JPH01234347A - Electrically conductive structure - Google Patents

Electrically conductive structure

Info

Publication number
JPH01234347A
JPH01234347A JP6135688A JP6135688A JPH01234347A JP H01234347 A JPH01234347 A JP H01234347A JP 6135688 A JP6135688 A JP 6135688A JP 6135688 A JP6135688 A JP 6135688A JP H01234347 A JPH01234347 A JP H01234347A
Authority
JP
Japan
Prior art keywords
carbon black
carbon fiber
conductive carbon
conductive
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6135688A
Other languages
Japanese (ja)
Other versions
JP2542412B2 (en
Inventor
Junichi Fujita
順一 藤田
Takao Kakuno
覚野 貴雄
Tsugio Chuma
中馬 次夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP63061356A priority Critical patent/JP2542412B2/en
Publication of JPH01234347A publication Critical patent/JPH01234347A/en
Application granted granted Critical
Publication of JP2542412B2 publication Critical patent/JP2542412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Abstract

PURPOSE:To inexpensively increase the electrical conductivity of a structure with a reduced amt. of carbon fibers mixed by adding carbon fibers to cement in combination with electrically conductive carbon black and caking them. CONSTITUTION:When an electrically conductive structure is produced by adding carbon fibers to cement and caking them, electrically conductive carbon black is further added. The pref. total weight of the carbon fibers and the carbon black is 2-10% of the weight of the cement and the pref. weight of the carbon black is 0.1-9 times the weight of the carbon fibers.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セメントに炭素繊維を含有して固化したモル
タルとかコンクリートなどの導電性構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a conductive structure such as mortar or concrete made by solidifying cement containing carbon fibers.

〈従来の技術〉 近年では、セメントに炭素繊維を混入することにより、
この炭素繊維を補強材として強度の高いモルタルやコン
クリートの構造体が得られるようになってきている。ま
た、コンクリートの導電性を向上させるために、コンク
リート中に炭素繊維を混入することは公知であり、炭素
繊維を多く入れると導電性は良くなる。
<Conventional technology> In recent years, by mixing carbon fiber into cement,
It has become possible to obtain strong mortar and concrete structures using carbon fiber as a reinforcing material. Furthermore, it is known to mix carbon fibers into concrete in order to improve the conductivity of concrete, and the more carbon fibers are added, the better the conductivity becomes.

〈発明が解決しようとする課題〉 しかしながら、炭素繊維の混入量を増加していっても、
導電性の向上には限界があって、ある値以上の導電性は
得られない。
<Problem to be solved by the invention> However, even if the amount of carbon fiber mixed in is increased,
There is a limit to the improvement of conductivity, and conductivity above a certain value cannot be obtained.

更に、多量の炭素繊維を混入することは、炭素繊維がブ
ロック化するために困難であり、また、炭素繊維が高価
なために、全体としてコスト高になる欠点があった。
Furthermore, it is difficult to mix a large amount of carbon fibers because the carbon fibers form blocks, and since carbon fibers are expensive, there is a drawback that the overall cost is high.

本発明は、このような事情に鑑みてなされたものであっ
て、炭素繊維の混入量を少な(して安価に導電性を向上
できるようにすることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the amount of carbon fiber mixed in and thereby improve conductivity at low cost.

く課題を解決するための手段〉 本発明は、このような目的を達成するために、冒頭に記
載した導電性構造体において、導電性カーボンブラック
を含有したことを特徴としている。
Means for Solving the Problems> In order to achieve the above object, the present invention is characterized in that the conductive structure described at the beginning contains conductive carbon black.

く作用〉 導電性を高めるために炭素繊維のみを混入し、その混入
量を増加していっても、導電性はある値以上にはならな
い(第4図参照)。
Effects> Even if only carbon fiber is mixed in to increase the conductivity and the amount of carbon fiber added is increased, the conductivity will not exceed a certain value (see Figure 4).

一方、導電性カーボンブラックのみで導電性を高めるた
めに大量の導電性カーボンブラックを混入すると成形体
の強度が低下し、また、その混入量をより一層増加する
と、流動性が失われて目的の成形体を作ることもできな
くなる。
On the other hand, if a large amount of conductive carbon black is mixed in to increase conductivity using only conductive carbon black, the strength of the molded product will decrease, and if the amount of conductive carbon black added is further increased, fluidity will be lost and the desired It also becomes impossible to make molded objects.

しかして、本発明の構成によれば、導電性カーボンブラ
ックを含有することにより、その導電性カーボンブラッ
クと炭素繊維との相乗効果により、炭素繊維または導電
性カーボンブラックそれぞれのみを含有した状態では得
られない導電性を付与する。
According to the structure of the present invention, by containing the conductive carbon black, the synergistic effect of the conductive carbon black and the carbon fibers makes it possible to obtain the desired results by containing only the carbon fibers or the conductive carbon black. Provides electrical conductivity that cannot be avoided.

〈実施例〉 次に、本発明の実施例を図面に基づいて詳細に説明する
<Example> Next, an example of the present invention will be described in detail based on the drawings.

ピ・7チ系炭素繊維(公称引っ張り強さ70kg/mm
” )50gに、ポルトランドセメント2000g 、
骨材としての珪砂1000.を加え、オムニミキサーで
1分間混合する。そのオムニミキサーの中に、ケンチェ
ンブランクEC(オランダAKZO社製)を分散したノ
ニオン性の導電性カーボンブラック水分散液ライオンペ
ーストW−311N(ライオン株式会社製、表面積[B
ET]が800ポ/gで粒子径が20〜30 mμ) 
588g (導電性カーボンブラックを588gX0.
085wt%=’50g含む)と混和剤メチルセルロー
ス12gを水512gに溶かした溶液を加え、更に、3
分間オムニミキサーで混合する。これを型枠の中に流し
込んで養生固化し、40 X 40 X 30mmのブ
ロックを作製する。
Pi-7chi carbon fiber (nominal tensile strength 70kg/mm
) 50g, 2000g of Portland cement,
Silica sand as aggregate 1000. Add and mix for 1 minute with an omni mixer. In the omni-mixer, a nonionic conductive carbon black aqueous dispersion Lion Paste W-311N (manufactured by Lion Corporation, surface area [B
ET] is 800 po/g and the particle size is 20-30 mμ).
588g (588g of conductive carbon black x 0.
085wt%='50g) and a solution of 12g of admixture methyl cellulose dissolved in 512g of water, and then
Mix in an omni mixer for a minute. This is poured into a mold and cured to harden to produce a block of 40 x 40 x 30 mm.

また、炭素繊維と導電性カーボンブラックとの合計重量
が100gになるように、炭素繊維の重量を、100g
、83g、66g、34g、Ogと変更し、前述の場合
と同様にして40 X 40 X 8011111のブ
ロックを作製する。
In addition, the weight of the carbon fiber was adjusted to 100 g so that the total weight of the carbon fiber and conductive carbon black was 100 g.
, 83g, 66g, 34g, Og, and produce a block of 40 x 40 x 8011111 in the same manner as in the above case.

その後、第1図に示すように、上述のようにして得られ
たブロックlの両端それぞれに、40 X 56mmの
銅)反2.2をドータイト(タイプD−550:藤倉化
成株式会社製)で接着し、デジタル・マルチメーターT
R6877(アトパンテスト社製)を用いて体積固有抵
抗値(Ω・cm)を測定したところ、第2図のグラフに
おいて黒丸(・)で示す結果を得た。
Thereafter, as shown in Figure 1, a 40 x 56 mm piece of dotite (type D-550, manufactured by Fujikura Kasei Co., Ltd.) was applied to each of both ends of the block l obtained as described above. Glue and digital multimeter T
When the volume resistivity value (Ω·cm) was measured using R6877 (manufactured by Atopan Test Co., Ltd.), results indicated by black circles (·) in the graph of FIG. 2 were obtained.

また、炭素繊維と導電性カーボンブラックとの合計重量
が60gになるように、かつ、炭素繊維の含有率を50
%にし、それ以外は前述の場合と同じ条件で試験体を作
製し、その試験体について、前述同様にして体積固有抵
抗値を測定したところ、第2図のグラフにおいて黒三角
(ム)で示す結果を得た。
In addition, the total weight of carbon fiber and conductive carbon black was 60 g, and the content of carbon fiber was 50 g.
%, and other than that, a test piece was prepared under the same conditions as above, and the volume resistivity value of the test piece was measured in the same manner as above. Got the results.

また、炭素繊維と導電性カーボンブラックとの合計重量
が80gになるように、かつ、炭素繊維の含有率を50
%にし、それ以外は前述の場合と同し条件で試験体を作
製し、その試験体について、前述同様にして体積固有抵
抗値を測定したところ、第2図のグラフにおいて白玉角
(△)で示す結果を得た。
In addition, the total weight of carbon fiber and conductive carbon black was 80 g, and the content of carbon fiber was 50 g.
%, and other than that, a test piece was prepared under the same conditions as above, and the volume resistivity value of the test piece was measured in the same manner as above. In the graph of Figure 2, the square ball angle (△) The following results were obtained.

また、炭素繊維と導電性カーボンブラックとの合計重量
が120gになるように、かつ、炭素繊維の含有率を5
0%にし、それ以外は前述の場合と同じ条件で試験体を
作製し、その試験体について、前述同様にして体積固有
抵抗値を測定したところ、第2図のグラフにおいて白丸
(○)で示す結果を得た。
In addition, the total weight of carbon fiber and conductive carbon black was 120 g, and the content of carbon fiber was 5.
0%, and otherwise prepared a test piece under the same conditions as above, and measured the volume resistivity value of the test piece in the same manner as above, which is shown as a white circle (○) in the graph of Figure 2. Got the results.

更に、炭素繊維と導電性カーボンブラックとを等量づつ
、即ち、炭素繊維の含有率を50%にし、それ以外は前
述の場合と同じ条件にして、炭素繊維と導電性カーボン
ブラックの合計重量を変えながら試験体を作製し、その
試験体について、前述同様にして体積固有抵抗値を測定
したところ、第3図のグラフに示す結果を得た。
Furthermore, equal amounts of carbon fiber and conductive carbon black were used, that is, the content of carbon fiber was 50%, and the other conditions were the same as in the previous case, and the total weight of carbon fiber and conductive carbon black was Test specimens were prepared while changing the conditions, and the volume resistivity values of the test specimens were measured in the same manner as described above, and the results shown in the graph of FIG. 3 were obtained.

これに対して、炭素繊維のみを用い、それ以外は前述の
場合と同じ条件にして、炭素繊維の重量を変えながら試
験体を作製し、その試験体について、前述同様にして体
積固有抵抗値を測定したところ、第4図のグラフに示す
結果を得た。
On the other hand, test specimens were prepared using only carbon fibers and the other conditions were the same as in the previous case, while changing the weight of the carbon fibers. As a result of the measurement, the results shown in the graph of FIG. 4 were obtained.

また、前述の導電性カーボンブラック水分散液ライオン
ペーストW−311N(ライオン株式会社製)のみを用
い、それ以外は前述の場合と同し条件にして、導電性カ
ーボンブラックの重量を変えながら試験体を作製し、そ
の試験体について、前述同様にして体積固有抵抗値を測
定したところ、第5図のグラフに示す結果を得た。
In addition, using only the aforementioned conductive carbon black aqueous dispersion Lion Paste W-311N (manufactured by Lion Corporation) and under the same conditions as above, test specimens were prepared while changing the weight of the conductive carbon black. was prepared, and the volume resistivity value of the test specimen was measured in the same manner as described above, and the results shown in the graph of FIG. 5 were obtained.

また、別のアニオン性の導電性カーボンブラック水分散
液ライオンペーストW−310A(ライオン株式会社製
)のみを用い、それ以外は前述の場合と同じ条件にして
、導電性カーボンブラックの重量を変えながら試験体を
作製し、その試験体について、前述同様にして体積固有
抵抗値を測定したところ、第6図のグラフに示す結果を
得た。
In addition, using only another anionic conductive carbon black aqueous dispersion Lion Paste W-310A (manufactured by Lion Corporation), the other conditions were the same as in the previous case, while changing the weight of the conductive carbon black. A test piece was prepared, and the volume resistivity value of the test piece was measured in the same manner as described above, and the results shown in the graph of FIG. 6 were obtained.

以上の結果から、次のことが明らかであった。From the above results, the following was clear.

即ち、炭素繊維のみ、等量づつの炭素繊維と導電性カー
ボンブラック、導電性カーボンブラックのみそれぞれを
100g含有した場合を取り上げて説明すれば、炭素繊
維のみの場合の体積面を抵抗値ρは、第4図に示すよう
に(P2)、j!ogρ=約1.9Ω・C11であり、
一方の導電性カーボンブラックのみの場合の体積固有抵
抗値は、第5閏に示すように(P 3 ) 、logp
 =約1.33Ω’anであり、他方の導電性カーボン
ブラックのみの場合の体積固有抵抗値は、第6図に示す
ように(P4)、ffiogρ−約2.15Ω・印であ
り、そして、等量づつの炭素繊維と導電性カーボンブラ
ックの場合の体積固有抵抗値は、第3図に示すように(
PI)、fogρ=約1.0Ω・cmであり、本発明に
よれば、炭素繊維と導電性カーボンブラックとの相乗効
果によって、少量であっても、体積固有抵抗値をより一
層低下できていること、即ち、導電性を向上できている
ことが明らかである。
That is, to explain the case where carbon fiber alone, equal amounts of carbon fiber and conductive carbon black, and conductive carbon black alone are contained in an amount of 100 g each, the resistance value ρ in terms of volume in the case of only carbon fiber is: As shown in FIG. 4 (P2), j! ogρ=about 1.9Ω・C11,
The volume resistivity value in the case of only one conductive carbon black is (P 3 ), logp
= approximately 1.33Ω'an, and the volume resistivity value in the case of only the other conductive carbon black is ffiogρ−approximately 2.15Ω·mark, as shown in FIG. 6 (P4), and, The volume resistivity value in the case of equal amounts of carbon fiber and conductive carbon black is as shown in Figure 3 (
PI), fogρ=approximately 1.0 Ω・cm, and according to the present invention, the volume resistivity value can be further reduced even in a small amount due to the synergistic effect of carbon fiber and conductive carbon black. In other words, it is clear that the conductivity can be improved.

また、炭素繊維のみの場合であれば、第4図に示すよう
に、セメント2000gに対して、炭素繊維を100g
以上増量して含有させても、体積固有抵抗値を有効に低
下できなくなり、また、一方の導電性カーボンブラック
のみの場合にあっても、第5図に示すように、同様に、
導電性カーボンブラックを100g以上増量して含有さ
せても、体積固有抵抗値を有効に低下できなくなり、更
に、他方の導電性カーボンブラックのみの場合でも、第
6図に示すように、導電性カーボンブラックを160g
以上増量して含有させても、体積固有抵抗値を有効に低
下できなくなる。
In addition, if only carbon fiber is used, as shown in Figure 4, 100g of carbon fiber is added to 2000g of cement.
Even if the amount of conductive carbon black is increased, the volume resistivity cannot be effectively lowered, and even if only one type of conductive carbon black is used, as shown in FIG.
Even if the amount of conductive carbon black is increased by 100 g or more, the volume resistivity value cannot be effectively lowered. 160g black
Even if it is contained in an increased amount, the volume resistivity value cannot be effectively lowered.

これに対して、本発明によれば、炭素繊維と導電性カー
ボンブラックとの相乗効果によって、120g以上増量
して含有させても、体積固有抵抗値を有効に低下でき、
炭素繊維のみ、または、導電性カーボンブラックのみで
は達成できない導電性を得られることが明らかであった
On the other hand, according to the present invention, due to the synergistic effect of carbon fiber and conductive carbon black, the volume resistivity value can be effectively reduced even if the amount is increased by 120 g or more.
It was clear that conductivity that could not be achieved with carbon fiber alone or conductive carbon black alone could be obtained.

また、以上のこと、ならびに、第2図に示される結果か
ら、セメントに含有する炭素繊維と導電性カーボンブラ
ックとの合計重量が2wt%以上、10wt%以下、よ
り好ましくは2wt%以上、5wt%以下のときに、好
適な結果が得られる。合計重量が211t%未満では相
乗効果が少ないし、10wt%を越えると成形が難しく
なる。混入量が10−1%に近づくほど炭素繊維の長さ
を短くすることが好ましい。更に、導電性カーボンブラ
ックの含有重量が炭素繊維の重量の0.1〜9倍である
ときに好適な結果を得ることができ、そして、0.5〜
5倍のときにより一層好適な結果が得られていることが
明らかであった。
In addition, from the above and the results shown in Figure 2, it is clear that the total weight of carbon fibers and conductive carbon black contained in cement is 2 wt% or more and 10 wt% or less, more preferably 2 wt% or more and 5 wt%. Favorable results are obtained when: If the total weight is less than 211 t%, there will be little synergistic effect, and if it exceeds 10 wt%, molding will become difficult. It is preferable to reduce the length of the carbon fibers as the amount of the carbon fibers approaches 10-1%. Further, suitable results can be obtained when the content weight of the conductive carbon black is 0.1 to 9 times the weight of the carbon fiber, and 0.5 to 9 times the weight of the carbon fiber.
It was clear that even more favorable results were obtained when the magnification was increased by 5 times.

本発明に用いられる炭素繊維としては、ピッチ系やポリ
アクリロニトリル(PAN)系、レイヨン系など、各種
の炭素繊維が適用できる。
Various carbon fibers such as pitch-based, polyacrylonitrile (PAN)-based, and rayon-based carbon fibers can be used as the carbon fibers used in the present invention.

また、本発明に用いられる導電性カーボンブラックとし
ては、前述したアニオン性の導電性カーボンブラックに
も適用できる。
Further, as the conductive carbon black used in the present invention, the above-mentioned anionic conductive carbon black can also be applied.

また、上記実施例では、炭素繊維と導電性カーボンブラ
ックとを、セメントと骨材としての珪砂に含有して固化
したモルタル構造体について説明したが、粗骨材を加え
たコンクリート構造体にも適用でき、その場合でも上述
実施例と同様の結果を得ることができる。
In addition, in the above example, a mortar structure in which carbon fibers and conductive carbon black are contained in cement and silica sand as an aggregate and solidified was explained, but it can also be applied to a concrete structure in which coarse aggregate is added. Even in that case, the same results as in the above embodiment can be obtained.

〈発明の効果〉 以上の説明から明らかなように、本発明によれば、導電
性カーボンブラックと炭素繊維との相乗効果により、導
電性カーボンブラックを少量添加するだけで、炭素繊維
の混入量を大幅に減少できながら高い導電性を得ること
ができ、炭素繊維の使用量を少なくできるうえに、導電
性カーボンブラックは炭素繊維よりも安価であり、導電
性構造体を経済的に作ることができる。
<Effects of the Invention> As is clear from the above description, according to the present invention, due to the synergistic effect of conductive carbon black and carbon fiber, the amount of carbon fiber mixed can be reduced by simply adding a small amount of conductive carbon black. It is possible to obtain high conductivity while reducing the amount of carbon fiber significantly, and the amount of carbon fiber used can be reduced, and conductive carbon black is cheaper than carbon fiber, making it possible to economically produce conductive structures. .

更に、炭素繊維の補強材としての効果もあり、強度が高
く、かつ、導電性の高い構造体を得ることができる。
Furthermore, carbon fibers have the effect of serving as a reinforcing material, and a structure with high strength and high conductivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験体の斜視図、第2図は、炭素繊維と導電性
カーボンブラックとを混合して含有した場合の炭素繊維
の含有率と体積固有抵抗値との相関を示すグラフ、第3
図は、炭素繊維と導電性カーボンブラックとを等量づつ
混合して含有した場合の混合重量と体積固有抵抗値との
相関を示すグラフ、第4図は、炭素繊維のみを含有した
場合の含有率と体積固有抵抗値との相関を示すグラフ、
第5図および第6図は、それぞれ導電性カーボンブラッ
クのみを含有した場合の含有重量と体積固有抵抗値との
相関を示すグラフである。
Figure 1 is a perspective view of the test specimen, Figure 2 is a graph showing the correlation between carbon fiber content and volume resistivity when carbon fiber and conductive carbon black are mixed, and Figure 3
The figure is a graph showing the correlation between the mixed weight and the volume resistivity value when equal amounts of carbon fiber and conductive carbon black are mixed together. A graph showing the correlation between the ratio and the volume resistivity value,
FIGS. 5 and 6 are graphs showing the correlation between the content weight and the volume resistivity value when only conductive carbon black is contained, respectively.

Claims (3)

【特許請求の範囲】[Claims] (1)セメントに炭素繊維を含有して固化した導電性構
造体であって、 導電性カーボンブラックを含有してなることを特徴とす
る導電性構造体。
(1) A conductive structure made of cement containing carbon fibers and solidified, characterized by containing conductive carbon black.
(2)炭素繊維と導電性カーボンブラックとの含有重量
の合計がセメントの重量の2%以上、10%以下である
第(1)項記載の導電性構造体。
(2) The conductive structure according to item (1), wherein the total content weight of carbon fibers and conductive carbon black is 2% or more and 10% or less of the weight of the cement.
(3)導電性カーボンブラックの含有重量が炭素繊維の
重量の0.1〜9倍である第(1)項または第(2)項
記載の導電性構造体。
(3) The conductive structure according to item (1) or item (2), wherein the content weight of the conductive carbon black is 0.1 to 9 times the weight of the carbon fiber.
JP63061356A 1988-03-14 1988-03-14 Conductive structure Expired - Lifetime JP2542412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061356A JP2542412B2 (en) 1988-03-14 1988-03-14 Conductive structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061356A JP2542412B2 (en) 1988-03-14 1988-03-14 Conductive structure

Publications (2)

Publication Number Publication Date
JPH01234347A true JPH01234347A (en) 1989-09-19
JP2542412B2 JP2542412B2 (en) 1996-10-09

Family

ID=13168792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061356A Expired - Lifetime JP2542412B2 (en) 1988-03-14 1988-03-14 Conductive structure

Country Status (1)

Country Link
JP (1) JP2542412B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892638A (en) * 1986-11-04 1990-01-09 Hitachi, Ltd. Instrument for determination of the base sequence of DNA
KR20030028859A (en) * 2001-10-04 2003-04-11 주식회사 인트켐 The cement compositions for absorbing electromagnetic waves
US6825444B1 (en) * 1999-01-29 2004-11-30 Board Of Regents Of University Of Nebraska Heated bridge deck system and materials and method for constructing the same
KR100811802B1 (en) * 2006-08-14 2008-03-10 박석균 Rib materials for use in concrete reinforcing rod
JP2009227475A (en) * 2008-03-19 2009-10-08 Yokohama Tlo Co Ltd Cement composition
WO2022189026A1 (en) * 2021-03-12 2022-09-15 Harold Scholz & Co. Gmbh Electrically conductive building material, in particular concrete, comprising an electrically conductive additive based on carbon fibres and graphite
WO2022189027A1 (en) * 2021-03-12 2022-09-15 Harold Scholz & Co. Gmbh Electrically conductive building material, in particular concrete, comprising an electrically conductive graphite-based additive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148738A (en) * 1987-12-04 1989-06-12 Denki Kagaku Kogyo Kk Conductive hydraulic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148738A (en) * 1987-12-04 1989-06-12 Denki Kagaku Kogyo Kk Conductive hydraulic composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892638A (en) * 1986-11-04 1990-01-09 Hitachi, Ltd. Instrument for determination of the base sequence of DNA
US6825444B1 (en) * 1999-01-29 2004-11-30 Board Of Regents Of University Of Nebraska Heated bridge deck system and materials and method for constructing the same
KR20030028859A (en) * 2001-10-04 2003-04-11 주식회사 인트켐 The cement compositions for absorbing electromagnetic waves
KR100811802B1 (en) * 2006-08-14 2008-03-10 박석균 Rib materials for use in concrete reinforcing rod
JP2009227475A (en) * 2008-03-19 2009-10-08 Yokohama Tlo Co Ltd Cement composition
WO2022189026A1 (en) * 2021-03-12 2022-09-15 Harold Scholz & Co. Gmbh Electrically conductive building material, in particular concrete, comprising an electrically conductive additive based on carbon fibres and graphite
WO2022189027A1 (en) * 2021-03-12 2022-09-15 Harold Scholz & Co. Gmbh Electrically conductive building material, in particular concrete, comprising an electrically conductive graphite-based additive

Also Published As

Publication number Publication date
JP2542412B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
Fu et al. Carbon fiber reinforced mortar as an electrical contact material for cathodic protection
Fu et al. Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers
US5447564A (en) Conductive cement-based compositions
EP1268360B1 (en) Conductive concrete composition
CA2477539A1 (en) Electrically conductive concrete and controlled low strength materials having carbon fibers
EP0425711B1 (en) An electrically conductive cement composition and an electrically conductive mass prepared from the composition
JPH01234347A (en) Electrically conductive structure
KR100281697B1 (en) Conductive composite
CN116573905A (en) 3D printing raw soil base material and preparation method thereof
JPH05286748A (en) Production of hydraulic composition and conductive hardened body
JPS6287445A (en) Grain for construction material
JP2680822B2 (en) Conductive cement
CN108558308A (en) A kind of insulating light wall slab and preparation method thereof
JP2840676B2 (en) Organic fiber reinforced permeable concrete composition
CN110436863A (en) A kind of laying rural highway concrete special and preparation method thereof
JP3290171B2 (en) Manufacturing method of porous concrete
JP3415864B2 (en) Ground resistance reducing composition
JPH01131042A (en) Electrically conductive cement
JPH03159944A (en) Application of hydraulic composite material
JPH11302065A (en) Inorganic composite and its molding
JPS63295487A (en) Molding material for lightweight inorganic substrate
JPH04202913A (en) Banking material
JPH04367554A (en) Production of cement product excellent in dimensional stability
JPH01239045A (en) Production of fiber-reinforced cement board
JPS6310110B2 (en)