JPH01232069A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH01232069A
JPH01232069A JP5874388A JP5874388A JPH01232069A JP H01232069 A JPH01232069 A JP H01232069A JP 5874388 A JP5874388 A JP 5874388A JP 5874388 A JP5874388 A JP 5874388A JP H01232069 A JPH01232069 A JP H01232069A
Authority
JP
Japan
Prior art keywords
thermal
electrode
electrode group
annular
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5874388A
Other languages
Japanese (ja)
Inventor
Hisashi Kodama
久 児玉
Nobuyuki Yoshiike
信幸 吉池
Akihiko Yoshiike
吉池 昭彦
Yoshihiro Watanabe
善博 渡辺
Atsushi Nishino
敦 西野
Yasuhiro Takeuchi
康弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5874388A priority Critical patent/JPH01232069A/en
Publication of JPH01232069A publication Critical patent/JPH01232069A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To improve thermal efficiency, thermal response and gradation recording property and make possible high-speed, high-quality printing by forming an annular section which comes into contact with the thermal resistors of at least, either one of a common electrode group or a discrete electrode group. CONSTITUTION:Common electrodes 3a and discrete electrodes 4a are introduce and arranged alternately through both sides of a thermal resistor 5 in a thermal head. In addition, the section 8a, which comes into contact with the thermal resistor 5, of each discrete electrode 4a is formed into an annular rectangular form. Then a single dot is formed using two heating sections 9a, 9b which are formed in an area sandwiched between the annual section 8a and the common electrode 3a. In this way, the excellent thermal response, gradation recording property and electric power saving can be achieved very simply, and high- speed and high-quality printing be performed at low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプリンタやファクシミリ等の感熱記録装置に用
いられるサーマルヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermal head used in a thermal recording device such as a printer or facsimile.

従来の技術 プリンタやファクシミリ等の感熱記録装置は、サーマル
ヘッドを用い、感熱紙あるいはインクシートと重ね合わ
せた普通紙に対して感熱記録を行っている。感熱記録時
の記録濃度はサーマルヘッドの発熱抵抗体の単位体積当
りの発熱量により決るものであり、発熱ドツトの抵抗値
や体積にばらつきがあると各ドツトの発熱量が異なり、
印字濃度むらの原因となる。
2. Description of the Related Art Conventional thermal recording devices such as printers and facsimile machines use thermal heads to perform thermal recording on thermal paper or plain paper overlaid with an ink sheet. The recording density during thermal recording is determined by the amount of heat generated per unit volume of the heating resistor of the thermal head, and if there are variations in the resistance value or volume of the heating dots, the amount of heat generated by each dot will differ.
This causes uneven print density.

第6図は従来の厚膜型のサーマルヘッドの断面構成図で
ある。アルミナ基板1上に、ガラスグレーズ層2を形成
し、この基板上に共通電極3、個別電極4を交互に配列
するように形成し、これらの電極3,4上に酸化ルテニ
ウムからなる共通発熱抵抗体5を形成し、更に耐摩耗層
6を形成する。
FIG. 6 is a cross-sectional configuration diagram of a conventional thick film type thermal head. A glass glaze layer 2 is formed on an alumina substrate 1, a common electrode 3 and individual electrodes 4 are formed on this substrate so as to be arranged alternately, and a common heating resistor made of ruthenium oxide is formed on these electrodes 3 and 4. A wear-resistant layer 6 is further formed.

第6図は第5図に示す従来の厚膜型のサーマルヘッドの
電極形状を示した平面図である。厚膜型のサーマルヘッ
ドでは発熱抵抗体を独立して作成することが困難である
ため、ライン状の共通発熱抵抗体6を設け、通電用の導
体電極としては、前記発熱抵抗体5の両側から交互に共
通電極3と個別電極4を千鳥型に導入配置している。ま
た、1つの個別電極には2つの発熱部7a、7bが対応
し、1つのドツトを構成している。
FIG. 6 is a plan view showing the electrode shape of the conventional thick film type thermal head shown in FIG. Since it is difficult to create heating resistors independently in a thick-film type thermal head, a line-shaped common heating resistor 6 is provided, and conductor electrodes for energization are formed from both sides of the heating resistor 5. Common electrodes 3 and individual electrodes 4 are alternately introduced and arranged in a staggered manner. Furthermore, two heat generating parts 7a and 7b correspond to one individual electrode, forming one dot.

導体電極にパルス的に電圧を印加すると、発熱抵抗体に
電流が流れ300〜460℃の高温に発熱し、電力の印
加の中止とともに室温付近まで冷却され、この繰り返し
により感熱記録を可能にしている。省電力化の観点から
は、より少ない電力の印加でより高温に発熱できること
が望ましい。
When a pulsed voltage is applied to the conductor electrode, a current flows through the heating resistor, generating heat at a high temperature of 300 to 460 degrees Celsius, and when the application of power is stopped, it cools down to around room temperature.This repetition makes thermosensitive recording possible. . From the viewpoint of power saving, it is desirable to be able to generate heat to a higher temperature with less power applied.

また、高速印字が可能なためには、印加電圧のオン、オ
フに伴う発熱と冷却が瞬時に行える熱応答性が要求され
る。
In addition, in order to enable high-speed printing, thermal responsiveness is required that allows instantaneous heat generation and cooling as the applied voltage is turned on and off.

発明が解決しようとする課題 しかしζ:従来の厚膜型のサーマルヘッドでは、薄膜型
のサーマルヘッドに比べて、その発熱抵抗体の体積が大
きいため発熱効率がわるく、同一の記録濃度を得るため
にはより多くの電力を必要とした。また、発熱抵抗体の
体積が大きいことから熱容量も大きくなり、周期の短い
入力電圧に追従できず高速な印字を行うことが出来なか
った。
Problems to be Solved by the Invention However, ζ: Compared to thin-film thermal heads, conventional thick-film thermal heads have lower heat-generating efficiency than thin-film thermal heads due to the larger volume of their heat-generating resistors, making it difficult to obtain the same recording density. required more power. Furthermore, since the heating resistor has a large volume, its heat capacity also becomes large, making it impossible to follow input voltage with a short cycle, making it impossible to perform high-speed printing.

印字品質の点においても、従来の千鳥型電極形状を有す
る厚膜型のサーマルヘッドでは、ライン状の共通発熱抵
抗体5のライン幅を均一に印刷形成することが困難で数
パーセントにおよぶばらつきを有しているため、導体電
極と発熱抵抗体との接触面積が異なり、基本的に各ドツ
ト抵抗値のばらつきが大きく、印字濃度むらが大きかっ
た。また、通電過負荷トリミング方式(発熱抵抗体に電
力を供給したときに生じる自己発生ジュール熱による抵
抗値変化を利用する方法)を用いて、ドツトの抵抗値を
トリミングして±1チ程度に均一に合わせることは出来
るが、抵抗体形状のばらつきがあるために抵抗体の単位
体積当りの発熱量を均一にすることが出来なかった。さ
らに、同一ドツト内の2つの発熱部の抵抗値を同じ値に
することは不可能であシ、そのため、極端な場合にはド
ツト内の抵抗値ばらつきが十数チとなシ、その結果、同
一ドツト内の2つの発色点の濃度が異なり、印字濃度む
らの原因となっていた。
In terms of printing quality, with conventional thick-film thermal heads having staggered electrode shapes, it is difficult to print the line width of the line-shaped common heating resistor 5 uniformly, resulting in variations of several percent. Because of this, the contact area between the conductive electrode and the heat generating resistor was different, and the resistance values of each dot basically varied widely, resulting in large print density unevenness. In addition, using the current overload trimming method (a method that utilizes the change in resistance value due to self-generated Joule heat that occurs when power is supplied to a heating resistor), the resistance value of the dots is trimmed to be uniform to about ±1 inch. However, due to variations in the shape of the resistor, it was not possible to make the amount of heat generated per unit volume of the resistor uniform. Furthermore, it is impossible to make the resistance values of two heat generating parts within the same dot the same value, and therefore, in extreme cases, the resistance value variation within the dot may be more than 10 degrees. The densities of two colored points within the same dot were different, causing uneven printing density.

本発明は、これらの問題点を解決するもので、サーマル
ヘッドにおける発熱効率の向上を計り熱応答性を高め、
省電力化を可能とし、かつ、階調記録性、高印字品位化
、高信頼性を可能とするものである。
The present invention solves these problems by improving heat generation efficiency in the thermal head, increasing thermal response, and
It enables power saving, gradation recording performance, high print quality, and high reliability.

課題を解決するための手段 上記課題を解決するために本発明は、発熱抵抗体に交互
に導入配置された共通電極群、固別電極群のうち、少な
くとも一方の電極群の発熱抵抗体に接する部分を環状に
形成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a common electrode group and a separate electrode group which are alternately introduced and arranged on the heat generating resistor, and at least one electrode group is in contact with the heat generating resistor. The part is formed into an annular shape.

作  用 本発明の構成によれば、同時に発熱効率、熱応答性、階
調記録性を改善することが可能で、高速に高品位印字可
能な高信頼性のサーマルヘッドを提供することができる
According to the configuration of the present invention, it is possible to simultaneously improve heat generation efficiency, thermal response, and gradation recording performance, and to provide a highly reliable thermal head capable of high-speed, high-quality printing.

実施例 第1図は本発明の一実施例の厚膜型のサーマルヘッドの
断面構成図である。アルミナ基板1上に、ガラスグレー
ズ層2を形成し、金の導体電極(厚み0.5〜1.0μ
m)からなる共通電極3aおよび個別電極4aをドツト
ピッチ(16,7μm)の間隔で交互に配列されるよう
に形成し、この電極上に酸化ル、テニウムからなる共通
発熱抵抗体5を形成し、このうえに更に耐摩耗層6を形
成した。
Embodiment FIG. 1 is a sectional view of a thick film type thermal head according to an embodiment of the present invention. A glass glaze layer 2 is formed on an alumina substrate 1, and a gold conductor electrode (thickness 0.5 to 1.0 μm) is formed on the alumina substrate 1.
A common electrode 3a and individual electrodes 4a consisting of m) are formed so as to be arranged alternately at a dot pitch (16,7 μm), and a common heating resistor 5 made of oxide and thenium is formed on these electrodes. On top of this, a wear-resistant layer 6 was further formed.

第2図は、本発明の第1の実施例のサーマルヘッドの電
極形状を示す平面図で、共通発熱抵抗体5の両側から交
互に共通電極3a、個別電極4aを導入配置しており、
個別電極4aの発熱抵抗体6に接する部分を環状の矩形
にしている。本実施、例では、個別電極4aの瞭←伴→
噌嗜轡環状部分8aと共通電極3&に挟まれた部位に形
成される2つの発熱部分9a 、 9bによって1つの
ドツトが構成される。
FIG. 2 is a plan view showing the electrode shape of the thermal head according to the first embodiment of the present invention, in which common electrodes 3a and individual electrodes 4a are introduced and arranged alternately from both sides of the common heating resistor 5.
The portion of the individual electrode 4a that is in contact with the heating resistor 6 is annular and rectangular. In this embodiment and example, the clarity of the individual electrode 4a is
One dot is formed by two heat generating portions 9a and 9b formed at a portion sandwiched between the circular portion 8a and the common electrode 3&.

このような構成とした場合、従来の千鳥電極型のサーマ
ルヘッドに較べて、発熱部分の体積が小さくなり、従来
よりも発熱抵抗体に流れる電流密度を大きくすることが
でき、発熱効率と熱応答性を改善できる。
With this configuration, compared to the conventional staggered electrode type thermal head, the volume of the heat generating part is smaller, and the current density flowing through the heat generating resistor can be increased than before, which improves heat generation efficiency and thermal response. Can improve sex.

また、従来、発熱部分の大きさを制限して発熱効率と熱
応答性を改善するために、電極幅を一部広げるなどして
電極の面積を大きくしていたが、導体電極の熱伝導率は
発熱抵抗体に比べて非常に大きいため、発熱エレメント
で発生したジュール熱の一部は導体電極内を熱伝導によ
り拡散してしまい、従来熱効率の低下の大きな原因とな
っていた。しかし、第2図に示した本実施例の構成とす
ることにより、熱損失に最も影響のある発熱部位に接す
る導体電極幅を小さく保つことが可能で、熱損失を抑え
つつ、かつ発熱部分を制限することにより熱効率を一層
改善することが可能になった。
In addition, in the past, in order to limit the size of the heat generating part and improve heat generation efficiency and thermal response, the area of the electrode was increased by partially widening the electrode width, but the thermal conductivity of the conductive electrode is much larger than the heating resistor, so some of the Joule heat generated by the heating element is diffused within the conductive electrode by thermal conduction, which has conventionally been a major cause of a decrease in thermal efficiency. However, by adopting the configuration of this embodiment shown in Fig. 2, it is possible to keep the width of the conductor electrode in contact with the heat generating part that has the greatest effect on heat loss small, thereby suppressing heat loss and reducing the heat generating part. By limiting this, it became possible to further improve thermal efficiency.

また、このような熱集中の効果により、熱容量も減少す
るので同時に熱応答性も改善される。
Further, due to the effect of such heat concentration, the heat capacity is also reduced, and the thermal responsiveness is also improved at the same time.

さらに、ドツトの抵抗値は、第2図に示した本実施例の
構成とした場合、主に個別電極4aの環状部分8aの共
通電極3aに相対している部分の長さによって決るため
、共通発熱抵抗体5の形状の不均一性の影響を受けなく
なり、ドツトの抵抗値ばらつきを小さく抑えることがで
きる。
Furthermore, when the configuration of this embodiment shown in FIG. It is no longer affected by the non-uniformity of the shape of the heating resistor 5, and the variation in resistance value of the dots can be suppressed to a small level.

第3図は、本発明の第2の実施、例を示したもので、個
別電極4bの環状部分8bの周囲を覆うように共通電極
3bを導入配置したものである。このような構造にする
ことにより、発熱部の特性はほとんど電極形状のみに依
存することになり、発熱抵抗体5の形状の不均一性の影
響を受けなくなり、ドツトの抵抗値ばらつきを更に小さ
く抑えることができる。
FIG. 3 shows a second embodiment of the present invention, in which a common electrode 3b is introduced and arranged so as to cover the annular portion 8b of the individual electrode 4b. By adopting such a structure, the characteristics of the heating part almost depend only on the electrode shape, and are not affected by the non-uniformity of the shape of the heating resistor 5, thereby further suppressing the variation in the resistance value of the dots. be able to.

また、発熱部位が個別電極4bの環状部分8bの左右だ
けでなく上下にも形成されて、全体的には略長円形の円
環状に発熱部位が形成される。このような形状のため、
中心部分では発熱しないものの、周囲で発生した熱によ
り中心部分も温度が上昇するため、従来よりも小電力で
面積の大きいドツトを発色させることができ、熱効率を
改善すると同時に、極めて良好な階調記録性が得られる
In addition, heat generating parts are formed not only on the left and right sides of the annular portion 8b of the individual electrode 4b, but also on the top and bottom, and the heat generating parts are formed in a generally elliptical annular shape as a whole. Because of this shape,
Although the central part does not generate heat, the temperature of the central part rises due to the heat generated in the surrounding area, so it is possible to color a large dot with less power than before, improving thermal efficiency and achieving extremely good gradation. Recordability is obtained.

なお、環状電極と周囲の共通電極との間隔は、局所的な
電流集中を避けるため、全周のどの位置でもほぼ等しく
し、熱集中の効果を出すためにはできる限り狭くした方
がその効果が大きい。しかし、このようにして電流密度
を増加させすぎると導体電極端面での放電密度が増加し
て電極破壊をきたすため、発熱抵抗体と導体電極の限界
電流密度を勘案して構成する必要がある。
Note that the distance between the annular electrode and the surrounding common electrode should be approximately equal at all positions around the circumference to avoid local current concentration, and should be as narrow as possible to achieve the effect of heat concentration. is large. However, if the current density is increased too much in this way, the discharge density at the end face of the conductive electrode will increase and cause electrode breakdown, so it is necessary to take into consideration the limiting current density of the heating resistor and the conductive electrode.

第4図は、本発明の第3の実施例を示したもので、個別
電極4Cの環状部分8Cの角部に円弧を付けるとともに
、それに相対する共通電極3Cの角部にも円弧を付けた
ものである。このような構成にすることにより、従来電
極の角部に発生していた電流集中を防止でき、発熱抵抗
体の長寿命化と高信頼性を実現することができる。
FIG. 4 shows a third embodiment of the present invention, in which an arc is provided at the corner of the annular portion 8C of the individual electrode 4C, and an arc is also provided at the corner of the opposing common electrode 3C. It is something. By adopting such a configuration, it is possible to prevent current concentration that conventionally occurs at the corners of the electrode, and it is possible to achieve a long life and high reliability of the heating resistor.

このヘッドと比較のために電極パターンのみを従来の千
鳥型電極パターンとした従来のヘッドともに、0.4W
/dot 、1 /4duty’、 16ms/cyc
leの条件で駆動し感熱紙に印字して、各ドツトの発色
点の濃度をマイクロ濃度計で測定した結果、従来のヘッ
ドは発色点の濃度は±6%以上のばらつきであったのに
対し、本発明のヘッドに関しては±2%以内のばらつき
で非常に高品位な印字ができた。
For comparison, both this head and a conventional head with only the conventional staggered electrode pattern have a power of 0.4W.
/dot, 1/4duty', 16ms/cyc
As a result of printing on thermal paper while driving under the conditions of le, and measuring the density of the coloring point of each dot with a microdensitometer, the density of the coloring point of the conventional head had a variation of more than ±6%. With the head of the present invention, very high quality printing was possible with variations within ±2%.

また、本発明の特徴とする電極形状としたヘッドは、従
来の単純な千鳥型電極パターンのヘッドに較べ同一人力
で印画濃度が1.2〜1.4倍程度高く熱応答性に優れ
たヘッドであることが分かった。
In addition, the head with the electrode shape that is a feature of the present invention has a print density of 1.2 to 1.4 times higher with the same human power than the conventional head with a simple staggered electrode pattern, and has excellent thermal response. It turned out to be.

また、発熱ドツトの温度変化を赤外線顕微鏡で測定した
結果、従来の単純な千鳥型ヘッドに較べ極めて過渡応答
に優れており、温度変化の時定数が10〜2oチ程度小
さかった。
Furthermore, as a result of measuring the temperature change of the heating dots using an infrared microscope, it was found that the transient response was extremely excellent compared to a conventional simple staggered head, and the time constant of temperature change was about 10 to 2 times smaller.

本発明の特徴は、発熱抵抗体に交互に導入配置された電
極のうち、一方の側の電極の発熱抵抗体に接する部分を
環状に形成することにある。このような構成とすること
によシ、従来問題となっていた導体電極による熱伝導損
失を低レベルに抑えつつ、1つの発熱ドツトを構成する
各発熱部分の体積を制限し、同時にそれらを環状電極周
辺に分散して適切に配置することが可能になり、非常に
低コストで、熱応答性、階調記録性、省電力化を同時に
改善できるものである。
A feature of the present invention is that, among the electrodes that are alternately introduced into the heating resistor, the portion of the electrode on one side that contacts the heating resistor is formed into an annular shape. By adopting such a configuration, it is possible to suppress the heat conduction loss due to the conductive electrode, which has been a problem in the past, to a low level, limit the volume of each heat generating part that makes up one heat generating dot, and at the same time limit the volume of each heat generating part that makes up one heat generating dot. It is now possible to disperse and appropriately arrange the electrodes around the electrodes, and it is possible to improve thermal response, gradation recording performance, and power saving at the same time at a very low cost.

なお、前記実施例では厚膜型サーマルヘッドについて記
載したが、本発明は前記実施例に限定されるものではな
く、本発明の電極形状とした場合は、薄膜型サーマルヘ
ッドでも同様の効果を有する。また、基板は、はうろう
基板でも良く、その他ヘツドの各構成材料に特に限定さ
れるものではない。
Although the above embodiment describes a thick film type thermal head, the present invention is not limited to the above embodiment, and when the electrode shape of the present invention is used, a thin film type thermal head can also have the same effect. . Further, the substrate may be a floating substrate, and the materials constituting the head are not particularly limited.

発明の効果 以上の説明から明らかなように本発明によれば、サーマ
ルヘッドの各発熱ドツトの優れた熱応答性、階調記録性
、省電力化を極めて簡便に実現することができ、低コス
トで、高速に高品位印字可能な高信頼性のサーマルヘッ
ドを提供できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, excellent thermal response, gradation recording performance, and power saving of each heating dot of a thermal head can be achieved extremely easily, and at low cost. This enables us to provide a highly reliable thermal head that can perform high-speed, high-quality printing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のサーマルヘッドの断面
構成図、第2図は同サーマルヘッドの電極構成を示す平
面図、第3図、第4図は本発明の第2.第3の実施例の
サーマルヘッドの電極構成′を示す平面図、第5図は従
来例のサーマルヘッドの断面構成図、第6図は同サーマ
ルヘッドの電極構成を示す平面図である。 1・・・・・・基板、2・・・・・・グレーズ層、3a
、3b。 3C・・・・・・共通電極、4a、4b、4c・・・・
・・個別電極、6・・・・・・発熱抵抗体、6・・・・
・・耐摩耗層、8a。 8b、8c・・・・・・環状部分。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名゛〆 譬             リ 3b−鉄蓋電極 4b−−−イド1男II  異也才洒ib 3c−共通電極 4cm−−イ艮へ 別 胃t g!
FIG. 1 is a cross-sectional configuration diagram of a thermal head according to a first embodiment of the present invention, FIG. 2 is a plan view showing the electrode configuration of the thermal head, and FIGS. FIG. 5 is a sectional view of the conventional thermal head, and FIG. 6 is a plan view showing the electrode configuration of the thermal head of the third embodiment. 1...Substrate, 2...Glaze layer, 3a
, 3b. 3C...Common electrode, 4a, 4b, 4c...
...Individual electrode, 6...Heating resistor, 6...
...Abrasion resistant layer, 8a. 8b, 8c... annular portion. Name of agent: Patent attorney Satoshi Nakao, and 1 other person.

Claims (3)

【特許請求の範囲】[Claims] (1)発熱抵抗体に通電するための共通電極群と、前記
共通電極群に対向する通電用の個別電極群を有し、少な
くとも一方の電極群の前記発熱抵抗体に接する部分を環
状電極としたことを特徴とするサーマルヘッド。
(1) It has a common electrode group for energizing the heat generating resistor, and a separate electrode group for energizing that faces the common electrode group, and a portion of at least one electrode group in contact with the heat generating resistor is a ring-shaped electrode. Thermal head is characterized by:
(2)環状電極群と対向する他方の電極群の少なくとも
発熱抵抗体に接する部分を前記環状電極の周囲を包囲す
るように導入配置したことを特徴とする特許請求の範囲
第1項記載のサーマルヘッド。
(2) The thermal sensor according to claim 1, characterized in that at least a portion of the other electrode group facing the annular electrode group that contacts the heating resistor is introduced and arranged so as to surround the periphery of the annular electrode. head.
(3)環状電極群の環状部分の角部と、前記環状電極群
に対向する他方の電極群の環状電極部を包囲する部分の
角部の少なくとも一方を円弧形状に形成したことを特徴
とする特許請求の範囲第2項記載のサーマルヘッド。
(3) At least one of the corner of the annular portion of the annular electrode group and the corner of the portion surrounding the annular electrode of the other electrode group facing the annular electrode group is formed into an arc shape. A thermal head according to claim 2.
JP5874388A 1988-03-11 1988-03-11 Thermal head Pending JPH01232069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5874388A JPH01232069A (en) 1988-03-11 1988-03-11 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5874388A JPH01232069A (en) 1988-03-11 1988-03-11 Thermal head

Publications (1)

Publication Number Publication Date
JPH01232069A true JPH01232069A (en) 1989-09-18

Family

ID=13093012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5874388A Pending JPH01232069A (en) 1988-03-11 1988-03-11 Thermal head

Country Status (1)

Country Link
JP (1) JPH01232069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239955A (en) * 1988-07-29 1990-02-08 Mitsubishi Electric Corp Thermal head
EP0679515A2 (en) * 1994-04-27 1995-11-02 Mitsubishi Denki Kabushiki Kaisha Recording head
JP2020196211A (en) * 2019-06-04 2020-12-10 ローム株式会社 Thermal print head

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239955A (en) * 1988-07-29 1990-02-08 Mitsubishi Electric Corp Thermal head
EP0679515A2 (en) * 1994-04-27 1995-11-02 Mitsubishi Denki Kabushiki Kaisha Recording head
EP0679515A3 (en) * 1994-04-27 1996-05-15 Mitsubishi Electric Corp Recording head.
EP0867288A3 (en) * 1994-04-27 1999-06-23 Mitsubishi Denki Kabushiki Kaisha Recording head
US5988797A (en) * 1994-04-27 1999-11-23 Mitsubishi Denki Kabushiki Kaisha Recording head
CN1093037C (en) * 1994-04-27 2002-10-23 三菱电机株式会社 Recording head
JP2020196211A (en) * 2019-06-04 2020-12-10 ローム株式会社 Thermal print head

Similar Documents

Publication Publication Date Title
JPH01232069A (en) Thermal head
JPH01232071A (en) Thermal head
JPS6213367A (en) Thermal head
JPS63319160A (en) Thermal head
JPS63319161A (en) Thermal head
JPH01133756A (en) Thermal head
JPS6135265A (en) Thermal head
JPH11115232A (en) Thermal head
JP2572688B2 (en) Thermal print head
JPH01232070A (en) Thermal head
JP3017550B2 (en) Thermal head
JPH01232068A (en) Thermal head
JPH05201047A (en) Thermal head
JP3099431B2 (en) Thermal head
JPH07205462A (en) Thermal record head
JPS59209892A (en) Thermal recording head
JPS6270083A (en) Thermal recording paper
JPS59133079A (en) Heat-sensitive head
JPH05318796A (en) Thermal head
JPH05330113A (en) Thermal head
JPH05318789A (en) Thermal head
JPH01150555A (en) Thermal head
JPH02117856A (en) Thermal head
JPH04234678A (en) Thermal print head
JPH04226768A (en) Thermal head