JPH01234303A - Production of gaseous metal fluoride - Google Patents

Production of gaseous metal fluoride

Info

Publication number
JPH01234303A
JPH01234303A JP6027388A JP6027388A JPH01234303A JP H01234303 A JPH01234303 A JP H01234303A JP 6027388 A JP6027388 A JP 6027388A JP 6027388 A JP6027388 A JP 6027388A JP H01234303 A JPH01234303 A JP H01234303A
Authority
JP
Japan
Prior art keywords
metal
gas
fluoride
metal fluoride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6027388A
Other languages
Japanese (ja)
Inventor
Isao Harada
功 原田
Yukihiro Yoda
與田 幸廣
Tokuyuki Iwanaga
岩永 徳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6027388A priority Critical patent/JPH01234303A/en
Priority to EP89104364A priority patent/EP0333084B1/en
Priority to DE68916988T priority patent/DE68916988T2/en
Priority to US07/322,415 priority patent/US4960581A/en
Priority to CA000593574A priority patent/CA1314128C/en
Priority to KR1019890003287A priority patent/KR910004855B1/en
Publication of JPH01234303A publication Critical patent/JPH01234303A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/45Compounds containing sulfur and halogen, with or without oxygen
    • C01B17/4507Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only
    • C01B17/4515Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only containing sulfur and fluorine only
    • C01B17/453Sulfur hexafluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10705Tetrafluoride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • C01B35/061Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To produce a gaseous metal fluoride in a high yield at a low cost while preventing gaseous metal fluoride from inclusion of the fine powder of single metallic substance by adding a specified molding assistant to single metallic substance powder, press-molding them and allowing the molded bodies to react with NF3. CONSTITUTION:Powder of a single metallic substance such as W, Mo, Ta or Ge is mixed with powder of a solid metal fluoride not reacting with NF3, e.g., NaF or CaF2 as a molding assistant so that the metal single metal substance accounts for 30-70wt.% of the total amt. This mixture is press-molded under 1-3t/cm<2> pressure usually with a tablet machine and the molded bodies are allowed to react with NF3 at 250-500 deg.C under ordinary pressure -10kg/cm<2> pressure for 1-10hr to obtain a gaseous metal fluoride.

Description

【発明の詳細な説明】 「技術分野」 本発明は単体金属と三弗化窒素ガスとを反応させて、ガ
ス状金属弗化物を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a gaseous metal fluoride by reacting an elemental metal with nitrogen trifluoride gas.

「従来の技術」 ガス状金属弗化物には、六弗化タングステン(WF、)
 、六弗化モリブデン(MoF &)、三弗化アンチモ
ン(SbFs)、三弗化ニオブ(NbFs)、三弗化ク
ンタル(Tags)、四弗化チタン(TiF=)、四弗
化ゲルマニウム(GeFJ、三弗化砒素(AgF2)な
どの化合物がある。
"Conventional technology" Gaseous metal fluorides include tungsten hexafluoride (WF).
, Molybdenum hexafluoride (MoF &), Antimony trifluoride (SbFs), Niobium trifluoride (NbFs), Quantal trifluoride (Tags), Titanium tetrafluoride (TiF=), Germanium tetrafluoride (GeFJ, There are compounds such as arsenic trifluoride (AgF2).

これらの化合物の中でもMP、やMoP b等は、半導
体用の電極材料の原料として期待されている。特に、W
FbやMOF&を原料として製造されるタングステンシ
リサイド(WSiz)及びモリブデンシリサイド(Mo
Siz)は高密度集積回路LSIの配線材料として注目
されている。また、WF、やMoF、も含め上記ガス状
金属弗化物は、各種の弗素化剤や光学材料の原料として
も使用されている。
Among these compounds, MP, MoPb, and the like are expected to be used as raw materials for electrode materials for semiconductors. In particular, W.
Tungsten silicide (WSiz) and molybdenum silicide (Mo
Siz) is attracting attention as a wiring material for high-density integrated circuit LSI. Further, the above gaseous metal fluorides, including WF and MoF, are also used as raw materials for various fluorinating agents and optical materials.

本発明でいうガス状金属弗化物とは、単体金属とNF、
ガスとが反応する温度に於いてガス状である金属弗化物
をいう。
The gaseous metal fluoride referred to in the present invention refers to an elemental metal, NF,
A metal fluoride that is gaseous at the temperature at which it reacts with a gas.

従来、ガス状金属弗化物は、一般的に単体金属と弗素(
F2)ガスまたは三弗化窒素(Nh)ガスとを高温で接
触・させる方法で製造されている。この場合、F2ガス
は毒性が強いので若干コストアップにはなるが安全性の
点でNF、を使用するのがを利である。
Traditionally, gaseous metal fluorides are generally composed of elemental metals and fluorine (
F2) gas or nitrogen trifluoride (Nh) gas at high temperature. In this case, since F2 gas is highly toxic, it is advantageous to use NF from the point of view of safety, although this will increase the cost slightly.

単体金属とNF、の上記反応において生成したガス状金
属弗化物は反応系外に導かれ、ここで沸点以下の温度に
冷却して捕集するのでキャリアーガスを必要とする。従
って、反応器へはNF3ガスと共にキャリアーガスも導
入されるが、キャリアーガスとしては通常、窒素(N2
)ガス、ヘリウム(He)ガス、アルゴン(Ar)ガス
等の不活性ガスが使用される。
The gaseous metal fluoride produced in the above reaction of the simple metal and NF is led out of the reaction system, where it is cooled to a temperature below the boiling point and collected, so a carrier gas is required. Therefore, carrier gas is also introduced into the reactor together with NF3 gas, but nitrogen (N2
) gas, helium (He) gas, argon (Ar) gas, etc. are used.

しかして、上記単体金属とNF、ガスとを反応させる場
合、単体金属とF2ガスの接触を迅速かつ良好なからし
めるため、単体金属は通常粉末状で使用されている。そ
して、この反応は反応器中に流動床または固定床を設け
、この流動床または固定床上の金属粉末層へNF、ガス
とキャリアーガスとを通気する方法で行われている。
Therefore, when the above-mentioned single metal is reacted with NF and gas, the single metal is usually used in powder form in order to ensure rapid and good contact between the single metal and the F2 gas. This reaction is carried out by providing a fluidized bed or a fixed bed in a reactor, and passing NF, gas, and carrier gas through the metal powder layer on the fluidized bed or fixed bed.

「発明が解決しようとする課題」 しかしながら、このような方法では次のような問題があ
る。
"Problem to be Solved by the Invention" However, such a method has the following problems.

すなわち、流動床方式ではNF3ガスとキャリアーガス
が流動している単体金属粉末層を通過するので、生成し
たガス状金属弗化物中に該単体金属の微粉末が同伴され
、製品の純度低下を招く原因となる。また、反応収率も
NF、ガス基準で80%程度が限度であり、この点でも
不十分である。
In other words, in the fluidized bed method, the NF3 gas and the carrier gas pass through a layer of flowing single metal powder, so the fine powder of the single metal is entrained in the gaseous metal fluoride that is generated, leading to a decrease in the purity of the product. Cause. Moreover, the reaction yield is also limited to about 80% based on NF and gas, which is also insufficient in this respect.

一方、固定床方式では単体金属粉末とNFsガスとの反
応は単体金属粉末層の表面のみで行ねれるので、単体金
属粉末とNFjガスの接触面積が小さく、従って反応収
率が低いという問題があり、また、生成したガス状金属
弗化物中に未反応のNFsガスが大量に混入するという
問題もある。更に、反応の進行に従い、単体金属粉末が
微粉化され、この微粉化された単体金属が生成ガス中に
同伴されて、製品の純度低下を招くという問題もある。
On the other hand, in the fixed bed method, the reaction between the single metal powder and the NFs gas takes place only on the surface of the single metal powder layer, so there is a problem that the contact area between the single metal powder and the NFj gas is small, resulting in a low reaction yield. There is also the problem that a large amount of unreacted NFs gas is mixed into the generated gaseous metal fluoride. Furthermore, as the reaction progresses, the elemental metal powder is pulverized, and this pulverized elemental metal is entrained in the generated gas, resulting in a reduction in the purity of the product.

尚、上記の固定床方式で反応収率を上げるためには、単
体金属粉末とNF、ガスの接触面積を太き(する必要が
あり、反応器を相当大きくしなければならない、しかし
、本反応では高温下で腐食性の強いNF3ガスを原料と
して使用するので、反応器の材質は高価なニッケルが通
常用いられる。従って、反応器の大型化は相当の費用増
加を招くという点て問題である。
In order to increase the reaction yield with the fixed bed method described above, it is necessary to increase the contact area between the single metal powder, NF, and gas, and the reactor must be made considerably large. Because NF3 gas, which is highly corrosive at high temperatures, is used as a raw material, expensive nickel is usually used for the reactor material.Therefore, increasing the size of the reactor causes a considerable increase in costs, which is a problem. .

[課題を解決するだめの手段j 本発明者らはかかる状況に鑑み、ガス状金属弗化物中へ
の単体金属微粉末の混入を防止し、かつ、高収率で安価
にガス状金属弗化物を製造する方法について種々検討を
重ねた結果、単体金属に特定の成形助剤を加えて加圧・
成形した成形体を単体金属の原料として使用すれば、上
記目的が達成できることを見出し、本発明を完成するに
至ったものである。
[Means for Solving the Problems j] In view of the above situation, the present inventors have attempted to prevent the mixing of single metal fine powders into gaseous metal fluorides, and to produce gaseous metal fluorides at low cost with high yield. As a result of various studies on manufacturing methods, we added a specific forming aid to a single metal, pressed
The inventors have discovered that the above object can be achieved by using the molded body as a raw material for a single metal, and have completed the present invention.

即ち、本発明は単体金属と三弗化窒素ガスとを反応させ
てガス状金属弗化物を製造する方法において、該単体金
属に予め成形助剤として三弗化窒素と反応しない固体金
属弗化物を添加・混合しこれを加圧・成形した後、この
成形体を加熱した状態で三弗化窒素ガスと接触させるこ
とを特徴とするガス状金属弗化物の製造方法である。
That is, the present invention provides a method for producing a gaseous metal fluoride by reacting an elemental metal with nitrogen trifluoride gas, in which a solid metal fluoride that does not react with nitrogen trifluoride is preliminarily added to the elemental metal as a forming aid. This is a method for producing a gaseous metal fluoride, which is characterized in that, after adding and mixing, pressurizing and molding, the molded product is brought into contact with nitrogen trifluoride gas in a heated state.

「発明の詳細な開示」 以下、本発明の詳細な説明する。"Detailed Disclosure of the Invention" The present invention will be explained in detail below.

本発明で製造可能なガス状金属弗化物は、通常NF、と
単体金属の直接反応により合成される弗化物であり、か
つ前記の通り単体金属とNhガスとが反応する温度、例
えば、300°C以上の温度でガス状であるものである
。このような化合物を例示すると、六弗化タングステン
(tap、) 、六弗化モリブデン(MoF &)、三
弗化アンチモン(SbFs)、三弗化ニオブ(NbFs
)、三弗化タンタル(TaFs)、四弗化チタン、(T
iFa)、四弗化ゲルマニウム(GeFa)、三弗化砒
素(^SFり等が挙げられる。
The gaseous metal fluoride that can be produced in the present invention is usually a fluoride synthesized by direct reaction of NF and a simple metal, and as mentioned above, the temperature at which the simple metal and Nh gas react, for example, 30° It is gaseous at temperatures above C or higher. Examples of such compounds include tungsten hexafluoride (tap), molybdenum hexafluoride (MoF&), antimony trifluoride (SbFs), and niobium trifluoride (NbFs).
), tantalum trifluoride (TaFs), titanium tetrafluoride, (T
iFa), germanium tetrafluoride (GeFa), arsenic trifluoride (^SF), etc.

本発明において使用される原料単体金属は、その形状を
特に限定するものではないが粉末状のものが好ましい、
その理由は後記する如く、本発明ではこの単体金属に成
形助剤を添加・混合し、この混合物を加圧・成形して成
形体とする必要があるからであり、上記成形体は単体金
属と成形助剤とがなるべく均一に混合されていることが
高反応収率を得る上で好ましく、そのためには単体金属
は粉末状のものが好都合であるからである。また、粉末
状の方が加圧・成形も容易である。
The shape of the raw metal used in the present invention is not particularly limited, but it is preferably in the form of a powder.
The reason for this is that, as will be described later, in the present invention, it is necessary to add and mix a forming aid to this single metal, and pressurize and mold this mixture to form a molded body. In order to obtain a high reaction yield, it is preferable that the forming aid be mixed as uniformly as possible, and for this purpose, it is convenient for the single metal to be in powder form. In addition, powdered materials are easier to press and mold.

尚、本発明で使用する単体金属は、前記ガス状金属弗化
物を構成する金属であることはいうまでもない。
It goes without saying that the elemental metal used in the present invention is the metal constituting the gaseous metal fluoride.

次に成形助剤について説明する。Next, the molding aid will be explained.

本発明においてはNhと反応しない固体弗化物が成形助
剤として使用されるが、この固体弗化物は単体金属とN
F、ガスとが反応する温度においても固体である必要が
あり、このような固体弗化物を例示すると、弗化リチウ
ム(L、iP) 、弗化ナトリウム(NaF) 、弗化
カリウム(KF)、弗化ルビジウム(RbF) 、弗化
セシウム(CsF)などのrA属の金属弗化物;弗化ベ
リリウム(BeF z)、弗化マグネシウム(MgFz
 ) 、弗化カルシウム(CaPz)、弗化ストロンチ
ウム(Srh)、弗化バリウム(BaFz)等のIIA
属の金属弗化物;弗化アルミニウム(A I F3) 
、弗化ガリウム(GaFff)、弗化インカリウム(I
nF3)、弗化タリウム(T I Fs)等のI[[A
属の金属弗化物;弗化アルミニウムナトリウム(Naz
^1Pa)の如き複塩が挙げられる。またこれらの混合
物でも差支えない。
In the present invention, a solid fluoride that does not react with Nh is used as a forming aid.
It must be solid even at the temperature at which it reacts with F and gas, and examples of such solid fluorides include lithium fluoride (L, iP), sodium fluoride (NaF), potassium fluoride (KF), Metal fluorides of the rA group such as rubidium fluoride (RbF) and cesium fluoride (CsF); beryllium fluoride (BeFz), magnesium fluoride (MgFz)
), IIA such as calcium fluoride (CaPz), strontium fluoride (Srh), barium fluoride (BaFz), etc.
metal fluoride; aluminum fluoride (A I F3)
, gallium fluoride (GaFff), inpotassium fluoride (I
nF3), thallium fluoride (T I Fs), etc.
Metal fluorides of the genus; sodium aluminum fluoride (Naz
Examples include double salts such as ^1Pa). A mixture of these may also be used.

尚、これらの固体金属弗化物は、単体金属と混合したの
ち加圧・成形する必要があるので、単体金属の場合と同
様粉末状であることが好ましい。
It should be noted that these solid metal fluorides need to be mixed with a single metal and then pressurized and molded, so it is preferable that they be in powder form as in the case of the single metal.

本発明においては次に、単体金属と成形助剤である固体
金属弗化物を混合して加圧・成形するが、この際の両者
の混合割合は、単体金属の割合が多過ぎると反応性は向
上するものの成形体の強度が低下し、その結果反応の進
行に伴い成形体が粉化する惧れがあるので好ましくない
、逆に、単体金属の割合が少な過ぎると、成形体の強度
は問題ないが反応性が低下する。従って混合割合は通常
両者の合計量に対して、単体金属の含有量が30〜70
重量%の範囲で実施される。
In the present invention, next, the elemental metal and the solid metal fluoride, which is a forming aid, are mixed and pressed and molded, but the mixing ratio of the two at this time is such that if the ratio of the elemental metal is too large, the reactivity will decrease. Although the strength of the molded product will be improved, the strength of the molded product will decrease, which is not preferable because there is a risk that the molded product will become powder as the reaction progresses.On the other hand, if the proportion of single metal is too small, the strength of the molded product will become a problem. However, the reactivity decreases. Therefore, the mixing ratio is usually 30 to 70% of the single metal content relative to the total amount of both.
It is carried out in a range of % by weight.

本発明において、単体金属と固体金属弗化物とを混合し
てこれを成形するが、得られた成形体が反応中に崩壊な
いし粉化すると好ましくないので、成形は通常打錠機等
を用いて加圧・成形するのが好ましく、この際の打錠圧
力は通常1〜3t/co?程度で実施される。成形して
得られる成形体の形状は、円柱状、リング状、前影柱状
など、通常の打錠機で打錠成形できるものであれば何れ
の形状でもかまわない、また、成形体の大きさも特に限
定はなく反応器の大きさや成形体の取扱い易さによって
決められるが、これも打錠機で打錠成形できるものであ
ればよい。
In the present invention, a single metal and a solid metal fluoride are mixed and molded. However, since it is undesirable if the resulting molded product collapses or becomes powder during the reaction, the molding is usually carried out using a tablet press or the like. Pressure/molding is preferred, and the tableting pressure at this time is usually 1 to 3 t/co? It is carried out to a certain extent. The shape of the molded product obtained by molding may be any shape, such as a cylinder, a ring, or a columnar shape, as long as it can be formed into tablets using a normal tablet machine.The size of the molded product may also vary. There is no particular limitation, and it is determined by the size of the reactor and the ease of handling the molded product, but any material that can be formed into tablets with a tablet machine may be used.

尚、上記成形体は水分の含有量が少ない方が好ましいの
で、原料である単体金属及び固体金属弗化物は、成形に
先立って乾燥し水分を除去しておくことが望ましい。
In addition, since it is preferable that the above-mentioned molded body has a low moisture content, it is desirable to dry the raw metals and solid metal fluorides to remove moisture before molding.

次に、この成形体とNhガスを使用して、ガス状金属弗
化物を製造する方法について述べる。
Next, a method for producing a gaseous metal fluoride using this compact and Nh gas will be described.

本発明においては、上記成形体中に含まれる単体金属と
NF、ガスとを反応させる反応器は、高温におけるNF
、に対する耐食性の点で材質は通常ニッケルが使用され
る。形状については特に限定されるものではないが、制
作の容易さから円筒形のものが好ましく、これを竪型に
し下部に目皿を設は核目皿上に上記成形体を充填して、
下部より、NF、ガス場合によってはN2、A、ガス等
の不活性ガスからなるキャリアーガスを導入する形で使
用するのが簡便で好都合である。尚、Nhガスとキャリ
アーガスの反応器への導入は、これを別々に行っても良
く、また、両者を予め混合して導入しても良い。反応器
の加熱は、反応器の円筒部の外側にヒーター等を設ける
ことで簡単に実施することができる。
In the present invention, a reactor for reacting the single metal contained in the molded body with NF and gas is used to react with NF and gas at high temperature.
Nickel is usually used as the material due to its corrosion resistance. Although the shape is not particularly limited, a cylindrical shape is preferred from the viewpoint of ease of production.If the shape is vertical and a perforated plate is provided at the bottom, the molded body is filled on the perforated plate.
It is convenient and convenient to introduce a carrier gas consisting of an inert gas such as NF, gas, N2, A, or other gases from the bottom. Note that the Nh gas and the carrier gas may be introduced into the reactor separately, or they may be mixed in advance and introduced. Heating of the reactor can be easily carried out by providing a heater or the like on the outside of the cylindrical portion of the reactor.

本発明においては、上記の通り反応器に単体金属と成形
助剤からなる成形体を充填し、成形体を加熱した状態で
下部よりNhガスとキャリアーガスとを導入して、成形
体中の単体金属とNF、とを反応させてガス状金属弗化
物を製造するわけであるが、反応温度は当然のことなが
ら、製造しようとするガス状金属弗化物の種類によって
異なる。
In the present invention, as described above, a reactor is filled with a molded body made of a single metal and a forming aid, and while the molded body is heated, Nh gas and carrier gas are introduced from the bottom to remove the single metal in the molded body. A metal and NF are reacted to produce a gaseous metal fluoride, and the reaction temperature naturally varies depending on the type of gaseous metal fluoride to be produced.

これを例示すると下記表−1に示す温度が適当である。To illustrate this, the temperatures shown in Table 1 below are suitable.

表−1 反応時の圧力は特に限定はなくもちろん減圧でも良いが
、通常、常圧〜10kg/cJ程度の圧力で実施される
6反応時間は、反応温度によって変わりうるが、通常1
〜10時間程度である0反応により得られたガス状金属
弗化物は、副生したN2ガス及びN2ガス、^rガス等
のキャリアーガスや若干の未反応NF、ガスを含有して
いるので、これをガス状金属弗化物の液化温度以下に冷
却して不活性ガス及びNF、ガスと分離する。
Table 1 The pressure during the reaction is not particularly limited and of course may be reduced pressure, but it is usually carried out at a pressure of about 10 kg/cJ from normal pressure.6 The reaction time may vary depending on the reaction temperature, but it is usually 1.
The gaseous metal fluoride obtained by the zero reaction, which takes about 10 hours, contains by-produced N2 gas and carrier gas such as N2 gas and ^r gas, as well as some unreacted NF and gas. This is cooled to a temperature below the liquefaction temperature of the gaseous metal fluoride and separated from the inert gas, NF, and gas.

[実施例J 以下、実施例により本発明をより具体的に説明する6 実施例1 予めN2ガス雰囲気中、120°Cの温度で2時間乾燥
した、純度99.9%の金属タングステン粉末(鉄分含
有量50ppm)と、これも予め同様にして乾燥したN
aF粉末(試薬1級)を、重量比で1対1の割合で十分
混合した後、小型打ttiを使用して2t/c+flの
打錠圧力で打錠し、直径5mm、高さ5胴の円柱状の成
形体を100g得た。尚、この成形体の圧縮強度は、平
均値で280kg/c+aと極めて高いものであった。
[Example J Hereinafter, the present invention will be explained in more detail with reference to Examples 6. Example 1 Metallic tungsten powder (iron content content of 50 ppm), which was also previously dried in the same manner.
After thoroughly mixing aF powder (reagent grade 1) at a ratio of 1:1 by weight, it was compressed into tablets with a tablet pressure of 2t/c+fl using a small-sized TTI to form tablets with a diameter of 5 mm and a height of 5 cylinders. 100 g of a cylindrical molded body was obtained. Note that the compressive strength of this molded body was extremely high at an average value of 280 kg/c+a.

次にこの成形体をニッケル類で内径19mm、高さ60
0mmの竪型反応器の中央部に充填した。しかる後、成
形体中の水分を完全に除去するため、成形体の充填層を
約100°Cに加熱した状態で、下方より常圧のN7ガ
スを30ONm/win、の流量で約2時間通気した。
Next, this molded body was molded with nickel to make an inner diameter of 19 mm and a height of 60 mm.
It was filled in the center of a 0 mm vertical reactor. After that, in order to completely remove the moisture in the compact, the packed bed of the compact was heated to about 100°C, and normal pressure N7 gas was vented from below at a flow rate of 30 ONm/win for about 2 hours. did.

しかる後、N2ガスの通気量を100Nif/win、
に低下させると共に、成形体の充填層を380〜400
°Cの温度に加熱した状態で、常圧のNhガスを80 
Nmff1/win、の流量で反応器に通気して2時間
反応を行った0反応器より発生した訃、含有ガスは、−
80”Cの温度まで冷却した冷媒トラップに導き液化さ
せて捕集した0反応終了後トラップ内を真空ポンプにて
真空排気し、キャリアーガスとして使用したN2ガス、
副生じたN2ガス及び未反応のNF、ガスを除去した。
After that, increase the amount of N2 gas ventilation to 100Nif/win.
In addition to reducing the filling layer of the molded body to 380 to 400
Nh gas at normal pressure was heated to a temperature of 80 °C.
The gas contained in the reactor generated from the reactor in which the reaction was conducted for 2 hours by venting the reactor at a flow rate of Nmff1/win was -
After the 0 reaction was completed, the inside of the trap was evacuated with a vacuum pump, and N2 gas was used as a carrier gas.
By-produced N2 gas and unreacted NF and gas were removed.

WF、の収得量は60gで肝、基準での収率は94%と
高収率であった。また反応器中の成型体も崩壊すること
なく原形を維持していた。
The yield of WF was 60 g, which was a high yield of 94% based on liver standards. Moreover, the molded body in the reactor maintained its original shape without collapsing.

尚、捕集した畦、中の単体金属の含有量を分析するにあ
たり、WF、中の単体タングステンの含有量を測定する
ことは困難であるので、単体タングステン中に不純物と
して比較的多く存在する鉄分(Fe)について、■cp
  (高周波誘導結合プラズマ)分析にてその含有量を
測定したところ、その結果は0.0599111以下で
あった。この結果から原料である金属タングステンの飛
散は防止できているものと推定される。
When analyzing the content of elemental metals in the collected ridges, it is difficult to measure the content of elemental tungsten in the WF, so it is important to note that iron, which is relatively abundant as an impurity in elemental tungsten, is difficult to measure. Regarding (Fe), ■cp
When the content was measured by (high frequency inductively coupled plasma) analysis, the result was 0.0599111 or less. From this result, it is presumed that the scattering of the raw material tungsten metal was prevented.

実施例2〜8 単体金属としてタングステンの代りに表−2に示す単体
金属を、成形助剤として弗化ナトリウムの代りに表−2
に示す固体金属弗化物を、それぞれ表−2に示す量使用
し、表−2に示す打錠圧力で実施例1と同様に打錠して
、表−2に示す量の成形体を得た。(尚、単体金属と成
形助剤は、成形に先立ってそれぞれ、実施例1と同様に
乾燥した。)この成形体を実施例1で使用した反応器に
表−2に示す量充填し、実施例1と同一条件で成形体を
乾燥後、これに表−2に示す反応条件でNF、ガス及び
キャリアーガスを通気して、実施例1と同様な方法で各
種ガス状金属弗化物を得た。
Examples 2 to 8 Single metals shown in Table 2 were used instead of tungsten as the single metal, and Table 2 was used instead of sodium fluoride as the forming aid.
The solid metal fluorides shown in Table 2 were used in the amounts shown in Table 2, and the tablets were compressed in the same manner as in Example 1 at the tableting pressures shown in Table 2 to obtain molded products in the amounts shown in Table 2. . (The single metal and the molding aid were each dried in the same manner as in Example 1 prior to molding.) This molded body was charged into the reactor used in Example 1 in the amount shown in Table 2, and the molding was carried out. After drying the molded body under the same conditions as in Example 1, NF, gas, and carrier gas were passed through it under the reaction conditions shown in Table 2 to obtain various gaseous metal fluorides in the same manner as in Example 1. .

尚、反応器へのNF、ガス通蒐前の成形体の乾燥条件は
、実施例1と全く同様な方法で行った。
The conditions for drying the molded body before supplying NF and gas to the reactor were exactly the same as in Example 1.

得られた製品であるガス状金属弗化物の収量、収率、F
e含有量は表−2に示す通りで、実施例1と同様高収率
でかつ単体金属の飛散もなかった。また、反応終了後の
成形体は何れも崩壊していなかった。
Yield, yield, F of the resulting product, gaseous metal fluoride
The e content was as shown in Table 2, and as in Example 1, the yield was high and there was no scattering of single metals. In addition, none of the molded bodies collapsed after the reaction was completed.

比較例1 直径25mm、長さ60(lnmのニッケル製の横型反
応器の底部に、実施例1で使用したものと同一の予め乾
燥した金属タングステン粉末100gをなるべく均一に
仕込んだ後、反応器を約100°Cに加熱して反応器の
左端より常圧のN2ガスを30ONmj!/…in、の
流量で約2時間通気して、金属タングステンを乾燥した
Comparative Example 1 100 g of pre-dried metal tungsten powder, which is the same as that used in Example 1, was charged as evenly as possible into the bottom of a nickel horizontal reactor with a diameter of 25 mm and a length of 60 (1 nm), and then the reactor was The tungsten metal was dried by heating to about 100° C. and passing normal pressure N2 gas through the left end of the reactor at a flow rate of 30 ONmj!/in for about 2 hours.

N2ガスの通気量を100Nrd/win、に低下させ
ると共に、金属タングステン層を実施例1と同じく38
0〜400°Cの温度に加熱した状態で、実施例1と同
一の条件で反応器の左端より常圧のNFiガスを8ON
m l /+in、の流量で通気して、2時間反応を行
った0反応器より発生したWF、含有ガスは実施例1と
同様に冷却液化して旺、を捕集した。
The amount of N2 gas permeated was reduced to 100 Nrd/win, and the metal tungsten layer was
With the reactor heated to a temperature of 0 to 400°C, 8ONs of normal pressure NFi gas was added from the left end of the reactor under the same conditions as in Example 1.
The gas containing WF generated from the reactor, which was vented at a flow rate of ml/+in and subjected to reaction for 2 hours, was cooled and liquefied in the same manner as in Example 1, and the WF was collected.

WF、の収得量は28gで、弗素基準での収率は44%
と実施例1の半分にも達しない低いものであった。また
肝、中のFe含有量は1.2ppmであり、金属タング
ステン粉末が少なからず混入しているものと推定される
The amount of WF obtained was 28g, and the yield was 44% based on fluorine.
This was less than half of that of Example 1. The Fe content in the liver was 1.2 ppm, and it is presumed that a considerable amount of metallic tungsten powder was mixed in.

「発明の効果」 以上詳細に説明した如く、単体金属とNF3ガスを反応
させてガス状金属弗化物を製造する方法において、従来
は反応収率を向上するため、単体金属は粉末状のものを
使用していたが、本発明では、単体金属、好ましくは粉
末状の単体金属に成形助剤としてNP、と反応しない固
体金属弗化物、好ましくはその粉末を添加混合した後、
これを加圧・成形して得た成形体を使用するという方法
であり、これによって、従来問題であった製品であるガ
ス状金属弗化物中への単体金属粉末の混入という問題を
、完全に防止することができるようになり、製品の高品
質化が可能となった。
"Effects of the Invention" As explained in detail above, in the method of producing gaseous metal fluoride by reacting an elemental metal with NF3 gas, conventionally, in order to improve the reaction yield, the elemental metal was used in powder form. However, in the present invention, after adding and mixing a solid metal fluoride, preferably a powder thereof, which does not react with NP as a forming aid to a single metal, preferably a powdered single metal,
This method uses a molded body obtained by pressurizing and molding this, and this method completely eliminates the conventional problem of mixing single metal powder into the gaseous metal fluoride product. It has become possible to prevent this, and it has become possible to improve the quality of products.

また、単体金属は成形助剤を加えて加圧・成形している
にも拘らず、従来の方法に比べて、格段に高い反応収率
が得られることも本発明の効果として特筆さるべきであ
ろう。
It should also be noted that, as an effect of the present invention, a significantly higher reaction yield can be obtained compared to conventional methods, even though the single metal is pressurized and molded with the addition of a molding aid. Probably.

更に、本発明ではこの様に高反応収率が得られるので、
反応器も小さなもので良く、その材質が高価なニッケル
製であるので従来の反応器に比べ、格段に安価に製作が
できるという効果もある。
Furthermore, since the present invention provides such a high reaction yield,
The reactor can also be small, and since it is made of expensive nickel, it has the advantage of being much cheaper to manufacture than conventional reactors.

更にまた、反応に使用する成形体は、反応終了後にはN
F3と反応しない固体金属弗化物がそのままの形で残存
しているが、この固体金属弗化物はこれを粉砕すれば繰
返し再使用することができるので、これも本発明の利点
の一つである。
Furthermore, the molded body used in the reaction is free of N after the reaction is completed.
Although the solid metal fluoride that does not react with F3 remains as it is, this solid metal fluoride can be reused repeatedly by crushing it, which is also one of the advantages of the present invention. .

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)単体金属と三弗化窒素ガスとを反応させてガス状
金属弗化物を製造する方法において、該単体金属に予め
成形助剤として三弗化窒素と反応しない固体金属弗化物
を添加・混合しこれを加圧・成形した後、この成形体を
加熱した状態で三弗化窒素ガスと接触させることを特徴
とするガス状金属弗化物の製造方法。
(1) In a method for producing a gaseous metal fluoride by reacting an elemental metal with nitrogen trifluoride gas, a solid metal fluoride that does not react with nitrogen trifluoride is added to the elemental metal in advance as a forming aid. A method for producing a gaseous metal fluoride, which comprises mixing, pressurizing and molding the mixture, and then contacting the molded body with nitrogen trifluoride gas in a heated state.
JP6027388A 1988-03-16 1988-03-16 Production of gaseous metal fluoride Pending JPH01234303A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6027388A JPH01234303A (en) 1988-03-16 1988-03-16 Production of gaseous metal fluoride
EP89104364A EP0333084B1 (en) 1988-03-16 1989-03-11 Method for preparing gaseous fluorides
DE68916988T DE68916988T2 (en) 1988-03-16 1989-03-11 Process for the production of gaseous fluorides.
US07/322,415 US4960581A (en) 1988-03-16 1989-03-13 Method for preparing gaseous metallic fluoride
CA000593574A CA1314128C (en) 1988-03-16 1989-03-14 Method for preparing gaseous metallic fluoride
KR1019890003287A KR910004855B1 (en) 1988-03-16 1989-03-16 Method for preparing gaseous metallic fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6027388A JPH01234303A (en) 1988-03-16 1988-03-16 Production of gaseous metal fluoride

Publications (1)

Publication Number Publication Date
JPH01234303A true JPH01234303A (en) 1989-09-19

Family

ID=13137368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6027388A Pending JPH01234303A (en) 1988-03-16 1988-03-16 Production of gaseous metal fluoride

Country Status (1)

Country Link
JP (1) JPH01234303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123771A1 (en) * 2017-12-19 2019-06-27 セントラル硝子株式会社 Tungsten hexafluoride production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123771A1 (en) * 2017-12-19 2019-06-27 セントラル硝子株式会社 Tungsten hexafluoride production method
KR20200087848A (en) 2017-12-19 2020-07-21 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method of tungsten fluoride
CN111491893A (en) * 2017-12-19 2020-08-04 中央硝子株式会社 Method for producing tungsten hexafluoride
JPWO2019123771A1 (en) * 2017-12-19 2020-12-10 セントラル硝子株式会社 Manufacturing method of tungsten hexafluoride

Similar Documents

Publication Publication Date Title
KR910004855B1 (en) Method for preparing gaseous metallic fluoride
US4543242A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
RU2431546C9 (en) Method of reduction
KR940007091B1 (en) Process for purifying nitrogen trifluoride gas
WO2019189715A1 (en) Method and device for producing molybdenum hexafluoride
US20020122757A1 (en) Method and apparatus for preparing aluminum nitride
US4948571A (en) Process for purifying nitrogen trifluoride gas
JP4842272B2 (en) Method for fluorinating manganese compounds
JPH01234301A (en) Production of gaseous metal fluoride
JPH01234303A (en) Production of gaseous metal fluoride
RU2221739C1 (en) Fluorine production process
JP2009543315A (en) Mercury release method
JPH01234304A (en) Production of gaseous metal fluoride
JP3379957B2 (en) Preparation method of niobium nitride
JP5060504B2 (en) Metal amide production method and metal amide production apparatus
JPH01234302A (en) Production of gaseous metal fluoride
US3000694A (en) Adducts of sf4 and method for preparing the same
JPH02133302A (en) Production of gaseous metal fluoride
JPH04265213A (en) Storage method for phosphorus pentafloride
RU2060290C1 (en) Method for production of magnetic alloys
Weng et al. Solid-solid reaction between sulfacetamide and phthalic anhydride
JP2010116395A (en) Manufacturing method of decafluorocyclohexene
RU2293060C2 (en) Method of preparing uranium mononitride and uranium mononitride/plutonium mixture
JP2848947B2 (en) Purification method of nitrogen trifluoride gas
JPH01261210A (en) Method for purifying nitrogen trifluoride gas