JPH01232792A - Circuit board - Google Patents

Circuit board

Info

Publication number
JPH01232792A
JPH01232792A JP5910388A JP5910388A JPH01232792A JP H01232792 A JPH01232792 A JP H01232792A JP 5910388 A JP5910388 A JP 5910388A JP 5910388 A JP5910388 A JP 5910388A JP H01232792 A JPH01232792 A JP H01232792A
Authority
JP
Japan
Prior art keywords
layer
electric circuit
semiconductive material
insulating layer
polymer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5910388A
Other languages
Japanese (ja)
Other versions
JP2607906B2 (en
Inventor
Koji Okawa
光司 大川
Ryuji Katsuo
勝尾 隆二
Michihiko Yoshioka
吉岡 道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP5910388A priority Critical patent/JP2607906B2/en
Publication of JPH01232792A publication Critical patent/JPH01232792A/en
Application granted granted Critical
Publication of JP2607906B2 publication Critical patent/JP2607906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PURPOSE:To improve the breakdown strength of an electric circuit having an organic polymer insulating layer by coating the edges of an electric circuit layer with a semiconductive material and further providing an organic high polymer insulating layer on the semiconductive material coated layer. CONSTITUTION:An organic high polymer insulating layer 2 is formed on a metal substrate and on this layer there is formed an electric circuit layer 3. An edge portion 31 and a side surface 32 of the electric circuit layer 3 are coated by a coating layer 4 composed of a semiconductive material. On the coating layer 4 an organic high polymer insulating layer 5 is coated. By coating the edges 31 of the electric circuit layer by the semiconductive material, the concentration of electric field on these portions can be reduced. Further, by providing the organic high polymer insulating layer 5 on the coating layer 4 coated by the semiconductive material, the breakdown strength on the edge portions can be increased, whereby the generation of corona can be suppressed even under high voltages. This ensures that the breakdown strength of this circuit board is increased compared to the conventional circuit boards.

Description

【発明の詳細な説明】 〔技術分野) 本発明は、電子装置などの電気回路形成用として使用し
得る回路基板並びにその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a circuit board that can be used for forming electric circuits in electronic devices and the like, and a method for manufacturing the same.

〔従来技術] 最近の電子装置の小型化に伴い、各種の部品、たとえば
抵抗、コンデンサ、トランジスタ等を混成して一つの基
板上に設置し、電子的機能を実現しようとする所謂ハイ
プリントICが重視されている。
[Prior Art] With the recent miniaturization of electronic devices, so-called high-print ICs, which combine various components such as resistors, capacitors, transistors, etc. and install them on a single substrate to realize electronic functions, have become popular. is considered important.

従来、ハイブリッドICとして、その絶縁層がアルミナ
を主体とするセラミック板製のものが主として使用され
てきたが、セラミック板は割れ易いために大サイズのも
のの製造が困難であり、また金属ヒートシンクとの接着
も工程的に複雑であるので、最近ではセラミック板に代
わってポリイミド樹脂やエポキシ樹脂等の絶縁性有機高
分子を採用する傾向にある。これら絶縁性有機高分子は
、フィルム化および金属材との接着が容易であるので、
絶縁性有機高分子フィルムの片面にヒートシンクとなる
金属材層を、残る片面に電気回路層を接着した構造等で
使用される。
Conventionally, hybrid ICs made of ceramic plates whose insulating layers are mainly made of alumina have been mainly used, but ceramic plates are easily broken, making it difficult to manufacture large-sized ones, and they are difficult to manufacture with metal heat sinks. Since adhesion is also a complicated process, there has recently been a trend to use insulating organic polymers such as polyimide resins and epoxy resins instead of ceramic plates. These insulating organic polymers are easy to form into films and adhere to metal materials, so
It is used in a structure in which a metal material layer serving as a heat sink is adhered to one side of an insulating organic polymer film, and an electric circuit layer is adhered to the remaining side.

〔解決を要すべき問題点〕[Problems that need to be solved]

ところで回路基板の電気回路層は、予め銅、ニッケル等
の導電性金属の箔からこれを別工程で所望の回路に切断
等して仕上げたものを単に接着して形成する場合もある
が、大量生産の場合には絶縁性有機高分子フィルムの上
に導電性金属の箔を接着し、この箔層につきエンチング
処理を施して所望の形状の電気回路に仕上げる方法が採
用されている。何れの方法を採用するにせよ、電気回路
層は導電性金属箔の厚さ分だけ絶縁層表面から浮きあが
っており、即ちこの箔厚骨に対応する側面を有し、この
側面上端部、即ちエツジにおける集中電界によってコロ
ナが生じ易い構造となっている。しかも有機高分子絶縁
層は、従来のセラミック絶縁層と比較して耐コロナ性が
低い欠点があり、ために有機高分子絶縁の回路基数はコ
ロナ破壊し易い問題を孕んでいる。
By the way, the electrical circuit layer of a circuit board is sometimes formed by simply gluing foil of conductive metal such as copper or nickel, which is cut into the desired circuit in a separate process and finished. In production, a method is adopted in which a conductive metal foil is adhered onto an insulating organic polymer film, and this foil layer is subjected to an etching treatment to form an electrical circuit in the desired shape. Regardless of which method is adopted, the electric circuit layer is raised from the surface of the insulating layer by the thickness of the conductive metal foil, that is, it has a side surface corresponding to the thickness of the foil, and the upper end of this side surface, i.e. The structure is such that corona is likely to occur due to concentrated electric fields at the edges. Moreover, the organic polymer insulating layer has a drawback of having lower corona resistance than the conventional ceramic insulating layer, and therefore the organic polymer insulating circuit board has the problem of being susceptible to corona destruction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題に鑑みて、有機高分子の絶縁層を有
しながらしかも耐電圧強度の改善された回路基板並びに
その製造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a circuit board having an organic polymer insulating layer and improved voltage strength, and a method for manufacturing the same.

即ち本発明は、金属基層の上に有機高分子絶縁層を有し
、更にその上に電気回路層を有する回路基板において、
当該電気回路層のエツジが半導電性材料により被覆され
ており、更に当該半導電性材料の被覆層上に有機高分子
絶縁層を有することを特徴とする回路基板に関するもの
である。
That is, the present invention provides a circuit board having an organic polymer insulating layer on a metal base layer and further having an electric circuit layer thereon.
The present invention relates to a circuit board characterized in that the edges of the electric circuit layer are covered with a semiconductive material, and further includes an organic polymer insulating layer on the coating layer of the semiconductive material.

(作用並びに効果〕 電気回路層のエツジを半導電性材料により被覆すること
でその部分における電界の集中を緩和し、更に当該半導
電性材料の被覆層上に有機高分子絶縁層を設けることに
よりエツジ部の耐電圧強度を高めることによって高電圧
下での使用に際してもコロナが発生が抑えられ、このた
めに本発明の回路基板は従来品と比較して耐電圧強度が
高くなる。
(Functions and Effects) By covering the edges of the electric circuit layer with a semiconductive material, the concentration of electric field in that part is alleviated, and by further providing an organic polymer insulating layer on the covering layer of the semiconductive material. By increasing the withstand voltage strength of the edge portion, the generation of corona can be suppressed even when used under high voltage, and therefore the circuit board of the present invention has a higher withstand voltage strength compared to conventional products.

第1図は、本発明の実施例の断面図を示す。第1図の実
施例において、金属基層lの上に有機高分子絶縁層2が
、更にその上に電気回路層3が設けられている。各層間
は、周知の接着剤を用いて接着されていても良く、ある
いは有機高分子絶縁層2を電着塗装により形成する場合
には電着塗装層がBステージにある間に金属基層l又は
電気回路層3を電着塗装層上に重ねて加熱・加圧して電
着塗装層のCステージ化と層間接着とを同時に達成せし
めても良い。
FIG. 1 shows a cross-sectional view of an embodiment of the invention. In the embodiment shown in FIG. 1, an organic polymer insulating layer 2 is provided on the metal base layer 1, and an electric circuit layer 3 is further provided thereon. The layers may be bonded using a well-known adhesive, or when the organic polymer insulating layer 2 is formed by electrodeposition coating, the metal base layer 1 or The electric circuit layer 3 may be placed on the electrodeposition coating layer and heated and pressurized to simultaneously achieve C stage formation of the electrodeposition coating layer and interlayer adhesion.

電気回路層3のエツジ部31及び側面32は、半導電性
材料からなる被覆層4により被覆されており、被覆層4
の上には有機高分子絶縁層5が被覆されている0本発明
においては、エツジ部31の全体を充分に被覆層4並び
に絶縁層5にて被覆することが肝要である。これをなす
には、電気回路層3の表面33の一部並びに側面32の
一部をもエツジ部31と一緒にそれら層4.5にて被覆
することが望ましい。更にエツジ部31上の半導電性材
料からなる被覆層4は、図示する通り断面が半径Rを有
する円弧状あるいはそれに近い形状であることが望まし
く、その場合の半径Rの大きさは、少な(とも5μl、
特にlOμ端とすることが望ましい。
The edge portion 31 and side surface 32 of the electric circuit layer 3 are covered with a covering layer 4 made of a semiconductive material.
In the present invention, it is important that the entire edge portion 31 is sufficiently covered with the coating layer 4 and the insulating layer 5. To accomplish this, it is desirable to cover part of the surface 33 and part of the side surface 32 of the electrical circuit layer 3 together with the edge 31 with the layer 4.5. Further, it is preferable that the covering layer 4 made of a semiconductive material on the edge portion 31 has a cross section having a radius R, as shown in the figure, or a shape close to the arc, and in this case, the size of the radius R is small ( Both 5μl,
In particular, it is desirable to set it to the lOμ end.

本発明においては、電気回路層3のエツジ部31を順次
半導電性材料被覆層4及びam、高分子絶縁層5にて被
覆することが肝要であって、電気回路層3の側面32の
それら材料による被覆は、必ずしも必要ではないが、図
示する通りに当該部分も被覆するほうがよく、その場合
、側面32と半導電性材料被覆層4との界面、特に側面
32の根部にボイドが残存しがちであるので、ボイドフ
リーとなるように半導電性材料被覆層4にて側面32の
全面を被覆することが望ましい。
In the present invention, it is important to sequentially cover the edge portion 31 of the electric circuit layer 3 with the semiconductive material coating layer 4 and am, and the polymer insulating layer 5, and Covering with the material is not necessarily required, but it is better to cover the part as shown in the figure. In that case, voids may remain at the interface between the side surface 32 and the semiconductive material coating layer 4, especially at the root of the side surface 32. Therefore, it is desirable to cover the entire surface of the side surface 32 with the semiconductive material coating layer 4 so as to be void-free.

被1iJi!i4の形成に使用される半導電性材料とし
ては、体積抵抗率が10’−10’Ωcm程度の半導電
性のもの、特に耐コロナ性に優れたものであれば種々の
化学材料を制限なく使用することができるが、エツジ部
並びに電気回路層3の側面32をボイドフリーに能率良
くそれの層4を形成するには常温で100〜10.00
0 cps、特には500〜5,000cpsの範囲の
粘度を有する硬化性の液体を用いることが好ましい。そ
のような液体としてはカーボンブランク、導電性金属粉
末等を配合して半導電性化されたエポキシ樹脂、各種の
紫外線硬化性塗料、ソルダーレジスト等が挙げられる。
Covered 1iJi! The semiconductive material used to form i4 may be any semiconductive material with a volume resistivity of about 10'-10' Ωcm, and various chemical materials may be used without limitation, as long as they have excellent corona resistance. However, in order to efficiently form the layer 4 of the edge portion and the side surface 32 of the electric circuit layer 3 void-free, the temperature is 100 to 10.00 at room temperature.
It is preferred to use a curable liquid having a viscosity in the range of 0 cps, especially in the range of 500 to 5,000 cps. Examples of such liquids include carbon blanks, epoxy resins made semiconductive by blending conductive metal powder, various ultraviolet curable paints, and solder resists.

それらの液体は、耐コロナ性改善のためにアルミナ、ジ
ルコニヤ等の無機わ)末を含んでいても良い。
These liquids may contain inorganic powders such as alumina and zirconia to improve corona resistance.

絶縁層5の形成に使用される有機高分子絶縁材料として
は、体積抵抗率にして1090cm以上の高電気抵抗性
のもの、好ましくはさらに耐コロす性をも備えたもので
あれば種々の化学材料を制限なく使用することができる
。たとえばエポキシ樹脂、各種の紫外線硬化性塗料、ソ
ルダーレジスト等が挙げられる。それらの液体は、耐コ
ロナ性改善のためにアルミナ、ジルコニヤ等の無機粉末
を含んでいても良い。
The organic polymer insulating material used for forming the insulating layer 5 may be one having high electrical resistance with a volume resistivity of 1090 cm or more, and preferably one having corrosion resistance as well. Materials can be used without restriction. Examples include epoxy resins, various types of ultraviolet curable paints, solder resists, and the like. These liquids may contain inorganic powders such as alumina and zirconia to improve corona resistance.

以下、本発明を具体例をもってより詳細に説明するが、
本発明はこれら具体例によって同等限定されるものでは
ない。
Hereinafter, the present invention will be explained in more detail with specific examples.
The present invention is not equally limited by these specific examples.

具体例1 両面に厚さ15μmの接着剤層を有するポリイミドフィ
ルム(厚さ:25μm)を厚さ2.01のアルミニウム
板の上に置き、更にその上に厚さ35μ+nのLE f
taを重ねて170°C160分、30k(47cm”
の条件で熱プレスし、回路基板材を得た。この回路基板
材から100&1角片を採取し、次いでその銅箔層をエ
ツチング処理して100mm角片の中央に30mm角の
部分のみに銅箔層を残した多数の模擬回路基板を得た。
Specific example 1 A polyimide film (thickness: 25 μm) having adhesive layers with a thickness of 15 μm on both sides is placed on an aluminum plate with a thickness of 2.01, and an LE f with a thickness of 35 μm + n is placed on top of the aluminum plate with a thickness of 2.01 μm.
160 minutes at 170°C, 30k (47cm)
A circuit board material was obtained by heat pressing under the following conditions. 100mm square pieces were taken from this circuit board material, and the copper foil layers thereof were then etched to obtain a large number of simulated circuit boards in which the copper foil layer was left only in a 30mm square part in the center of the 100mm square pieces.

各模擬回路基板試t4の銅箔層のエッジ部並びに金側面
を常温における粘度が1000cpsのエポキシ樹脂に
アセチレンブランクを混合した常温における体積抵抗率
が約10Ωcmの半導電性組成物を用いて被覆し、加熱
硬化して半導電性層を形成した。当該半導電性層によっ
て被覆された銅箔層表面端部の幅は約0.2閣であり、
半導電性層のエツジ部上における断面は半径が約4μ―
の円弧に近い形状であった。また銅箔層の側面上の半導
電性層の厚さは約20μmであった。
The edge part of the copper foil layer and the gold side surface of each simulated circuit board test T4 were coated with a semiconductive composition having a volume resistivity of approximately 10 Ωcm at room temperature, which was prepared by mixing an acetylene blank with an epoxy resin having a viscosity of 1000 cps at room temperature. , and was heated and cured to form a semiconductive layer. The width of the surface edge of the copper foil layer covered with the semiconductive layer is about 0.2 mm,
The cross section on the edge of the semiconducting layer has a radius of approximately 4μ.
The shape was close to a circular arc. Further, the thickness of the semiconductive layer on the side surface of the copper foil layer was about 20 μm.

ついでこの半導電性層の上に常温における体積抵抗率が
約10′4Ωcmのエポキシ樹脂絶縁塗料を塗布し、加
熱硬化して第1図の絶縁層5のような断面図形状の絶縁
層を形成した。エツジ部上における断面円弧状の半導電
性層の上に形成された絶縁層の厚みは、約0.O1薗で
あった。
Next, an epoxy resin insulating paint having a volume resistivity of about 10'4 Ωcm at room temperature is applied onto this semiconductive layer and cured by heating to form an insulating layer having a cross-sectional shape as insulating layer 5 in FIG. did. The thickness of the insulating layer formed on the semiconductive layer having an arcuate cross section on the edge portion is about 0. It was O1 Sono.

具体例2 実施例1で用いたエポキシ樹脂ヘースの半導電性組成物
の代わりに常温における粘度が400cpsのソルダー
レジストにカーボンブランクを混合した常温における体
積抵抗率が約10”Ωcmの半導電性組成物を用い、ま
たエポキシ樹脂絶縁塗料の代わりに常温における粘度及
び体積抵抗率がそれぞれ400cps、約10′2Ωc
mのソルダーレジストを使用して具体例1と同様の構造
の回路基板を得た。ただし、当該半導電性層によって被
覆された銅箔層表面端部の幅は約0.3mmであり、半
導電性層のエツジ部上における断面は半径が約5μmの
円弧に近い形状であった。また銅箔層の側面上の半導電
性層の厚さは約20μmであった。
Specific Example 2 Instead of the semiconductive composition of epoxy resin haze used in Example 1, a semiconductive composition with a volume resistivity of about 10''Ωcm at room temperature was prepared by mixing a carbon blank with a solder resist having a viscosity of 400 cps at room temperature. The viscosity and volume resistivity at room temperature are 400 cps and about 10'2 Ωc, respectively, instead of the epoxy resin insulating paint.
A circuit board having a structure similar to that of Example 1 was obtained using a solder resist of No. m. However, the width of the surface edge of the copper foil layer covered by the semiconductive layer was about 0.3 mm, and the cross section on the edge of the semiconductive layer was close to an arc with a radius of about 5 μm. . Further, the thickness of the semiconductive layer on the side surface of the copper foil layer was about 20 μm.

具体例3 具体例1と同様の材料並びに構造のものであるが、半導
電性層によって被覆された銅箔層表面端部の幅は約0.
3+nmであり、半導電性層のエツジ部上における断面
は、厚みが約3μmの非円弧形状であった。
Specific Example 3 The material and structure are similar to those of Specific Example 1, but the width of the surface edge of the copper foil layer covered with the semiconductive layer is approximately 0.
3+nm, and the cross section on the edge portion of the semiconductive layer had a non-circular arc shape with a thickness of about 3 μm.

比較例1 具体例3とは、半導電性層および絶縁層がない点におい
て相違し、他は同一構造の回路基板を得た。
Comparative Example 1 A circuit board was obtained which differed from Specific Example 3 in that it did not have a semiconductive layer and an insulating layer, but otherwise had the same structure.

具体例1〜3、比較例1の各試料につき、アルミニウム
板と銅箔層との間に常温、空気中でAC2kV (60
Hz)を課電し、絶縁破壊が生じるまでの時間即ち課電
寿命(し、単位:時間)を測定した。またその際コロナ
開始電圧(CV、単位:■)も測定した。課電寿命並び
にコロナ開始電圧の平均値(Av)および標準偏差(σ
)についての測定結果を下表に示す。
For each sample of Specific Examples 1 to 3 and Comparative Example 1, AC 2 kV (60
A voltage (Hz) was applied, and the time until dielectric breakdown occurred, that is, the charging life (unit: hour) was measured. At that time, the corona onset voltage (CV, unit: ■) was also measured. Average value (Av) and standard deviation (σ
) measurement results are shown in the table below.

table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の断面図を示す。 l  金属基層 2  有機高分子絶縁層 3  電気回路層 31 電気回路層3のエッジ部 32  を気回路層3の側面 4  半導電性材料からなる被覆層 5  有機高分子絶j1層 第1図 □I FIG. 1 shows a cross-sectional view of an embodiment of the invention. l Metal base layer 2 Organic polymer insulation layer 3 Electric circuit layer 31 Edge part of electric circuit layer 3 32 side of air circuit layer 3 4 Coating layer made of semiconductive material 5 1 layer of organic polymer Figure 1 □I

Claims (1)

【特許請求の範囲】[Claims] 金属基層の上に有機高分子絶縁層を有し、更にその上に
電気回路層を有する回路基板において、当該電気回路層
のエッジが半導電性材料により被覆されており、更に当
該半導電性材料の被覆層上に有機高分子絶縁層を有する
ことを特徴とする回路基板。
In a circuit board having an organic polymer insulating layer on a metal base layer and further having an electric circuit layer thereon, an edge of the electric circuit layer is covered with a semiconductive material, and the edge of the electric circuit layer is coated with a semiconductive material. 1. A circuit board comprising an organic polymer insulating layer on a coating layer.
JP5910388A 1988-03-11 1988-03-11 Circuit board Expired - Lifetime JP2607906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5910388A JP2607906B2 (en) 1988-03-11 1988-03-11 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5910388A JP2607906B2 (en) 1988-03-11 1988-03-11 Circuit board

Publications (2)

Publication Number Publication Date
JPH01232792A true JPH01232792A (en) 1989-09-18
JP2607906B2 JP2607906B2 (en) 1997-05-07

Family

ID=13103654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5910388A Expired - Lifetime JP2607906B2 (en) 1988-03-11 1988-03-11 Circuit board

Country Status (1)

Country Link
JP (1) JP2607906B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194933A (en) * 1990-10-05 1993-03-16 Fuji Electric Co., Ltd. Semiconductor device using insulation coated metal substrate
US5329068A (en) * 1992-06-10 1994-07-12 Kabushiki Kaisha Toshiba Semiconductor device
US5527604A (en) * 1993-08-06 1996-06-18 Mitsubishi Denki Kabushiki Kaisha Metal base board and electronic equipment using the same
JP2020080379A (en) * 2018-11-13 2020-05-28 マイクロクラフト株式会社 Device and method for forming film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194933A (en) * 1990-10-05 1993-03-16 Fuji Electric Co., Ltd. Semiconductor device using insulation coated metal substrate
US5329068A (en) * 1992-06-10 1994-07-12 Kabushiki Kaisha Toshiba Semiconductor device
US5527604A (en) * 1993-08-06 1996-06-18 Mitsubishi Denki Kabushiki Kaisha Metal base board and electronic equipment using the same
US5578367A (en) * 1993-08-06 1996-11-26 Mitsubishi Denki Kabushiki Kaisha Metal base board and electronic equipment using the same
US5670241A (en) * 1993-08-06 1997-09-23 Mitsubishi Denki Kabushiki Kaisha Metal base board and electronic equipment using the same
US5820972A (en) * 1993-08-06 1998-10-13 Mitsubishi Denki Kabushiki Kaisha Metal base board and electronic equipment using the same
US5834101A (en) * 1993-08-06 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Metal base board and electronic equipment using the same
DE4427994C2 (en) * 1993-08-06 2000-10-26 Mitsubishi Electric Corp Metal core substrate, especially for use in electronic circuits
JP2020080379A (en) * 2018-11-13 2020-05-28 マイクロクラフト株式会社 Device and method for forming film

Also Published As

Publication number Publication date
JP2607906B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
JP5516672B2 (en) Conductive paste
TW416259B (en) Embedded module of circuit component and method making the same
US5849396A (en) Multilayer electronic structure and its preparation
JPH0513960A (en) Manufacture of multilayer wiring board
JPH01232792A (en) Circuit board
JPS61188957A (en) Manufacture of circuit module
JP4270364B2 (en) Manufacturing method of substrate with built-in capacitor
Lostetter et al. Polymer thick film (PTF) and flex technologies for low cost power electronics packaging
JPS63164491A (en) Circuit board and manufacture of the same
JPS61247245A (en) Double fine pattern circuit
JPH01232795A (en) Manufacture of metal based board
JPH06334287A (en) Aluminum-based printed wiring board and manufacture thereof
JPS6352496A (en) Circuit board
JPH08125294A (en) Metal base board and manufacture thereof
JPS63301593A (en) Printed circuit board with cross-over circuit
JPS588159B2 (en) Method for manufacturing multilayer printed wiring board
JPH0345909B2 (en)
JPH10284814A (en) Circuit pattern and its formation
JPH02306686A (en) Flexible printed circuit
JPS63270133A (en) Circuit board
JPH02158193A (en) Wiring board and manufacture thereof
JPH0433154B2 (en)
JPS60263499A (en) Method of producing multilayer printed circuit board
JPS60175494A (en) Method of producing metal base circuit board
US20020062924A1 (en) Definable integrated passives for circuitry