supplied with deficient oxygen from oxygen in the atmosphere, or the 6 films deposited on the substrate are firmly attached, and the substrate 22 is heated with a heater 23 to improve transparency. Ion blating is also known, in which a claw discharge is generated during vapor deposition to react and excite the flying coating material.

スパッタリングでは、第2B図に示すように直流や高周
波等の電界中でAr等の導入カス26を放電させ、カス
イオンを電気的に加速してZnO等のターゲラ1〜25
に衝突させる。ターゲット25の材料は衝突によりたた
き出され、基板22上に膜を形成する。膜を強固に付着
させ、透明度をよくするために、ヒータ23で基板22
を加熱する。ZnOの代わりにZnを用い、雰囲気に酸
素を含ませる方法もある。雰囲気の圧力は1〜1O−3
Torr位である。
In sputtering, as shown in FIG. 2B, introduced scum 26 such as Ar is discharged in an electric field such as a direct current or high frequency, and the scum ions are electrically accelerated to form target particles 1 to 25 such as ZnO.
to collide with. The material of the target 25 is knocked out by the collision and forms a film on the substrate 22. In order to firmly adhere the film and improve transparency, the substrate 22 is heated with a heater 23.
heat up. There is also a method of using Zn instead of ZnO and including oxygen in the atmosphere. The pressure of the atmosphere is 1~1O-3
It is about Torr.

これらの方法において、作成する膜を透明にするために
は、基板を加熱しなければならない。しかし、同時に導
電性を自由に制御することは困難である。また、スパッ
タリングによれば反応室全体で放電か起き反応室の壁面
材料や壁面に付着した不純物(水1酸素、窒素等)が飛
び出して膜中に入り込みやすい問題もある。
In these methods, the substrate must be heated in order to make the film transparent. However, it is difficult to freely control conductivity at the same time. In addition, sputtering has the problem that discharge occurs throughout the reaction chamber and impurities (water, oxygen, nitrogen, etc.) attached to the wall surface of the reaction chamber tend to fly out and enter the film.

透明度を別としても、十分な膜強度を得るには成膜時も
しくは成膜後に200 ’C以上に加熱することが望ま
しい。しかし、工程数はできるたけ少ないほうか好まし
い。また、高温で形成された膜を室温に戻す時、基板と
の熱膨脹率の差により剥離または欠陥が生じやすい。た
とえば、ガラス基板上にZnOを蒸着した場合、基板を
加熱、冷却するとピンホールを作りやすい。また、高温
に弱い基板材料は使用できない。
Apart from transparency, in order to obtain sufficient film strength, it is desirable to heat the film to 200'C or higher during or after film formation. However, it is preferable that the number of steps be as small as possible. Furthermore, when a film formed at a high temperature is returned to room temperature, peeling or defects are likely to occur due to the difference in coefficient of thermal expansion with the substrate. For example, when ZnO is deposited on a glass substrate, pinholes are likely to be formed when the substrate is heated and cooled. Furthermore, substrate materials that are sensitive to high temperatures cannot be used.

[発明か解決しようとする問題点] 従来、透明導電膜の形成において、所望の導電性(電気
抵抗率)1光透過率特性を有する膜を形成することは容
易でなかった。
[Problems to be Solved by the Invention] Conventionally, in forming a transparent conductive film, it has not been easy to form a film having desired conductivity (electrical resistivity) and light transmittance characteristics.

また十分な基板加熱なしに、基板に強固に密着する膜を
形成することら困難であった。
Furthermore, it is difficult to form a film that tightly adheres to the substrate without sufficient heating of the substrate.

蒸着では雰囲気カスを用いたとしても、そのガスは活性
化できない。イオンブレーティングではカスと母材の蒸
気を独立に制御することは困難である。スパッリングで
はカスを活性化はできるか活性化の状態か制御困難であ
る。このため、膜質制御が困難である。
Even if atmospheric gas is used in vapor deposition, the gas cannot be activated. In ion blating, it is difficult to control the vapor of the scum and base metal independently. In sparring, it is difficult to control whether it is possible to activate the scum or whether it is in an activated state. For this reason, film quality control is difficult.

本発明の目的は、所望の導電性と光透過率とを有する膜
を容易に再現性よく形成する方法を提供することである
An object of the present invention is to provide a method for easily forming a film having desired conductivity and light transmittance with good reproducibility.

さらに他の目的は、特に基板加熱をしなくても。Furthermore, other purposes can be achieved even without heating the substrate.

密着性良く、所望の特性を有する透明導電膜を形成でき
る方法を提供することである。
An object of the present invention is to provide a method for forming a transparent conductive film with good adhesion and desired characteristics.

[問題点を解決するための手段] 蒸着装置内に蒸着源と別にガス活性化装置を設け、−R
材を蒸発させ、基板上に膜を堆積させる際。
[Means for solving the problem] A gas activation device is provided in the vapor deposition apparatus separately from the vapor deposition source, and -R
When evaporating the material and depositing the film on the substrate.

カスを活性化し、同時に基板に当てる。Activate the scum and apply it to the substrate at the same time.

活性化としては、イオン化、高エネルギ化、ラジカル化
、高運動エネルギ化等がある。
Activation includes ionization, high energy, radicalization, high kinetic energy, etc.

活性化のパラメータとしては、活性化の種類。The activation parameter is the type of activation.

活性化の程度、カス種、カス量、を材との比率。The degree of activation, type of waste, amount of waste, and ratio to wood.

基板加熱との併用の場合の併用程度等がある。There are degrees of combined use in case of combined use with substrate heating, etc.

[作用] 活性化カスは基板上で母材の蒸着に種々の作用を及ぼす
ことがてきる。
[Effects] The activated scum can exert various effects on the vapor deposition of the base material on the substrate.

母材の蒸発とカスの活性化とが別個に行なわれるので、
それぞれを所望の条件に制御できる。
Evaporation of the base material and activation of the residue are performed separately, so
Each can be controlled to desired conditions.

たとえば、活性化したカスは基板に当たる時エネルギを
放出し、基板加熱と同様の効果を発揮する。この作用に
よって、蒸着膜の透明度(光透過率)を上げることがで
きる。また、蒸着膜の強度(密着性)を上げることがで
きる。
For example, activated scum releases energy when it hits a substrate, producing an effect similar to substrate heating. This effect can increase the transparency (light transmittance) of the deposited film. Moreover, the strength (adhesion) of the deposited film can be increased.

活性化ガスと蒸着母材とを反応させることもできる。反
応は部分的なものでもよい。たとえば。
It is also possible to cause the activation gas to react with the vapor deposition base material. The reaction may be partial. for example.

酸化物のように蒸着すると酸素が欠乏気味になるような
場合、その欠乏する酸素を補給する。それによって光透
過率の制御を行うこともできる。
If evaporation of an oxide causes a lack of oxygen, the deficient oxygen is replenished. Thereby, the light transmittance can also be controlled.

[実施例] 第1図を参照して本発明の1実施例による透明導電膜の
形成を説明する。反応室1中には接地電位に接続された
基板3が置かれ、シャッタ4で蒸発装置6と切離し可能
とされている。基板3上にはヒータ2が配置されており
、基板を加熱することかできる。蒸発装置6は加熱源1
6と蒸発母材17を含む。カス活性化装置11はイオン
源12と加速電源13とを含む。バルブ8は雰囲気調整
用のカス7を導入する。もう1つのバルブ10は活性化
用のガス9を導入する。活性化用ガス9はイオン源12
内でイオン化され、加速電源13によって加速されて、
活性化される。反応室1は真空排気系19によって排気
できる。
[Example] Formation of a transparent conductive film according to an example of the present invention will be described with reference to FIG. A substrate 3 connected to ground potential is placed in the reaction chamber 1, and can be separated from the evaporator 6 by a shutter 4. A heater 2 is placed on the substrate 3 and can heat the substrate. The evaporator 6 is the heating source 1
6 and evaporation base material 17. The scum activation device 11 includes an ion source 12 and an acceleration power source 13. The valve 8 introduces the waste 7 for atmosphere adjustment. Another valve 10 introduces the activation gas 9. The activation gas 9 is an ion source 12
is ionized within and accelerated by the acceleration power source 13,
activated. The reaction chamber 1 can be evacuated by a vacuum evacuation system 19.

母材17は、形成する透明導電膜の構成元素を含むもの
であり、亜鈴、亜鈴とアルミニウム、亜鉛とカリウム、
亜鉛とインジウム、錫、カドミウム−錫、それらの酸化
物等からなる。たとえば、■族元素の酸化物と■族元素
との組み合わせの場合、■族元素の酸化物は安定な化合
物半導体であるが、■族元素はその中で導電性付与不純
物となる。
The base material 17 contains the constituent elements of the transparent conductive film to be formed, and includes dumbbell, dumbbell and aluminum, zinc and potassium,
It consists of zinc, indium, tin, cadmium-tin, and their oxides. For example, in the case of a combination of an oxide of a group II element and a group II element, the oxide of the group III element is a stable compound semiconductor, but the group III element becomes an impurity imparting conductivity therein.

加熱源16は、抵抗加熱1電子ビーム加熱、高周波誘導
加熱等によって母材17を蒸発させる。
The heat source 16 evaporates the base material 17 by resistance heating, electron beam heating, high frequency induction heating, or the like.

活性化装置11はカスを化学的ないし物理的に活性化な
いし励起するものである。たとえばイオン化、高エネル
ギ化、ラジカル化、高運動エネルギ化等するものであり
、好ましくは基板に向かって速度を持つ活性化ガス粒子
束をつくる。典型的にはイオン源12と加速装置13を
含む。イオン源12は例えばカウフマンイオン源等の熱
陰極型イオン源で構成できる。
The activation device 11 is for chemically or physically activating or exciting the dregs. For example, it ionizes, increases energy, radicalizes, increases kinetic energy, etc., and preferably creates an activated gas particle flux that has a velocity toward the substrate. It typically includes an ion source 12 and an accelerator 13. The ion source 12 can be configured with a hot cathode type ion source, such as a Kaufmann ion source.

活性化用のガスはアルゴン(Arl、ヘリウム(He)
、キセノン(Xe)等の化学的不活性カス、酸素、水素
等の化学的活性カス、上記化学的不活性カスと化学的活
性カスの混合カスから選ばれる。たとえば酸化物膜に対
する酸素等作成する膜の構成元素か、不活性ガス等膜中
に取り込まれにくい、または膜から容易に抜は出るもの
で不純物として残りにくいものである。
The activation gas is argon (Arl), helium (He)
, chemically inert scum such as xenon (Xe), chemically active scum such as oxygen and hydrogen, and a mixture of the above-mentioned chemically inert scum and chemically active scum. For example, it may be a constituent element of the film to be formed, such as oxygen for an oxide film, or an inert gas that is difficult to incorporate into the film, or it is easily extracted from the film and is unlikely to remain as an impurity.

活性化カスは、たとえばカウフマンイオン源である。イ
オン源12内に導入され、その中で分解。
The activated dregs are, for example, a Kaufmann ion source. introduced into the ion source 12 and decomposed therein.

イオン化される。イオン化されたガス粒子は、加速電源
13により基板3とイオン源12間に印加された数10
〜1000ボルトの直流電圧によって作られる電界によ
って加速され、基板3に到達する。
Ionized. The ionized gas particles are applied between the substrate 3 and the ion source 12 by the acceleration power source 13.
It is accelerated by the electric field created by the DC voltage of ~1000 volts and reaches the substrate 3.

蒸着の際は、反応室1を排気系9により10−6〜10
−7T o r r程度の十分低い圧力まで予備排気す
る。その後、加熱源16により母材17を蒸発させる。
During vapor deposition, the reaction chamber 1 is heated to a temperature of 10-6 to 10
Preliminarily evacuate to a sufficiently low pressure of about -7 Torr. Thereafter, the base material 17 is evaporated by the heat source 16.

蒸発速度は蒸発速度モニタ5によりモニタされ、コント
ロールされる。一方力ス活性化装置11により活性化用
導入カス9を活性化する。
The evaporation rate is monitored and controlled by an evaporation rate monitor 5. On the other hand, the introduction waste 9 for activation is activated by the force activation device 11.

また必要に応じ雰囲気を雰囲気調整用ガス7で調整する
。母材17の蒸気と活性化した導入カス9か基板3上お
よび基板3近傍で作用する。蒸気の量とカスの量、加速
電圧等の活性化状態等を制御することて、所望の導電性
、透明度を持つ薄膜を基板上に形成できる。
Further, the atmosphere is adjusted using an atmosphere adjusting gas 7 if necessary. The vapor of the base material 17 and the activated introduced waste 9 act on and near the substrate 3. By controlling the amount of vapor, amount of residue, activation state such as accelerating voltage, etc., a thin film having desired conductivity and transparency can be formed on the substrate.

透明導電膜は、可視光に対する光透過率80%以上、電
気抵抗率lXl0’Ωcm以下を有することが好ましい
。電気抵抗率がlXl0’Ωcmの場合面抵抗は膜厚5
00Aで200Ω/口、1000Aで100Ω/口等と
なる。用途に応じ面抵抗。
The transparent conductive film preferably has a visible light transmittance of 80% or more and an electrical resistivity of lXl0'Ωcm or less. When the electrical resistivity is lXl0'Ωcm, the sheet resistance is film thickness 5
00A is 200Ω/mouth, 1000A is 100Ω/mouth, etc. Surface resistance depending on the application.

膜厚を選択する。Select film thickness.

[ZnO透明導電膜の場合] a、透明度 ZnとOとの組成比か約1:1てあり、ZnとOとが規
則正しく、ZnOの結晶配置で並び結合すると透明にな
ると考えられる。従来法の加熱はこの規則正しい配置を
実現するためのマイグレーションエネルギを与えるもの
と考えられる。本実施例の活性化イオンは加速エネルギ
およびイオン、ラジカルの化学的活性度か結晶配置を実
現するマイグレーションエネルギ等を与えるものと考え
られる。加速エネルギ、イオン(ラジカル)量を調整す
ることで膜を透明にできる6条件をすらずと、膜の透明
度は落ちる。ZnとOとの結合か出来能くなるためと考
えられる。ZnとOとの混合割合を変えることによって
も透明度を制御できる。Oに対してZnか多くなるほど
、透明度は低くなる。
[In case of ZnO transparent conductive film] a. Transparency The composition ratio of Zn and O is approximately 1:1, and it is thought that the film becomes transparent when Zn and O are regularly aligned and combined in the crystal arrangement of ZnO. Conventional heating is thought to provide migration energy to achieve this regular arrangement. The activated ions of this example are considered to provide acceleration energy, chemical activity of ions and radicals, or migration energy for realizing crystal configuration. If the six conditions that make a film transparent by adjusting the acceleration energy and amount of ions (radicals) are not met, the transparency of the film will deteriorate. This is thought to be due to the ability to form a bond between Zn and O. Transparency can also be controlled by changing the mixing ratio of Zn and O. The more Zn is added to O, the lower the transparency becomes.

ZnOを母材として使用した場合も、雰囲気の酸素分圧
を調整することで、透明度を制御できる6b、導電性 ZnO結晶は、通常透明で高抵抗(ρ>108゛Ωcm
)である。透明かつ導電性とするためには、組成を制御
する方法がある。さらに結晶性も関係する。ます、透明
なZnO結晶(規則正しい結合状態)になる条件を選ぶ
。つき′に、得られた化学量論的組成を動かして、Zn
かOに対して少しく例えは数%)多くなるようにすると
、低抵抗となる。結晶性か悪いと導電性も悪くなる。低
抵抗を得るためには、結晶性かよくなるように活性化イ
オンの照射等を制御する。
Even when ZnO is used as a base material, transparency can be controlled by adjusting the oxygen partial pressure in the atmosphere.6b Conductive ZnO crystals are usually transparent and have high resistance (ρ>108゛Ωcm).
). In order to make it transparent and conductive, there is a method of controlling the composition. Furthermore, crystallinity is also relevant. First, select conditions that will result in transparent ZnO crystals (regular bonding state). Then, by changing the obtained stoichiometric composition, Zn
If it is made to be a little more (for example, several percent) than O, the resistance will be low. If the crystallinity is poor, the conductivity will also be poor. In order to obtain low resistance, the activation ion irradiation etc. are controlled to improve crystallinity.

以下この方法により形成した透明導電膜の例のデータを
示す。
Data of examples of transparent conductive films formed by this method are shown below.

例 材料 導入 反応室 加速 成膜 光透 抵抗率カス 
圧力  電圧 速度 過率 Torr     V      A/s    χ 
    ΩC「I  Zn0  八r     〜10
    100   1     90    10−
’22nOAr   〜10  500 1  95 
 10”3、Zn  O〜10  100 2  90
  10’(たたし、基板加熱はおこなっていない)サ
ンプル1は極めて低い抵抗率を得る例である。
Example material Introduction Reaction chamber Acceleration Film formation Light transmission Resistivity scum
Pressure Voltage Speed Overrate Torr V A/s χ
ΩC “I Zn0 8r ~10
100 1 90 10-
'22nOAr ~10 500 1 95
10"3, Zn O~10 100 2 90
Sample 1 of 10' (warped, no substrate heating was performed) is an example of obtaining extremely low resistivity.

反応室圧力を低くすることで酸素分圧を低くし、Znに
対するOの比率を低くしている。加速電圧を100Vに
することで、結晶性を得ている。
By lowering the reaction chamber pressure, the oxygen partial pressure is lowered and the ratio of O to Zn is lowered. Crystallinity is obtained by setting the acceleration voltage to 100V.

サンプル2は高い抵抗率を有する膜を作る例である。反
応室圧力を高くして酸素分圧を上げ、はぼ化学量論的組
成を達成するようにしている。反応室圧力が上がると、
イオンは衝突でエネルギを失うので加速電圧を500■
と増加して、結晶性を得ている。
Sample 2 is an example of making a film with high resistivity. The pressure in the reaction chamber is increased to increase the partial pressure of oxygen to achieve near-stoichiometric composition. When the reaction chamber pressure increases,
Ions lose energy due to collisions, so increase the acceleration voltage to 500■
and increases to obtain crystallinity.

サンプル3は母材にZnを使用した場合の例である。母
材に酸素か含まれていないので、雰囲気を酸素とし、圧
力も高めにしている。条件を選ぶことで抵抗率はもっと
低くできるものと考えられる。
Sample 3 is an example in which Zn is used as the base material. Since the base material does not contain oxygen, the atmosphere is oxygen and the pressure is high. It is thought that the resistivity can be lowered even further by selecting the conditions.

このように、母材の蒸着と活性化カスの照射を併用する
ことにより、所望の光透過度と所望の導電性を有する透
明導電膜を得ることかてきる。透明電極として所望され
る80%以上の光透過率を確実に得ることかできる。所
望の面抵抗率を比較的薄い膜で実現できる。
In this way, by using both the vapor deposition of the base material and the irradiation of the activated residue, it is possible to obtain a transparent conductive film having desired light transmittance and desired conductivity. It is possible to reliably obtain a light transmittance of 80% or more, which is desired for a transparent electrode. A desired sheet resistivity can be achieved with a relatively thin film.

さらに、基板加熱の効果を活性化されたカスで出すこと
かできるため、従来より低温て成膜か可能である。この
ため耐熱性の低い例えばポリスチレン等の高分子フィル
ム上へまた顔料等を塗布した基板上へ成膜か可能である
。また、耐熱性か低く、高温処理による不純物の混入に
影響され易い半導体より成る各種デバイス、電界発光(
EL)。
Furthermore, since the effect of heating the substrate can be produced by the activated dregs, it is possible to form a film at a lower temperature than in the past. Therefore, it is possible to form a film on a polymer film such as polystyrene, which has low heat resistance, or on a substrate coated with a pigment or the like. In addition, various devices made of semiconductors, which have low heat resistance and are easily affected by the contamination of impurities due to high-temperature processing, and electroluminescent (
EL).

液晶(LC)等の表示デバイスや太陽電池、薄膜1〜ラ
ンジスタ(TFT)等のアモルファスシリコン系の薄膜
デバイスに使用か可能である。
It can be used for display devices such as liquid crystals (LC), solar cells, and amorphous silicon-based thin film devices such as thin film transistors (TFT).

[発明の効果] 母材の蒸気と活性化されたガスを独立に制御できるなめ
、得られる透明導電膜の膜質1例えば導電性、透明度等
を高い自由度でコントロールすることか可能である。
[Effects of the Invention] Since the vapor of the base material and the activated gas can be controlled independently, it is possible to control the properties of the resulting transparent conductive film, such as conductivity and transparency, with a high degree of freedom.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を実施するための成膜装置の
概略断面図、第2A図と第2B図は従来技術による成膜
方法を実施するなめの成膜装置の概略断面図である。 符号の説明 1   反応室 3   基板 4   シャッタ 6   蒸発装置 16   加熱源 17    i材 7   雰囲気調整用カス 9活性化用カス 11   カス活性化装置 12   イオン源 13   加速用電源
FIG. 1 is a schematic cross-sectional view of a film-forming apparatus for implementing an embodiment of the present invention, and FIGS. 2A and 2B are schematic cross-sectional views of a film-forming apparatus for implementing a film-forming method according to the prior art. be. Explanation of symbols 1 Reaction chamber 3 Substrate 4 Shutter 6 Evaporator 16 Heat source 17 I material 7 Atmosphere adjustment scum 9 Activation scum 11 scum activation device 12 Ion source 13 Acceleration power source

Claims (1)

【特許請求の範囲】[Claims] (1)、真空装置内で基板上に所望の透明度、導電性を
もった透明導電膜を形成する方法であって、該透明導電
膜の構成元素を含む母材を加熱蒸発して、その蒸気を基
板に当て、同時に所定のガスを活性化して活性化ガスを
基板に当て、基板上に透明導電膜を形成することを特徴
とする透明導電膜の形成方法。
(1) A method for forming a transparent conductive film with desired transparency and conductivity on a substrate in a vacuum apparatus, the base material containing the constituent elements of the transparent conductive film being heated and evaporated, and the vapor thereof being vaporized. 1. A method for forming a transparent conductive film, which comprises applying a transparent conductive film to a substrate, simultaneously activating a predetermined gas, and applying the activated gas to the substrate to form a transparent conductive film on the substrate.
JP5839588A 1988-03-14 1988-03-14 Formation of transparent conductive film Pending JPH01234558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5839588A JPH01234558A (en) 1988-03-14 1988-03-14 Formation of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5839588A JPH01234558A (en) 1988-03-14 1988-03-14 Formation of transparent conductive film

Publications (1)

Publication Number Publication Date
JPH01234558A true JPH01234558A (en) 1989-09-19

Family

ID=13083160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5839588A Pending JPH01234558A (en) 1988-03-14 1988-03-14 Formation of transparent conductive film

Country Status (1)

Country Link
JP (1) JPH01234558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146657A (en) * 1989-10-30 1991-06-21 Stanley Electric Co Ltd Formation of transparent conductive film by using activated particle and device for forming transparent conductive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119333A (en) * 1981-12-30 1983-07-15 Konishiroku Photo Ind Co Ltd Method and apparatus for vapor deposition
JPS6210269A (en) * 1985-07-09 1987-01-19 Asahi Glass Co Ltd Vacuum evaporation device and production of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119333A (en) * 1981-12-30 1983-07-15 Konishiroku Photo Ind Co Ltd Method and apparatus for vapor deposition
JPS6210269A (en) * 1985-07-09 1987-01-19 Asahi Glass Co Ltd Vacuum evaporation device and production of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146657A (en) * 1989-10-30 1991-06-21 Stanley Electric Co Ltd Formation of transparent conductive film by using activated particle and device for forming transparent conductive film

Similar Documents

Publication Publication Date Title
US7678241B2 (en) Film forming apparatus, substrate for forming oxide thin film and production method thereof
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JPS5919190B2 (en) Manufacturing method of lead film
JPH01234558A (en) Formation of transparent conductive film
CN1087130A (en) The high-vacuum multi-target magnetic control sputtering method and apparatus
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPS61292817A (en) Formation of transparent conducting metal oxide film
JP3775851B2 (en) Vapor deposition apparatus and protective film manufacturing method
JPS6158968B2 (en)
JPH11279756A (en) Formation of transparent conductive film
JPS6320302B2 (en)
JPS6017070A (en) Method and device for forming thin film
JP2971541B2 (en) Thin film forming equipment
JPS63262457A (en) Preparation of boron nitride film
JP3174313B2 (en) Thin film forming equipment
JPH03191054A (en) Thin film formation
JPH05166727A (en) Manufacture of compound thin film
JPH02228469A (en) Ion plating method
JPH05190309A (en) Pr0duction of resistance film
JPS6226869A (en) Manufacture of photovoltaic device
JPS6367726A (en) Vapor growth method for crystal thin film
JPS584920A (en) Manufacture of semiconductor
JPH05271909A (en) Production of zinc oxide film
JPS5948939A (en) Method and apparatus for forming film
JPS61294714A (en) Formation of transparent conducting metal oxide film