JPH01232019A - Conductive thermoplastic resin molded material - Google Patents

Conductive thermoplastic resin molded material

Info

Publication number
JPH01232019A
JPH01232019A JP63059795A JP5979588A JPH01232019A JP H01232019 A JPH01232019 A JP H01232019A JP 63059795 A JP63059795 A JP 63059795A JP 5979588 A JP5979588 A JP 5979588A JP H01232019 A JPH01232019 A JP H01232019A
Authority
JP
Japan
Prior art keywords
conductive
thermoplastic resin
fibers
sheet
conductive thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63059795A
Other languages
Japanese (ja)
Inventor
Takashi Daimon
大門 孝
Shuji Sakamoto
坂本 秀志
Osamu Akimoto
治 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP63059795A priority Critical patent/JPH01232019A/en
Priority to CA000587278A priority patent/CA1291409C/en
Priority to EP19880121843 priority patent/EP0323642A3/en
Priority to US07/291,958 priority patent/US4929496A/en
Priority to KR1019890000022A priority patent/KR920001720B1/en
Publication of JPH01232019A publication Critical patent/JPH01232019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the generation of naps and twitches of conductive fibers by forming a crosslinking cured film of 1-15mum bonded firmly with a base material sheet on a surface layer of a conductive thermoplastic resin sheet. CONSTITUTION:Thermoplastic resin and a conductive knitted or woven cloth constituting a base material are pasted together and fused integral by heat pressing or the like. Surface treatment is carried out on the conductive knitted or woven cloth surface of a conductive thermoplastic resin sheet thus prepared, and a crosslinking cured film of 1-15mum film thickness is formed on the surface by applying a curing composition and irradiating ionizing radiations or the like and cured by irradiating electron rays or the like. Then, said conductive sheet is heated up to the softening temperature of resin and fixed between a couple of molds, male and female, at least one of them having a heat-resistant rubber surface, and both molds are fitted together by a press and shaped. Generation of naps and twitches of conductive fibers can be controlled completely by said process, while good conductive performance is maintained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面に導電性を有する熱可塑性樹脂成形物に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermoplastic resin molded article having electrical conductivity on its surface.

(従来の技術) プラスチックを導電化する方法としては帯電防止剤をプ
ラスチックに配合したシ表面に塗布する方法、導電剤と
してカーボンブラック全プラスチックに配合する方法が
ある。しかし、前者の場合表面抵抗率はせいぜい109
Ω/口程度であシ、しかも環境湿度により表面抵抗率が
変化したり経時的に帯電防止効果が消失する等の欠点が
ある。また、後者はカーボンブラック粒子がシート内で
連続して存在する程多量に配合しないと所期の導電性が
得られない。しかるに、多量にカーボンブラックを配合
すると基材樹脂の機械的強度を著しく低下せしめたり、
加工性が悪くなるといった欠点がある。
(Prior Art) Methods for making plastic conductive include a method in which an antistatic agent is applied to the surface of plastic mixed with the plastic, and a method in which carbon black is mixed into the entire plastic as a conductive agent. However, in the former case, the surface resistivity is at most 109
It has disadvantages such as the surface resistivity changes depending on the environmental humidity and the antistatic effect disappearing over time. In addition, the latter cannot obtain the desired electrical conductivity unless it is incorporated in such a large amount that the carbon black particles are present continuously within the sheet. However, blending a large amount of carbon black can significantly reduce the mechanical strength of the base resin,
It has the disadvantage of poor workability.

上記の様な従来の問題点を解決するものとして導電性繊
維と熱溶融性繊維とからなる導電性編・織布を基材であ
るプラスチックシートに融着させた導電性シートが特開
昭58−166035号公報に開示されており、該シー
トは、真空成形、深絞り成形等の熱成形を施して成形物
とし通常、熱可塑性樹脂シートの熱成形は真空成形法、
圧空成形法により行なわれる場合が多い。
In order to solve the above-mentioned conventional problems, a conductive sheet was developed in which a conductive knitted or woven fabric made of conductive fibers and thermofusible fibers was fused to a plastic sheet as a base material. -166035, the sheet is made into a molded product by thermoforming such as vacuum forming or deep drawing, and the thermoforming of the thermoplastic resin sheet is usually carried out by vacuum forming,
This is often done by air pressure molding.

これらの成形法は1個の金型を用いて、該金型に溶融状
態の樹脂膜を空気の圧力で押さえつけて賦形する。この
方法の場合、熱可塑性樹脂膜に融着一体化した導電性編
・織布面が該金型と接触する場合には特に問題はないが
、該導電性編・織布面が金型に接触しない場合は該導電
性編・織布中の導電性繊維が熱可塑性樹脂膜よりはみ出
し、毛羽立つほか、成形物のコーナ一部付近で該導電性
繊維が該樹脂膜より浮きでる(引き吊る)現象が見られ
る。
In these molding methods, a single mold is used, and a molten resin film is pressed against the mold by air pressure to shape the resin film. In the case of this method, there is no particular problem if the conductive knitted/woven fabric surface that is fused and integrated with the thermoplastic resin film comes into contact with the mold; If there is no contact, the conductive fibers in the conductive knitted/woven fabric will protrude from the thermoplastic resin film and become fluffy, and the conductive fibers will float above the resin film near some corners of the molded product (hanging). A phenomenon can be seen.

また、プレス成形法は雌雄一対の金型を嵌合することに
より賦形する成形法であるが、この成形法の場合も金型
の形状が複雑化するほど金型の間隙(樹脂膜を挿入しな
い状態で雄型と雌型を嵌合させた時の間隙)t−成形物
の各部の肉厚と合致させることは極めて困難であり、金
型面に接しない部分が必ず生じてしまう。従って、熱可
塑性樹脂膜の両面に導電性編・織布を融着一体化させた
導電性シートを用いてプレス成形すると該導電性編・織
布中の導電性繊維の毛羽立ち、引き吊り現象が部分的に
発生する。
In addition, the press molding method is a molding method in which a shape is formed by fitting a pair of male and female molds, but in this molding method, the more complex the shape of the mold, the more the gap between the molds (resin film is inserted). It is extremely difficult to match the thickness of each part of the molded product (gap when the male mold and female mold are fitted together without the molding), and there will always be parts that do not touch the mold surface. Therefore, when press-molding a conductive sheet in which conductive knitted or woven fabrics are fused and integrated on both sides of a thermoplastic resin film, the conductive fibers in the conductive knitted or woven fabrics will not fluff or hang up. Occurs partially.

なお、金型に接触して賦形された面は見かけ上溝電性繊
維の毛羽立ちは見られないが、爪や布等で摩擦すると該
導電性繊維の一部が基材から剥離し毛羽立つといった問
題点もある。上記の様々導電性繊維の毛羽立ち、引き吊
り現象は導電性成形物の外観を悪化させるばかりでなく
、強く摩擦すると該導電性繊維が成形物表面から脱落し
、周辺全汚染したり、さらには導電性能をも低下させる
ことになり実用化の大きな障害となっているえ 導電性編・織布面が金型面に接触する場合には、該導電
性編・織布中の導電性繊維は熱可塑性樹脂シートに加わ
る圧力で金型に押さえ付けられて樹脂表面に完全に埋め
込まれた状態になるので導電性繊維の毛羽立ちは見られ
ない。一方、導電性編・織布面が金型に接しない場合に
は、軟化状態の熱可塑性樹脂シートは金型面に押さえ付
けられて型の形状を忠実に再現するが、導電性繊維は熱
可塑性樹脂シートの変形に追従できず樹脂膜からはみ出
してしまう。特に、コーナ一部付近は樹脂の変形が大き
いため、導電性繊維は完全に樹脂膜からはずれて引き吊
った状態になる。
In addition, although there is no apparent fluffing of the conductive fibers on the surface that has been shaped by contacting the mold, there is a problem in that when rubbed with a fingernail, cloth, etc., some of the conductive fibers peel off from the base material and become fluffy. There are also points. The fluffing and hanging phenomena of the various conductive fibers described above not only deteriorate the appearance of the conductive molded product, but also cause the conductive fibers to fall off the surface of the molded product when rubbed strongly, contaminating the entire surrounding area, and even causing conductive This also reduces performance and is a major obstacle to practical application.When the conductive knitted or woven fabric surface comes into contact with the mold surface, the conductive fibers in the conductive knitted or woven fabric are exposed to heat. The conductive fibers do not fluff because they are pressed against the mold by the pressure applied to the plastic resin sheet and are completely embedded in the resin surface. On the other hand, when the conductive knitted/woven fabric surface does not touch the mold, the softened thermoplastic resin sheet is pressed against the mold surface and faithfully reproduces the shape of the mold, but the conductive fibers are heated It cannot follow the deformation of the plastic resin sheet and ends up protruding from the resin film. In particular, since the resin is greatly deformed near some corners, the conductive fibers are completely separated from the resin film and become suspended.

また、賦形された時点では毛羽立ちが見られなくとも、
成形物表面を摩擦すると毛羽立ちが発生することもあり
、このことは金型面への押さえつけ圧力が低く、導電性
繊維が樹脂膜に完全に埋め込まれない(導電性繊維が完
全に樹脂層で覆われないか、もしくは樹脂層があっても
非常に薄くしかも剥がれやすい)ためと推定される。
In addition, even if no fuzz is seen at the time of shaping,
Friction may occur when the surface of the molded product is rubbed, and this is because the pressing pressure against the mold surface is low and the conductive fibers are not completely embedded in the resin film (the conductive fibers are completely covered with the resin layer). This is presumed to be because the resin layer is not peeled off, or even if there is a resin layer, it is very thin and easily peels off.

感 本発明者等は導電性編・織布を熱可塑性樹脂の少なくと
も片面に融着一体化した導電性シートを用いて真空(圧
空)成形、プレス成形したときの上記問題点を解決する
べく鋭意検討を重ねた。その結果、導電性シートの表層
に不飽和樹脂と反応性希釈剤を主成分とする膜厚1〜1
5μmの架橋硬化被膜を形成、させ、該シートを少なく
とも一方の型が耐熱性ゴムを表層に有する雌雄一対の型
で賦形することによって、導電丁に 性を低f喰1ことなく導電性繊維の毛羽立ち、引き吊り
全防止でき、更に、成形物表面を爪や布等で強く摩擦し
ても導電性繊維の毛羽立ちが全く発生しないことを見出
し本発明を完成した。
The present inventors have worked hard to solve the above-mentioned problems when performing vacuum (pressure) molding or press molding using a conductive sheet in which a conductive knitted or woven fabric is fused and integrated with at least one side of a thermoplastic resin. After much consideration. As a result, on the surface layer of the conductive sheet, a film with a thickness of 1 to 1
By forming a cross-linked cured film of 5 μm and shaping the sheet with a pair of male and female molds, at least one of which has heat-resistant rubber on the surface layer, conductive fibers can be formed into conductive fibers without changing the properties of the conductive fibers. The present invention has been completed by discovering that the conductive fibers can be completely prevented from fluffing and hanging, and furthermore, even if the surface of the molded product is strongly rubbed with nails, cloth, etc., the conductive fibers will not fluff at all.

以上の記述から明らかなように、本発明の目的は導電性
繊維の毛羽立ちや成形品のコーナー部に導電性繊維の引
き吊り現象のない導電性熱可塑性樹脂成形物を提供する
ことである。
As is clear from the above description, an object of the present invention is to provide a conductive thermoplastic resin molded product that is free from fuzzing of the conductive fibers and a phenomenon in which the conductive fibers are pulled at the corners of the molded product.

(K1題を解決するための手段) 本発明は下記の構成を有する。(Means to solve K1 problem) The present invention has the following configuration.

(1)熱可塑性樹脂膜の片面もしくは両面に熱溶融厚1
〜15μmの架橋硬化被膜を形成せしめた。
(1) Thickness of thermal melting on one or both sides of thermoplastic resin film is 1
A cross-linked cured film of ~15 μm was formed.

導電性熱可塑性樹脂シートを少なくとも一方の型の表面
が耐熱性を有するゴムよシなる雌雄一対の壓の間に固定
した後、両型を嵌合することによって賦形された導電性
熱可塑性樹脂成形物。
A conductive thermoplastic resin sheet formed by fixing a conductive thermoplastic resin sheet between a pair of male and female bottles made of rubber, at least one of which has a heat-resistant surface, and then fitting both molds together. Molded object.

(2)表面処理がコロナ放電処理である前記第1項に記
載の導電性熱可塑性樹脂成形物。
(2) The conductive thermoplastic resin molded article according to item 1 above, wherein the surface treatment is corona discharge treatment.

(3ン硬化用組成物の硬化手段が電子線である前記第1
項に記載の導電性熱可塑性樹脂成形物。
(The above-mentioned first method in which the curing means of the third-curing composition is an electron beam)
The conductive thermoplastic resin molded article described in 2.

(4)導電性繊維が炭素繊維、ステンレス鋼繊維、る前
記第1項に記載の導電性熱可塑性樹脂成形物。
(4) The conductive thermoplastic resin molded product according to item 1 above, wherein the conductive fibers are carbon fibers or stainless steel fibers.

前記第1項に記載の導電性熱可塑性樹脂成形物0 (6)硬化性組成物が網点状になった版を用いて部分的
に塗工されておシ、その塗工面積(Ap)と導電性熱可
塑性樹脂シートの面積(AT)との関係が0.3≦(A
p/AT )≦0.9であることを特徴とする前記第1
項に記載の導電性熱可塑性樹脂成形物。
Conductive thermoplastic resin molded product according to item 1 above (6) The curable composition is partially coated using a halftone plate, and its coated area (Ap) and the area (AT) of the conductive thermoplastic resin sheet is 0.3≦(A
The first method is characterized in that p/AT)≦0.9.
The conductive thermoplastic resin molded article described in 2.

本発明で用いられる熱可塑性樹脂としては例えば、ポリ
エチレン、ポリプロピレン、エチレン・酢酸ビニル共重
合体、エチレン・エチルアクリレート共重合体等のポリ
オレフィン系樹脂;ポリスチレン、アクリルニトリル・
ブタジェン・スチレン共重合体、アクリルニトリル・ス
チレン共重合体等のスチレン系樹脂;ポリメチルメタア
クリレート等のアクリル系樹脂;6−ナイロン、6ロー
ナイロン、12−ナイロン、6・12−ナイロン等のポ
リアミド系樹脂;ポリエチレンテレフタレート、ポリブ
チレンテレフタレート等のポリエステル系樹脂;ポリ塩
化ビニル、ポリカーボネート、ポリフェニレンオキサイ
ドおよびこれらの混合物が挙げられる。
Examples of thermoplastic resins used in the present invention include polyolefin resins such as polyethylene, polypropylene, ethylene/vinyl acetate copolymer, ethylene/ethyl acrylate copolymer; polystyrene, acrylonitrile, etc.
Styrenic resins such as butadiene-styrene copolymers and acrylonitrile-styrene copolymers; acrylic resins such as polymethyl methacrylate; polyamides such as 6-nylon, 6-row nylon, 12-nylon, and 6,12-nylon Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyvinyl chloride, polycarbonate, polyphenylene oxide, and mixtures thereof.

これらの樹脂には耐熱安定剤、耐候安定剤、可塑剤、?
!qJ、スリップ剤、帯電防止剤、電荷移動型ポリマー
、核剤、難燃剤、粘着性付与剤(石油樹脂等)、顔料、
染料、無機質充填剤、有機質充填剤等をその目的に応じ
て配合することができる。
These resins contain heat stabilizers, weather stabilizers, plasticizers, etc.
! qJ, slip agent, antistatic agent, charge transfer polymer, nucleating agent, flame retardant, tackifier (petroleum resin, etc.), pigment,
Dyes, inorganic fillers, organic fillers, etc. can be blended depending on the purpose.

また、導電性編・織布に用いる熱溶融性繊維としてはア
クリル系繊維、ポリアミド系繊維、ポリエステル系繊維
、ポリオレフィン系繊維、ポリ塩化ビニル系繊維もしく
はこれらの混合物であって基材の熱可塑性樹脂に熱融着
できるものであれば特に制限はない。これらの繊維には
必要に応じて難燃剤、着色剤、帯電防止剤、電荷移動盤
ポリマー等を配合して用いても構わない。
In addition, the thermofusible fibers used in conductive knitted and woven fabrics include acrylic fibers, polyamide fibers, polyester fibers, polyolefin fibers, polyvinyl chloride fibers, or mixtures thereof, and thermoplastic resin as a base material. There is no particular restriction as long as it can be heat-sealed to. These fibers may be blended with flame retardants, colorants, antistatic agents, charge transfer plate polymers, etc., if necessary.

熱溶融性繊維は繊維径0.5〜10デニ一ル程度のもの
が好ましく用いられる。
The heat-fusible fibers preferably have a fiber diameter of about 0.5 to 10 denier.

次ぎに導電性繊維としては金属もしくは金属化合物複合
合成繊維、金属もしくは金属化合物被覆合成繊維、金属
もしくは金属化合物被覆ガラス繊維、金属もしくは金属
化合物被覆炭素線維、カーボン複合合成繊維、力〜ボン
被覆合成繊維、炭素繊維、金属繊維等およびこれらの混
合物が挙げられる。
Next, conductive fibers include metal or metal compound composite synthetic fibers, metal or metal compound coated synthetic fibers, metal or metal compound coated glass fibers, metal or metal compound coated carbon fibers, carbon composite synthetic fibers, and carbon coated synthetic fibers. , carbon fiber, metal fiber, etc., and mixtures thereof.

また、本発明の場合、架橋硬化被膜と導電性熱可塑性樹
脂シート表面との接着を強固ならしめるために導電性熱
可塑性樹脂シートの表面に表面処理を施し表面のぬれ張
力を大きくすることが必要である。表面処理方法として
一般的にはコロナ放電処理が用いられる。しかし、大気
中でコロナ放電処理を行う場合にはコロナ放電による酸
化反応で導電性が消失してしまう導電性繊維があるので
注意を要する。ちなみに、不活性ガス雰囲気中でのコロ
ナ放電処理も可能ではあるが作業の安全性、設備等多く
の問題がありあまり実用的ではない。
In addition, in the case of the present invention, in order to strengthen the adhesion between the crosslinked cured coating and the surface of the conductive thermoplastic resin sheet, it is necessary to perform a surface treatment on the surface of the conductive thermoplastic resin sheet to increase the wetting tension on the surface. It is. Corona discharge treatment is generally used as a surface treatment method. However, when corona discharge treatment is performed in the atmosphere, care must be taken because some conductive fibers lose their conductivity due to oxidation reactions caused by corona discharge. Incidentally, although corona discharge treatment in an inert gas atmosphere is possible, it is not very practical due to many problems such as work safety and equipment.

大気中でコロナ放電処理を施す場合は導電性能の低下が
全く見られない炭素繊維、ステンレス鋼繊維、カーボン
被合合成繊維、カーボン被覆合成繊維およびこれらの混
合物を使用することが望ましい。
When performing corona discharge treatment in the atmosphere, it is desirable to use carbon fibers, stainless steel fibers, carbon-coated synthetic fibers, carbon-coated synthetic fibers, and mixtures thereof, which show no deterioration in conductive performance.

導電性繊維は繊維径1〜30/Jffi程度のものが好
ましく用いられる。
The conductive fibers preferably have a fiber diameter of about 1 to 30/Jffi.

なお、本発明の導電性網・織布には上記の熱溶融性繊維
および導電性繊維のほかに高融点の繊維または溶融性を
示さない繊維を配合しても構わない、導電性網・織布は
上記熱溶融性繊維および導電性繊維のカット繊維を混紡
して紡績糸を作り、該紡績糸を経糸または緯糸の少なく
とも一部に用いて製織し織布を得る方法、熱溶融性繊維
のフィラメント糸および導電性繊維のフィラメント糸を
用いて製織し織布を得る方法、熱溶融性繊維と導電性繊
維とを撚り合わせた糸を用いて製織し織布を得る方法、
上記の様な紡績糸、フィラメント糸、交撚糸を編んで編
布やレースを得る方法等公知の種々の方法によって得ら
れるものであり、目付は重量20(1/m以下のものが
好ましく用いられる。
In addition, in addition to the heat-melting fibers and conductive fibers described above, the conductive net/woven fabric of the present invention may contain fibers with a high melting point or fibers that do not exhibit meltability. The cloth can be prepared by blending the cut fibers of the heat-fusible fibers and conductive fibers to form a spun yarn, and using the spun yarn as at least a part of the warp or weft to obtain a woven fabric; A method for weaving a woven fabric using a filament yarn and a filament yarn of conductive fibers, a method for weaving a woven fabric using a yarn made by twisting heat-melting fibers and conductive fibers,
It can be obtained by various known methods such as the method of knitting spun yarn, filament yarn, or twisted yarn as described above to obtain knitted fabric or lace, and the fabric weight is preferably 20 (weight 1/m or less) or less. .

該導電性網・織布に用いられる導電性繊維の割合は1〜
99重景%、好ましくは3〜70重量%である。
The ratio of conductive fibers used in the conductive net/woven fabric is 1 to 1.
It is 99% by weight, preferably 3 to 70% by weight.

本発明で用いられる硬化用組成物の主成分である不飽和
樹脂としてはエポキシ系樹脂、ポリエステル系樹脂、ポ
リウレタン系樹脂、ポリアミド系樹脂、メラミン系樹脂
等であるが、特に、放射線活性の高いポリエステル、エ
ポ午シ、ポリウレタン、ポリエーテル、ポリオール類を
幹とした分子の末端ないし側鎖にアクリロイル基を導入
したもの、例えば、ポリエステルアクリレート、ポリエ
ポキシアクリレート、ボリクレタンアクリレート、ポリ
エーテルアクリレート、ポリオールアクリレート等が好
ましく用いられる。これらは通常、分子量250〜15
00程度のオリゴマーの形で用いられ、一分子当シのア
クリロイル基の数は2〜5個である。
The unsaturated resins that are the main components of the curing composition used in the present invention include epoxy resins, polyester resins, polyurethane resins, polyamide resins, and melamine resins, but especially polyesters with high radiation activity , epoxy resin, polyurethane, polyether, polyol-based molecules with an acryloyl group introduced at the end or side chain, such as polyester acrylate, polyepoxy acrylate, polycrethane acrylate, polyether acrylate, polyol acrylate, etc. is preferably used. These usually have a molecular weight of 250 to 15
It is used in the form of an oligomer of about 0.00, and the number of acryloyl groups per molecule is 2 to 5.

また、反応性希釈剤としてはトリメチロールプロパント
リアクリレート、ペンタエリスリトールトリアクリレー
ト、ペンタエリスリトールテトラアクリレート、エチレ
ングリコールジアクリレート、テトラエチレングリコー
ルジアクリレート、ポリエチレングリコールジアクリレ
ート、1.6−ヘキサンジオールジアクリレート、ネオ
ペンチルグリコールジアクリレート、トリアクリロキシ
エチルフォスフェート等の多官能性モノマーおよびビニ
ルビμリドン、2−ヒドロキシエチル(メタ)アクリレ
ート、2−ヒドロ中ジプロピル(メタ)アクリレート、
テトラヒドロフルフリルアクリレート、ブトキシエチル
アクリレート、エチルジエチレングリコールアクリレー
ト、2−エチルへキシルアクリレート、シクロヘキシル
アクリレート、フェノキエチルアクリレート、2−ヒド
ロ−3−フェニルオキシプロピルアクリレート、ジシク
ロペンタジェンアクリレート等の単官能性上ツマ−から
選ばれる12!iもしくは2種以上の混合物が用いられ
る。
In addition, as reactive diluents, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, 1,6-hexanediol diacrylate, neo Polyfunctional monomers such as pentyl glycol diacrylate, triacryloxyethyl phosphate, vinyl biμlidone, 2-hydroxyethyl (meth)acrylate, dipropyl (meth)acrylate in 2-hydro,
Monofunctional uppers such as tetrahydrofurfuryl acrylate, butoxyethyl acrylate, ethyldiethylene glycol acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, phenoxyethyl acrylate, 2-hydro-3-phenyloxypropyl acrylate, dicyclopentadiene acrylate -12 selected from! i or a mixture of two or more types can be used.

該硬化用組成物にはさらに必要に応じて各種の添加剤が
加えられる。これらの添加剤としては、天然および合成
の各種高分子物質、充填剤、顔料、染料、艶消し剤、可
塑剤、粘度調節剤、溶剤、その他各程の助剤類等が挙げ
られる。
Various additives are further added to the curable composition as necessary. These additives include various natural and synthetic polymeric substances, fillers, pigments, dyes, matting agents, plasticizers, viscosity modifiers, solvents, and various other auxiliaries.

上記高分子物質としては、例えば(メタ)アクリル系、
ウレタン系、ブタジェン系、エチレン系、塩化ビニル系
、塩化ビニリデン系、ポリエ−チル系、アルキッド系、
ポリエステル系、ポリアミド系、酢酸ビニル系、ビニル
ホルマール系、ヒニルブチラール系、ビニルピロリドン
系、ビニルアルコール系等に属する飽和又は不飽和基含
有の各釉ポリマー、コポリマー、プレポリマー% オリ
ゴマー類、セルロースおよヒソの誘導体、ロジンおよび
その誘導体、フェノール樹脂およびその誘導体、石油樹
脂、ケトン樹脂、シリコン樹脂、天然および合成油脂、
ワックス類等が挙げられる。充填材としてはガラス、金
属および金属化合物等の繊維や粉末、シリカ、パライト
、炭酸゛カルシウム等が挙げられる。
Examples of the above-mentioned polymeric substances include (meth)acrylic,
Urethane-based, butadiene-based, ethylene-based, vinyl chloride-based, vinylidene chloride-based, polyethyl-based, alkyd-based,
Glaze polymers, copolymers, and prepolymers containing saturated or unsaturated groups belonging to polyester, polyamide, vinyl acetate, vinyl formal, vinyl butyral, vinyl pyrrolidone, vinyl alcohol, etc.% Oligomers, cellulose, Yohiso derivatives, rosin and its derivatives, phenolic resins and their derivatives, petroleum resins, ketone resins, silicone resins, natural and synthetic oils and fats,
Examples include waxes and the like. Examples of fillers include fibers and powders of glass, metals and metal compounds, silica, pallite, calcium carbonate, and the like.

顔料としてはアルミナ白、クレー、タルク、炭酸バリウ
ム、硫酸バリウム等の体質顔料、亜鉛華、鉛白、黄鉛、
群青、紺青、酸化チタン、クロム酸亜鉛、ベンガラ、カ
ーボンブラック等の無機顔料、ブリリアントカーミン6
B、パーマネントレッドR、ベンジジンイエロー、レー
キレッドC,フタロシアニンブルー等の有機顔料が挙げ
られる。
Pigments include extender pigments such as alumina white, clay, talc, barium carbonate, barium sulfate, zinc white, lead white, yellow lead,
Inorganic pigments such as ultramarine, navy blue, titanium oxide, zinc chromate, red iron, carbon black, brilliant carmine 6
Examples of organic pigments include B, Permanent Red R, Benzidine Yellow, Lake Red C, and Phthalocyanine Blue.

染料としてはマゼンタ、ローダミンのような塩基性染料
、ダイレフトスカーレット、ダイレクトオレンジのよう
な直接染料、ローセリン、メタニルイエローのような酸
性染料が挙げられる。
Examples of dyes include basic dyes such as magenta and rhodamine, direct dyes such as direct left scarlet and direct orange, and acidic dyes such as roserin and methanil yellow.

艶消し剤としてはポリアクリロニトリル粉末のような有
機艶消し剤、粉末シリカもしくはその変性体等のような
無機艶消し剤が挙げられる。
Examples of the matting agent include organic matting agents such as polyacrylonitrile powder, and inorganic matting agents such as powdered silica or modified products thereof.

可塑剤としてはジブチル7タレート、ジオクチルフタレ
ート、塩素化パラフィン、リン酸トリクレジル等が挙げ
られる。
Examples of the plasticizer include dibutyl hetatalate, dioctyl phthalate, chlorinated paraffin, and tricresyl phosphate.

粘度調節剤としてはベントナイト、シリカゲル、アルミ
ニウムオクトエート等が挙げられる。
Examples of the viscosity modifier include bentonite, silica gel, aluminum octoate, and the like.

溶剤としては各種ケトン化合物、各種アルコール類、各
種エステル化合物、各種エーテル化合物、脂肪族、脂環
族、もしくは芳香族ヶ炭化水素化合物等の各種溶剤類が
挙げられる。
Examples of the solvent include various ketone compounds, various alcohols, various ester compounds, various ether compounds, and various solvents such as aliphatic, alicyclic, or aromatic hydrocarbon compounds.

その他の助剤類としては公知の消泡剤、レベリング剤、
界面活性剤、紫外線吸収剤、難燃化剤、電荷移動型ポリ
ツー等を挙げることができる。
Other auxiliary agents include known antifoaming agents, leveling agents,
Examples include surfactants, ultraviolet absorbers, flame retardants, charge transfer type polytwos, and the like.

このほか、硬化手段が加熱炉、赤外線の照射、マイクロ
波の照射のように主として熱エネルギーを利用する場合
には、例えば、ケトンパーオキサイド、ハイドロパーオ
キナイド、ジアルキルパーオキサイド、ジアシルパーオ
キサイド等のラジカル開始剤が用いられる。常温硬化の
ように比較的低温での硬化の場合には、例えば、ケトン
パーオキサイドまたはジアシルパーオキサイドと金属塩
の組み合わせ、ケトンパーオキサイド、ジアシルパーオ
キサイド、ハイドロパーオキサイドと還元性アミンとの
組み合わせ等のように促進剤を併用することが望ましい
In addition, when the curing method mainly uses thermal energy such as a heating furnace, infrared irradiation, or microwave irradiation, for example, ketone peroxide, hydroperoxide, dialkyl peroxide, diacyl peroxide, etc. A radical initiator is used. In the case of curing at a relatively low temperature such as room temperature curing, for example, a combination of ketone peroxide or diacyl peroxide and a metal salt, a combination of ketone peroxide, diacyl peroxide, hydroperoxide and a reducing amine, etc. It is desirable to use an accelerator in combination.

また 硬化手段が紫外線の場合には、例えば、ベンゾイ
ン、バンゾインメチルエーテル、ペン1’f 73−チ
ルエーテル、ベンゾインプロピルエーテル、ベンゾイル
ブチルエーテル、ベンゾインオクチルエーテル等のベン
ゾイン化合物、ベンジル、ジアセチル、メチルアントラ
キノン、アセトフェノン、ベンゾフェノン等のカルボニ
ル化合物、ジフェニルジスルフイツド、ジチオカーバメ
ート等の硫黄化合物、a−クロルメチルナフタリン等の
ナフタレン系化合物、アントラセン、塩化鉄等の金属塩
等の光開始剤が用いられる。
In addition, when the curing means is ultraviolet rays, for example, benzoin compounds such as benzoin, vanzoin methyl ether, pen 1'f 73-thyl ether, benzoin propyl ether, benzoyl butyl ether, benzoin octyl ether, benzyl, diacetyl, methylanthraquinone, Photoinitiators such as carbonyl compounds such as acetophenone and benzophenone, sulfur compounds such as diphenyl disulfide and dithiocarbamate, naphthalene compounds such as a-chloromethylnaphthalene, and metal salts such as anthracene and iron chloride are used.

本発明の導電性熱可塑性樹脂シートは以下の方法によっ
て得ることができる。
The conductive thermoplastic resin sheet of the present invention can be obtained by the following method.

先ず基材となる熱可塑性樹脂と導電性編・織布とを押出
うはネート法、熱ロール圧着法、熱プレス法等公知の方
法を用いて張り合わせ融着−体化させる。この時、導電
性編・織布に配合されている熱溶融性!!R#が完全に
溶融し基材と一体になるような温度条件を選定すること
が必要である。
First, a thermoplastic resin serving as a base material and a conductive knitted or woven fabric are pasted together and fused together using a known method such as an extrusion method, a hot roll compression method, or a hot press method. At this time, the heat-melting properties contained in the conductive knitted and woven fabrics! ! It is necessary to select temperature conditions such that R# completely melts and becomes integral with the substrate.

例えば、押出うiネート法の場合は、先ず基材となる熱
可塑性樹脂を押出機内で180〜280°C程度の樹脂
温度に溶融混練し、Tダイ全通って膜状に押出す。次い
で、該樹脂膜の片面もしくは両面に導電性編・織布を重
ね合わせ、30〜120℃程度に加熱された一対のロー
ルで圧着し基材と導電性編・織布を融着一体化する。こ
のとき、導電性編・織布と基材の一体化を容易にするた
めに、さらに導電性編・織布に接して二軸延伸ポリエス
テルフィルム、テフロンフィルム等の耐熱性プラスチッ
クフィルム(厚みは10〜50μm程度が好ましい。)
を重ね、この重ね合わせ状態のまま加圧融着し冷却固化
したのち、耐熱性プラスチックフィルムを剥離除去して
もよい。
For example, in the case of the extrusion overlay method, first, a thermoplastic resin serving as a base material is melt-kneaded in an extruder to a resin temperature of about 180 to 280°C, and then extruded through the entire T-die to form a film. Next, a conductive knitted/woven fabric is superimposed on one or both sides of the resin film, and the base material and the conductive knitted/woven fabric are fused and integrated by pressing with a pair of rolls heated to about 30 to 120°C. . At this time, in order to facilitate the integration of the conductive knit/woven fabric and the base material, a heat-resistant plastic film such as a biaxially stretched polyester film or a Teflon film (with a thickness of 10 ~50 μm is preferable.)
The heat-resistant plastic film may be peeled off after being stacked, pressure-fused in this stacked state, cooled and solidified, and then peeled off.

また、熱ロール圧着法の場合は熱可塑性樹脂シートと導
電性編・織布とを重ね合わせた後100〜200℃に加
熱された熱ロールで圧着一体化すればよい。
Further, in the case of the hot roll crimping method, the thermoplastic resin sheet and the conductive knitted/woven fabric may be superimposed and then crimped and integrated using a hot roll heated to 100 to 200°C.

導電性熱可塑性樹脂シートの厚みは0.03〜5、ON
の範囲内で任意に選定できる。
The thickness of the conductive thermoplastic resin sheet is 0.03 to 5, ON
Can be arbitrarily selected within the range.

次ぎに、硬化用組成物との接着性を高めるために、上記
の様な方法で得られた導電性熱可塑性樹脂シートの導電
性編・織布面に表面処理を施す。表面処理としては薬品
処理、カップリング剤処理、プライマー処理(ポリマー
コーティング)、表面グラフト化、紫外線照射処理、プ
ラズマ処理(コロナ放電処理、グロー放電処理、プラズ
マジェット処理)、プラズマ重合処理等公知の種々の方
法を用いることができる。
Next, the conductive knitted/woven fabric surface of the conductive thermoplastic resin sheet obtained by the method described above is subjected to a surface treatment in order to improve the adhesion with the curing composition. There are various known surface treatments such as chemical treatment, coupling agent treatment, primer treatment (polymer coating), surface grafting, ultraviolet irradiation treatment, plasma treatment (corona discharge treatment, glow discharge treatment, plasma jet treatment), plasma polymerization treatment, etc. The following method can be used.

とれらの処理方法の中では連続生産が可能で汎用性の高
いコロナ放電処理を用いるのが最も望ましい。本発明の
場合、コロナ放電処理装置は導電体処理用の装置を用い
るととが望ましい(絶縁体用のコロナ放電処理装置では
放電によυ火花が飛んだシ、焼は焦げが発生するので好
ましくない。)。また、コロナ放電処理は前記導電性熱
可塑性樹脂シートの製造直後に行うことが望ましい。表
面処理後の表面ぬれ張力(ASTM−D−2578Te
5t for Wetting Ten5ionof 
PE and PP Filrn )は35 dyne
/ cM以上、望ましくは38 d7ne /a1以上
になるよう調整するのが好ましい。
Among these treatment methods, it is most desirable to use corona discharge treatment, which allows continuous production and is highly versatile. In the case of the present invention, it is preferable to use a device for treating conductors as the corona discharge treatment device (in corona discharge treatment devices for insulators, sparks fly due to discharge, and burning causes scorching, so it is preferable to use a device for treating conductors.) do not have.). Further, it is desirable that the corona discharge treatment be performed immediately after manufacturing the conductive thermoplastic resin sheet. Surface wetting tension after surface treatment (ASTM-D-2578Te
5t for Wetting Ten5ionof
PE and PP Filrn) is 35 dyne
/cM or more, preferably 38 d7ne /a1 or more.

このあと、さらに表面処理面に前述の硬化用組成物を塗
布し、熱エネルギー、紫外線、電離放射線等全照射する
ことによって表面に膜厚1〜10μmの架橋硬化被膜を
形成せしめる。
Thereafter, the above-mentioned curing composition is further applied to the surface-treated surface and irradiated with thermal energy, ultraviolet rays, ionizing radiation, etc. to form a crosslinked cured film with a thickness of 1 to 10 μm on the surface.

硬化用組成物の塗工装置としてはプレードコーター、ナ
イフコーター、ロールコータ−(3本ロールコータ−ダ
イレクトコーター、リバースロールコータ−)のホカ、
スクリーン、オフセット、グラビア、レタープレス、フ
レキソ等の各稈プリントタイプのコーターが挙げられる
Coating equipment for the curing composition includes a blade coater, knife coater, roll coater (3 roll coater - direct coater, reverse roll coater),
Examples of coaters include screen, offset, gravure, letterpress, flexo, and other culm print types.

場合によってはスプレータイプのコーターを用いてもよ
い。
A spray type coater may be used depending on the case.

硬化用組成物の導電性熱可塑性樹脂シート表面への塗布
量としては該シート表面に形成される架橋硬化膜の膜厚
が1〜15μm、望ましくは2〜7μmの範囲になるよ
うに調整することが好ましい。硬化膜の膜厚が1μm未
満の場合は導電性繊維の毛羽立ちの発生が完全に抑えき
れず、逆に15μmTh超えると表面抵抗が1012Ω
以上とかり導電性能が悪化するので好ましくない。
The amount of the curing composition applied to the surface of the conductive thermoplastic resin sheet should be adjusted so that the thickness of the crosslinked cured film formed on the sheet surface is in the range of 1 to 15 μm, preferably 2 to 7 μm. is preferred. If the thickness of the cured film is less than 1 μm, the occurrence of fluffing of the conductive fibers cannot be completely suppressed, and if it exceeds 15 μmTh, the surface resistance will be 1012Ω.
This is not preferable because the conductive performance deteriorates.

硬化用組成物の塗工は熱可塑性樹脂シートの全面に行っ
て(ペタ刷り)もよいが、熱成形時の変形によって塗膜
に亀裂が入り、外観が悪化するので各種形状の網版(網
点状になった版)を用いて部分的に塗工を行ったほうが
好ましい。
The curing composition may be applied to the entire surface of the thermoplastic resin sheet (peta printing), but the deformation during thermoforming may cause cracks in the coating film, deteriorating the appearance. It is preferable to perform partial coating using a dotted plate).

との場合、硬化用組成物の塗工面積(Ap)と導電性熱
可塑性樹脂シートの面積(AT)との関係は0.3≦(
AP/AT)≦0.9であることが望ましい。硬化用組
成物の塗工面積(Ap)と導電性熱可塑性樹脂シートの
面積(AT)との関係が(AP/AT) < 0.3の
場合は、塗工されてない部分に毛羽立ちの発生が見られ
ることがあり、また、(AP/AT) > 0.9の場
合には熱成形時の変形によって塗膜に亀裂が入り外観を
著しく損ねるので注意する必要がある。
In this case, the relationship between the coating area (Ap) of the curing composition and the area (AT) of the conductive thermoplastic resin sheet is 0.3≦(
It is desirable that AP/AT)≦0.9. If the relationship between the coating area (Ap) of the curing composition and the area (AT) of the conductive thermoplastic resin sheet is (AP/AT) < 0.3, fuzz will occur in the uncoated area. In addition, if (AP/AT) > 0.9, the coating film will crack due to deformation during thermoforming, which will significantly impair the appearance, so care must be taken.

硬化用組成物の硬化手段としては常温硬化、加熱炉、赤
外線の照射、マイクロ波の照射等のように主として熱エ
ネルギーを利用するもの、紫外線照射、電子線やγ線の
ような電離性放射線の照射等があるが生産性(び化時間
)、基材の加熱による劣化等が少ない電子線照射が好ま
しい。
Curing methods for the curing composition include room temperature curing, heating furnace, infrared irradiation, microwave irradiation, etc., which mainly utilize thermal energy, ultraviolet irradiation, and ionizing radiation such as electron beams and gamma rays. Although irradiation may be used, electron beam irradiation is preferable because it has low productivity (curing time) and less deterioration due to heating of the base material.

電子線の照射はスキャンニングピーム法もしくはカーテ
ンビーム法による電子線加速器によってN2ガス雰囲気
下(0□濃度400 ppm以下)で行われる。
The electron beam irradiation is performed in an N2 gas atmosphere (0□ concentration of 400 ppm or less) using an electron beam accelerator using a scanning beam method or a curtain beam method.

塗膜の硬化条件は電子線照射の場合電子線電圧125〜
300KV、線量1〜20 Mrad程度である。
The curing conditions for the coating film are electron beam voltage 125~ in the case of electron beam irradiation.
It is 300KV and the dose is about 1-20 Mrad.

つぎに前記導電性シートを公知の種々の加熱方式を用い
て樹脂の軟化温度まで加熱したのち、簑曽寺第1図〜第
4図に示す様な雌雄一対の凰の間に挿入、固定し、プレ
ス圧力0.1〜20に9/dG、型温10〜100°C
程度で両型を嵌合させ賦形する。このとき、型の表層の
材質としては加熱された導電性シートの熱によって変形
、変質、劣化等を生じない程度の耐熱性を有するゴム、
例えば、シリ;ンゴム、アクリルゴム、フッ素ゴム等を
用いることが好ましく、また、型の母材には木、石責、
樹脂(熱硬化性樹脂)、鋳物、金属等プレス圧に充分耐
えられる強度を有する素材が用いられる。さらに、雌型
と雄型比(成形品の深さを成形品の直径もしくは短辺で
徐した値)によシ異なるが、目標となる成形品の厚みi
TとするとT2CL> Offの範囲にあることが望ま
しい。
Next, the conductive sheet is heated to the softening temperature of the resin using various known heating methods, and then inserted and fixed between a pair of male and female enamels as shown in Figures 1 to 4 of Mizoji Temple. , press pressure 0.1-20 to 9/dG, mold temperature 10-100°C
The two molds are fitted together and shaped. At this time, the material for the surface layer of the mold is rubber, which has a heat resistance that does not cause deformation, deterioration, deterioration, etc. due to the heat of the heated conductive sheet.
For example, it is preferable to use silicone rubber, acrylic rubber, fluororubber, etc., and the base material of the mold is wood, stone, etc.
Materials having sufficient strength to withstand press pressure, such as resin (thermosetting resin), casting, and metal, are used. Furthermore, the target thickness of the molded product is
Assuming T, it is desirable that T2CL>Off.

(実施例) 以下、実施例、比較例によって本発明を具体的に説明す
るが、本発明はこれによって限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

なお、実施例、比較例で用いた測定法は次の通りである
The measurement methods used in the Examples and Comparative Examples are as follows.

(1)メルトフローレート ASTM−D−1238(温度230℃、荷重2、x6
Ag)に準拠。
(1) Melt flow rate ASTM-D-1238 (temperature 230°C, load 2, x6
Compliant with Ag).

(2)ハイメルトフローレート ASTM−D−1238(温度230℃、荷重10.2
#)に準拠。
(2) High melt flow rate ASTM-D-1238 (temperature 230°C, load 10.2
#) Compliant.

(3)アイソタクチックペンタッド分率マクロモレキュ
ールズ8.687 (1975)に基づいて測定される
(3) Isotactic pentad fraction measured according to Macromolecules 8.687 (1975).

’C−NMRt−使用し、ボリプpピレン分子鎖中のペ
ンタッド単位でのアイソタクチック分率である。
'C-NMRt- is used and is the isotactic fraction in pentad units in the polyp-pyrene molecular chain.

(4)表面抵抗値(Ω) 人、タケダ理研■裂コンピユーテイングデジタルマルチ
メーターTR6877 B、東京電子■製高抵抗計スタックTn −3電極は棒
状電極(5smφ)″f:使用。
(4) Surface resistance value (Ω) Human, Takeda Riken Computing Digital Multimeter TR6877B, Tokyo Denshi High Resistance Meter Stack Tn-3 electrode is a rod-shaped electrode (5smφ)″f: used.

電極間距離3〜53 102Ω以上の場合のみB、全使用して測定。Inter-electrode distance 3-53 Only when the resistance is 102Ω or more is B, measured with all the batteries in use.

実施例1 カットしたステンレス鋼繊維(繊維径12μm)15重
量%およびカットしたポリプロピレン繊維(繊維径2デ
ニール)85″Mft%よシなる繊維混合物から作られ
た紡績糸(30デニール)1に製織して導電性織布(m
打込数60本/インチ、緯打込数52本/インチ)を得
た。
Example 1 A spun yarn (30 denier) 1 made from a fiber mixture of 15% by weight cut stainless steel fibers (12 μm fiber diameter) and 85″Mft% cut polypropylene fibers (2 denier fiber diameter) was woven into a spun yarn (30 denier). Conductive woven fabric (m
The number of strokes was 60 per inch and the number of weft strokes was 52 per inch.

ついで、アイソタクチックペンタッド分率(P)10.
968、メルトフローレート(MF’R)−〇、53f
710分、ハイメルトフローレート(HMFR)−28
,5f/10分の高結晶性プロビレ/単独重合体に1.
315−11メチル−2,4,6−)リス(3,5−ジ
−t−ブチル−4−ヒドロキシベンジル)ベンゼン0.
10i!E量%とテトラキス〔メチレン(3,5−ジ−
t−ブチルー4−ヒドロ午シーヒドロシナメイト)〕メ
タン0.10重景%とステアリ7酸カルシウム0.05
重量%とを配合したポリプロピレンペレットを口径65
1131の押出機で溶融混練し@ 600yzのTダイ
よυ樹脂温度240″Cで膜状に押出した。
Then, the isotactic pentad fraction (P) is 10.
968, Melt flow rate (MF'R) - ○, 53f
710 minutes, high melt flow rate (HMFR) -28
, 5 f/10 min of highly crystalline probile/homopolymer to 1.
315-11 Methyl-2,4,6-)lis(3,5-di-t-butyl-4-hydroxybenzyl)benzene0.
10i! E content% and tetrakis [methylene (3,5-di-
t-Butyl-4-hydrohydrocinamate) 0.10% methane and 0.05% calcium stearate
Polypropylene pellets with a diameter of 65% by weight
The mixture was melt-kneaded using a No. 1131 extruder and extruded into a film using a 600yz T-die at a resin temperature of 240"C.

該樹脂膜の両面に前記導電性織布を重ね合わせ、80℃
の温水を通した直径200ffffのタッチロール(金
属ロール)とf[8500mのチルロール(金属ロール
)とで基材と導電性織布を圧着し、厚み0.8鯖の導電
性ポリプロピレンシートを得た。ついで、該シートを1
60℃に加熱された熱ロール間に通したところ、導電性
織布のポリプロピレン繊維は完全に溶融し、基材のポリ
プロピレンシートと一体化し、表面にステンレス鋼繊維
のみが網目状に固着した導電性ポリプロピレンシートが
得られた。
The conductive woven fabric was placed on both sides of the resin film, and heated at 80°C.
The base material and the conductive woven fabric were crimped using a touch roll (metal roll) with a diameter of 200 ffff and a chill roll (metal roll) with a diameter of 8500 m through which warm water was passed through, to obtain a conductive polypropylene sheet with a thickness of 0.8 m. . Then, the sheet is
When passed between hot rolls heated to 60°C, the polypropylene fibers of the conductive woven fabric completely melted and became integrated with the base polypropylene sheet, creating a conductive fabric with only stainless steel fibers fixed to the surface in a mesh pattern. A polypropylene sheet was obtained.

この時の導電性ポリプロピレンシートの表面抵抗は両面
とも104Ωであった。
The surface resistance of the conductive polypropylene sheet at this time was 104Ω on both sides.

つぎに、導電体用コロナ放電処理装置を用いて大気中で
前記導電性ポリプロピレンシートの両面にコロナ放電処
胛ヲ施した。いずれの面もぬれ張力は40dyne/c
mであった。tfc、コロナ放電処理後の導電性ポリプ
ロピレンシートの表面抵抗は両面とも104Ωでありコ
ロナ放電処理前とまったく変わらなかった。
Next, a corona discharge treatment was applied to both surfaces of the conductive polypropylene sheet in the atmosphere using a corona discharge treatment apparatus for conductors. Wetting tension on both sides is 40dyne/c
It was m. The surface resistance of the conductive polypropylene sheet after TFC and corona discharge treatment was 104Ω on both sides, which was completely unchanged from before the corona discharge treatment.

また、硬化用組成物としてポリエポキシアクリレートオ
リゴマー42重量%、2−ヒドリキシプロピルアクリレ
ート55重量%、ベタイン系界面活性剤2型景%、重合
禁止剤1重量%とからなる混合組成物を準備した。
Further, as a curing composition, a mixed composition consisting of 42% by weight of polyepoxy acrylate oligomer, 55% by weight of 2-hydroxypropyl acrylate, 2% by weight of betaine surfactant, and 1% by weight of polymerization inhibitor was prepared. .

核組成物を網点状グラビアロール(AP/AT −0,
6)で前記導電性ポリプロピレンシート表面(片面)K
塗布し、エレクトロンカーテンプ/ペアー型電子線照射
装置(ESI社製エレクトロンEPZ−2型)を用いて
N2算囲気下(0重濃度200 ppm )で加速電圧
140KV、線量6 Mradで電子線を照射し厚み5
μmの架橋硬化被膜を形成させた。
The core composition was transferred to a dotted gravure roll (AP/AT-0,
6) The conductive polypropylene sheet surface (one side) K
It was coated and irradiated with an electron beam using an electron curtain lamp/pair type electron beam irradiation device (Electron EPZ-2 type manufactured by ESI) under an N2 atmosphere (zero weight concentration 200 ppm) at an acceleration voltage of 140 KV and a dose of 6 Mrad. Thickness 5
A cross-linked cured film of μm was formed.

同様にして、もう一方の面にも厚み5μmの架橋硬化被
膜を形成させた。
Similarly, a crosslinked cured film with a thickness of 5 μm was formed on the other side as well.

つぎに、第1図に示すような雌雄一対の型(母材は金属
を使用、型温50°C)の間に架橋硬化被膜を形成させ
た導電性ポリプロピレンシートを挿入固定し、両型を7
に=i/dGの圧力で嵌合し導電性成形物を得た。この
時、雄型の表層にはシリコンゴム(硬度−40)を用い
た。また、雄型と雌型の間隙(CL)は0.5〜0.7
nとした。
Next, a conductive polypropylene sheet on which a cross-linked cured film was formed was inserted and fixed between a pair of male and female molds (metal was used as the base material, mold temperature 50°C) as shown in Figure 1, and both molds were 7
were fitted with a pressure of = i/dG to obtain a conductive molded product. At this time, silicone rubber (hardness -40) was used for the surface layer of the male mold. In addition, the gap (CL) between male and female molds is 0.5 to 0.7
It was set as n.

こうして得られた導電性成形物は何れの面も導電性繊維
の毛羽立ちはまったく見られず、しかも、布、爪等で表
面を強くこすっても導電性繊維の毛羽立ちはまったく発
生しなかった。また、表面抵抗は両面とも104〜10
’Ωと良好な導電性を有していた。
The thus obtained conductive molded product showed no fuzzing of the conductive fibers on either side, and even when the surface was strongly rubbed with cloth, fingernails, etc., no fuzzing of the conductive fibers occurred at all. Also, the surface resistance is 104 to 10 on both sides.
'Ω and had good conductivity.

実施例2 カットしたカーボン被覆ポリエステル繊維(繊維径3デ
ニール)20i1を量%とカットしたポリ塩化ビニル系
繊維(テビpン(商標):今人■製、繊維径3デニール
)80重量%よシなる繊維混合物から作られた紡績糸(
15デニール)を製織して導電性織布(縦打込数115
本/インチ、緯打込数114/インチ)を得た。
Example 2 Cut carbon-coated polyester fiber (fiber diameter 3 denier) 20i1 by weight and cut polyvinyl chloride fiber (Tevipun (trademark) manufactured by Konjin ■, fiber diameter 3 denier) 80% by weight. Spun yarn made from a fiber mixture (
15 denier) to create a conductive woven fabric (number of vertical stitches: 115).
The number of weft strokes was 114/inch).

つぎに、平均重合度1300のポリ塩化ビニル単独重合
体100重量部にジオクチルフタレート8.0重量部、
ジプチル錫アルキルマレート2.5重量部、ブチルステ
アレー)0.5重量部、ステアリルアルコール0.4重
量部、ステアリン酸0.1重量部とを配合したポリ塩化
ビニルコンパウンドを口径65filの押出機で溶融混
練し幅500ffのTダイより樹脂温度185°Cで膜
状に押出した。
Next, 8.0 parts by weight of dioctyl phthalate was added to 100 parts by weight of polyvinyl chloride homopolymer having an average degree of polymerization of 1300.
A polyvinyl chloride compound containing 2.5 parts by weight of diptyltin alkyl maleate, 0.5 parts by weight of butyl stearate, 0.4 parts by weight of stearyl alcohol, and 0.1 part by weight of stearic acid was processed in an extruder with a diameter of 65 fil. The mixture was melt-kneaded and extruded into a film at a resin temperature of 185° C. through a T-die with a width of 500 ff.

該樹脂膜の両面に前記導電性織布を重ね合わせ、70℃
の温水を通した直径200flのタッチルール(金Aロ
ール)!:直径400m(7)y−ルロール(金属ロー
ル)とで基材と導電性織布を圧着し、厚み0.5Mの導
電性ポリ塩化ビニルシートを得た。次いで、該シートを
170℃に加熱された熱ロール間に通したところ、導電
性織布中のポリ塩化ビニル繊維は完全圧溶融し、基材の
ポリ塩化ビニルシートと一体化し、表面にカーボン被覆
ポリエステル繊維のみが網目状に固着していた。この時
の導電性ポリ塩化ビニルシートの表面抵抗は両面とも1
05〜10’Ωであった。
The conductive woven fabric was placed on both sides of the resin film, and heated at 70°C.
Touch rule (gold A roll) with a diameter of 200 fl through hot water! : The base material and the conductive woven fabric were crimped with a diameter of 400 m (7) rolls (metal rolls) to obtain a conductive polyvinyl chloride sheet with a thickness of 0.5 M. Next, when the sheet was passed between hot rolls heated to 170°C, the polyvinyl chloride fibers in the conductive woven fabric were completely melted under pressure and integrated with the base polyvinyl chloride sheet, and the surface was coated with carbon. Only the polyester fibers were stuck together in a mesh pattern. At this time, the surface resistance of the conductive polyvinyl chloride sheet is 1 on both sides.
It was 05 to 10'Ω.

つぎに、導電体用コロナ放電処理装置を用いて大気中で
前記導電性ポリ塩化ビニルシートの両面にコロナ放電処
理を施した。いずれの面もぬれ張力は45 dyne 
/ 3であった。コロナ放電処理後の導電性ポリ塩化ビ
ニルシートの表面抵抗は両面とも106〜106であり
コロナ放電処理前とまったく変わらなかった。
Next, both surfaces of the conductive polyvinyl chloride sheet were subjected to corona discharge treatment in the atmosphere using a corona discharge treatment apparatus for conductors. The wetting tension on both surfaces is 45 dyne.
/ It was 3. The surface resistance of the conductive polyvinyl chloride sheet after the corona discharge treatment was 106 to 106 on both sides, which was no different from that before the corona discharge treatment.

また、硬化用組成物としてポリウレタンアクリレートオ
リゴマー48i1量%、ネオペンチルグリコールジアク
リレート45重量%、体質顔料(アルミナ白)6重量%
、重合禁止剤1重量%とからなる混合組成物を準備した
In addition, the curing composition includes 1% by weight of polyurethane acrylate oligomer 48i, 45% by weight of neopentyl glycol diacrylate, and 6% by weight of extender pigment (alumina white).
, and 1% by weight of a polymerization inhibitor was prepared.

該組成物を網点状グラビアロール(AP/AT −0,
8)で前記導電性ポリ塩化ビニルシート表面(片面)に
塗布し、エレクトロンカーテンコンベアー型電子線照射
装置(ESI社製エレクトロンEPZ−2型)を用いて
N2雰囲気下(0?濃度200 ppm )で加速電圧
160kV、線量12 Mradで電子線を照射し厚み
7μmの架橋硬化被膜を形成させた。
The composition was applied to a dotted gravure roll (AP/AT-0,
8) on the surface (one side) of the conductive polyvinyl chloride sheet, and using an electron curtain conveyor type electron beam irradiation device (Electron EPZ-2 type manufactured by ESI) under N2 atmosphere (0?200 ppm concentration). An electron beam was irradiated at an acceleration voltage of 160 kV and a dose of 12 Mrad to form a crosslinked cured film with a thickness of 7 μm.

同様にして、もう一方の面にも厚み7μmの架橋硬化被
膜を形成させた。
Similarly, a cross-linked cured film with a thickness of 7 μm was formed on the other side as well.

つぎに、第4図に示すような雌雄一対の型(母材は金属
を使用、型温40℃)の間に架橋硬化被膜を形成させ良
導電性ポリ塩化ビニルシートを挿入、固定し、両型に5
kti/cdGの圧力で嵌合し導電性成形物を得た。こ
のとき、両型の表層KHシリコンゴム(厚ミー3fjf
、 硬11−40 )を用いた。また、雄型と雌型の間
隙(CL)は0.2〜0.4Hとした。
Next, a cross-linked cured film is formed between a pair of male and female molds (metal is used as the base material, mold temperature is 40°C) as shown in Figure 4, and a highly conductive polyvinyl chloride sheet is inserted and fixed. 5 in the mold
They were fitted under a pressure of kti/cdG to obtain a conductive molded product. At this time, the surface layer of both types is KH silicone rubber (thickness 3fjf
, hardness 11-40) was used. Moreover, the gap (CL) between the male and female molds was set to 0.2 to 0.4H.

こうして得られた導電性成形物はいずれの面も導電性繊
維の毛羽立ちは壕ったく見られず、しかも、布、爪等で
表面を強くこすっても導電性繊維の毛羽立ちはまったく
発生しなかった。また、表面抵抗は両面とも106〜1
07Ωと曳好な導電性を有していた。
The conductive molded product obtained in this way did not show any furrows of conductive fibers on either side, and even when the surface was strongly rubbed with cloth, fingernails, etc., no fluffs of the conductive fibers occurred at all. . Also, the surface resistance is 106 to 1 on both sides.
It had good conductivity of 0.07Ω.

実施例3 カットしたアクリルニトリル・塩化ビニル共重合体繊維
(鐘淵化学工業■製カネカロンSB(商標)、繊維径1
.5デニール)90重量%とカットしたオーステナイト
系ステンレス鋼繊維(日本精練■製ナスロン(商標)、
繊維径8μm)10重量%よシなる繊維混合物から作ら
れ九紡績糸(15デニール)をメリヤス編加工して目付
は重量Roll/ptlの導電性編布を得た。
Example 3 Cut acrylonitrile/vinyl chloride copolymer fiber (Kanekalon SB (trademark) manufactured by Kanekabuchi Chemical Industry ■, fiber diameter 1
.. 5 denier) cut austenitic stainless steel fiber (NASLON (trademark) manufactured by Nippon Seiren ■),
Nine spun yarns (15 denier) made from a fiber mixture of 10% by weight (fiber diameter 8 μm) were subjected to stockinette knitting to obtain a conductive knitted fabric having a basis weight of roll/ptl.

つぎに、ポリスチレン樹脂(新日鉄化学■製エスチレン
(商標)G−32)’t−ロ径40ffの押出機で溶融
混練し、11300HOTダイより樹脂温度230℃で
膜状に押出した。該樹脂膜の片面に前記導電性編布を重
ね合わせ、60°Cの温水を通した一対のポリシングp
−ル(金属ロール)で基材と導電性編布を圧着し、厚み
0.7nの導電性ポリスチレンシートを得た。ついで、
該シートを180℃に加熱され良熱ロール間に通したと
ころ、導電性編布中のアクリルニトリル・塩化ビニル共
重合体繊維は完全に溶融し、基材のポリスチレンシート
と一体化し、表面にステンレス鋼繊維のみが網目状に固
着していた。
Next, polystyrene resin (Estyrene (trademark) G-32 manufactured by Nippon Steel Chemical Co., Ltd.) was melt-kneaded in an extruder with a diameter of 40 ff, and extruded into a film at a resin temperature of 230° C. from a 11300 HOT die. The conductive knitted fabric was superimposed on one side of the resin film, and a pair of polished p
The base material and the conductive knitted fabric were crimped with a metal roll to obtain a conductive polystyrene sheet with a thickness of 0.7 nm. Then,
When the sheet was heated to 180°C and passed between well-heated rolls, the acrylonitrile/vinyl chloride copolymer fibers in the conductive knitted fabric were completely melted and integrated with the base polystyrene sheet, and the stainless steel was coated on the surface. Only the steel fibers were fixed in a mesh pattern.

該シートの表面抵抗は10 Ωであった。The surface resistance of the sheet was 10Ω.

つぎに、導電体用コロナ放電処理装置を用いて大気中で
前記導電性ポリスチレンシートの導電性編布ラミ面にコ
ロナ放電処理を施した。処理面のぬれ張力は39 d7
ne / 3であった。また、コロナ放電鶏理後の導電
性ポリスチレンシートの処理面の表面抵抗は105Ωと
コロナ放電処理前とまったく変わらなかった。
Next, the conductive knitted fabric laminated surface of the conductive polystyrene sheet was subjected to corona discharge treatment in the atmosphere using a corona discharge treatment apparatus for conductors. The wetting tension of the treated surface is 39 d7
It was ne/3. Furthermore, the surface resistance of the treated surface of the conductive polystyrene sheet after corona discharge treatment was 105Ω, which was completely unchanged from before corona discharge treatment.

また、硬化用組成物としてポリウレタンアクリv −)
 オIJ コマ−48fi1%、ネオペンチルグリコー
ルジアクリレート451!E量%、体質顔料(アルミナ
白)6重量%、重合禁止剤1重量%とからなる混合組成
物を準備した。
In addition, polyurethane acrylic v-) is used as a curing composition.
OIJ Coma-48fi1%, neopentyl glycol diacrylate 451! A mixed composition was prepared consisting of E amount %, extender pigment (alumina white) 6% by weight, and polymerization inhibitor 1% by weight.

該組成物を網点状グラビアロール(AP/AT ”0.
8)で前記導電性ポリスチレンシート表面(片面)K塗
布し、エレクトロンカーテンコンベアー型電子線照射装
置CESI社製エレクトロ:/EPZ−2型)を用イテ
Nt jX囲気下(02濃度150 ppm )で加速
電圧160kV、M量12 Mradで電子線を照射し
厚み10μmの架橋硬化被膜を形成させた。
The composition was applied to a dotted gravure roll (AP/AT "0.
In step 8), the conductive polystyrene sheet surface (one side) was coated with K, and accelerated using an electron curtain conveyor type electron beam irradiation device (Model Electro:/EPZ-2 manufactured by CESI) under an atmosphere of NtjX (02 concentration 150 ppm). An electron beam was irradiated at a voltage of 160 kV and an M amount of 12 Mrad to form a crosslinked cured film with a thickness of 10 μm.

つぎに、第4図に示すような雌雄一対の型(母材は金属
を使用、型温40℃)の間に架橋硬化被膜を形成させた
導電性ポリスチレンシート全挿入固定し、両型=i3に
9/dGの圧力で嵌合し導電性成形物を得た。このとき
、両型の表層にはフッ素ゴム(厚み13鰭、硬度−60
)’i用いた。tた、雄聾と雌型の間隙(CI、)は0
.4〜0.6Mとした。
Next, a conductive polystyrene sheet with a cross-linked cured film formed thereon was fully inserted and fixed between a pair of male and female molds (metal was used as the base material, mold temperature 40°C) as shown in Figure 4, and both molds = i3. were fitted under a pressure of 9/dG to obtain a conductive molded product. At this time, the surface layer of both types is fluororubber (thickness 13 fins, hardness -60
)'i used. The gap between the male and female types (CI,) is 0.
.. It was set to 4-0.6M.

こうして得られた導電性成形物はいずれの面も導電性繊
維の毛羽立ちはまったく見られず、しかも、布、爪等で
表面を強くこすっても導電性繊維の毛羽立ちはまったく
発生しなかった。また、導電性編布2ξ面の表面抵抗は
10@〜io’Ωと良好な導電性を有していた。
The thus obtained conductive molded article showed no fuzzing of the conductive fibers on either side, and even when the surface was strongly rubbed with cloth, fingernails, etc., no fuzzing of the conductive fibers occurred at all. In addition, the surface resistance of the 2ξ plane of the conductive knitted fabric was 10@~io'Ω, indicating good conductivity.

実施例4 硬化用組成物としてポリエステルポリアクリレート64
重量%、ポリオールポリアクリレート30重量%、トリ
メチロールプロパントリアクリレート5重量%およびベ
ンゾイルパーオキサイド1重量%からなる混合組成物を
準備した。
Example 4 Polyester polyacrylate 64 as a curing composition
A mixed composition consisting of 30% by weight of polyol polyacrylate, 5% by weight of trimethylolpropane triacrylate, and 1% by weight of benzoyl peroxide was prepared.

該組成物を実施例1で用いたと同様の導電性ポリプロピ
レンシート(コロナ放電処理を施したもの)の片面に網
点状グラビアロール(AP/AT−0,6)で塗布し、
130℃のオーブン中で5分間熱処理し、厚み5μmの
架橋硬化被膜を形成させた。同様にして、もう一方の面
にも厚み5μmの架橋硬化被膜を形成させた。
The composition was applied to one side of the same conductive polypropylene sheet (corona discharge treated) as used in Example 1 with a dotted gravure roll (AP/AT-0,6),
Heat treatment was performed in an oven at 130° C. for 5 minutes to form a crosslinked cured film with a thickness of 5 μm. Similarly, a crosslinked cured film with a thickness of 5 μm was formed on the other side as well.

つぎに、第1図に示すような雌雄一対の型(母材は金a
t−使用、型温50℃)の間に前記架橋硬化被膜を形成
させた導電性ボリプロビレンシートヲ挿入、固定し、両
型を7に9/dGの圧力で嵌合し導電性成形物を得た。
Next, a pair of male and female molds as shown in Figure 1 (the base material is gold a
The conductive polypropylene sheet on which the cross-linked cured film was formed was inserted and fixed while the mold temperature was 50°C), and both molds were fitted together at a pressure of 7 to 9/dG to form a conductive molded product. I got it.

このとき、雄型の表層にはシリコンゴム(硬度−40)
を用いた。また、雄型と雌型の間M(CL)は0.5〜
0、7 Mとした。
At this time, the surface layer of the male mold is silicone rubber (hardness -40).
was used. Also, M (CL) between male and female types is 0.5~
It was set to 0.7M.

こうして得られた導電性成形物はいずれの間も導電性繊
維の毛羽立ちはまったく見られず、しかも、布、爪等で
表面を強くこすっても導電性繊維の毛羽立ちはまったく
発生しなかった。また、表面抵抗は両面とも10’〜1
05Ωと良好な導電性を有していた。
In the conductive molded article thus obtained, no fluffing of the conductive fibers was observed during any period of time, and even when the surface was strongly rubbed with cloth, fingernails, etc., no fluffing of the conductive fibers occurred at all. Also, the surface resistance is 10' to 1 on both sides.
It had good conductivity of 0.05Ω.

実施例5 硬化用組成物としてポリエステルポリアクリレート43
重量%、ポリオールポリアクリレ−)40重量%、トリ
メチロールプロパントリアクリレート15重量%および
ベンジル2重量%からなる混合組成物を準備した。
Example 5 Polyester polyacrylate 43 as a curing composition
A mixed composition consisting of 40% by weight of polyol (polyacrylate), 15% by weight of trimethylolpropane triacrylate, and 2% by weight of benzyl was prepared.

該組成物を実施例2で用いたと同様の導電性ポリ塩化ビ
ニルシート(コロナ放電処理を施したもの)の片面に網
点状グラビアロール(AP/AT−0,8)で塗布し、
紫外線を照射して厚み7μmの架橋硬化被膜を形成させ
た。同様にして、もう一方の面にも厚み7μmの架橋硬
化被膜を形成させた。
The composition was applied to one side of a conductive polyvinyl chloride sheet (corona discharge treated) similar to that used in Example 2 using a dotted gravure roll (AP/AT-0,8),
A cross-linked cured film with a thickness of 7 μm was formed by irradiation with ultraviolet rays. Similarly, a crosslinked cured film with a thickness of 7 μm was formed on the other side as well.

つぎに、第4図に示すような雌雄一対の型(母材は金属
を使用、型温40℃)の間に架橋硬化被膜を形成させた
導電性ポリ塩化ビニルシートを挿入、固定し、両型t−
5kg / d Gの圧力で嵌合し導電性成形物を得た
。このとき、両型の表層にはシリコンゴム(厚み一3m
、硬度■40)を用い九、また、雄型と雌型の間1!1
(CL)は0.2〜0.4Mとした。
Next, a conductive polyvinyl chloride sheet with a cross-linked cured film formed thereon was inserted and fixed between a pair of male and female molds (metal was used as the base material, mold temperature 40°C) as shown in Figure 4. Type t-
They were fitted together under a pressure of 5 kg/dG to obtain a conductive molded product. At this time, the surface layer of both molds is silicone rubber (thickness - 3 m).
, hardness ■40) is used, and between male and female type 1!1
(CL) was set to 0.2 to 0.4M.

こうして得られた導電性成形物はいずれの面も導電性繊
維の毛羽立ちはまったく見られず、しかも、布、爪等で
表面を強くこすっても導電性繊維の毛羽立ちはまったく
発生しなかった。ま九、表面抵抗は両面とも10’〜1
07Ωと良好な導電性を有していた。
The thus obtained conductive molded article showed no fuzzing of the conductive fibers on either side, and even when the surface was strongly rubbed with cloth, fingernails, etc., no fuzzing of the conductive fibers occurred at all. 9. Surface resistance is 10' to 1 on both sides.
It had good conductivity of 0.07Ω.

比較例1 実施例1に準拠して、架橋硬化被膜を形成させた導電性
ポリプロピレンシートを得た。該シートを通常の真空成
形装置を用いて熱成形を行った。得られた導電性成形物
の金型に接しない面のコーナー付近には導電性接離の引
き吊シ現象が見られた。
Comparative Example 1 According to Example 1, a conductive polypropylene sheet on which a crosslinked cured film was formed was obtained. The sheet was thermoformed using a conventional vacuum forming apparatus. A hanging phenomenon of conductive contact and separation was observed near the corners of the surface of the obtained conductive molded product that did not contact the mold.

比較例2 実施例1に準拠して、架橋硬化被膜を形成させた導電性
ポリプロピレンシートを雌雄一対の金型(雄型と雌型の
間隙(CL)は0.6〜0.8 m )を用いてプレス
成形を行った。得られた導電性成形物は金型に接触して
いない部分があシ、この部分は架橋J化被膜の剥離が見
られ導電性繊維の毛羽立ちも確認された。また、金型に
接触して成形され、導電性繊維の毛羽立ちがない部分も
爪でこすると毛羽立ちの発生が見られた。
Comparative Example 2 In accordance with Example 1, a conductive polypropylene sheet on which a crosslinked cured film was formed was molded into a pair of male and female molds (the gap (CL) between the male mold and the female mold was 0.6 to 0.8 m). Press molding was performed using The resulting conductive molded article had some areas not in contact with the mold, and peeling of the crosslinked J coating was observed in these areas, as well as fluffing of the conductive fibers. In addition, when the part of the conductive fiber that was molded in contact with the mold and had no fluff was rubbed with a fingernail, the occurrence of fluff was observed.

比較例3 架橋硬化被膜の厚みを20μmとした以外は実施例2に
準拠して導電性成形物を得な。該成形物は両面とも、導
電性繊維の毛羽立ち、引き吊り現象がまったく見られず
、しかも、表面を爪や布等で摩擦しても導電性繊維の毛
羽立ちがまったく発生しなかったが、表面抵抗は101
1Ω以上であ、シ、表面の導電性が大幅に悪化していた
Comparative Example 3 A conductive molded article was obtained in accordance with Example 2, except that the thickness of the crosslinked cured film was 20 μm. No fluffing or hanging phenomenon of the conductive fibers was observed on both sides of the molded product, and even when the surface was rubbed with a fingernail or cloth, no fluffing of the conductive fibers occurred at all, but the surface resistance is 101
When it was 1Ω or more, the conductivity of the surface was significantly deteriorated.

比較例4 実施例2で用いたと同様の導電性ポリ塩化ビニルシート
(架橋硬化被Hxヲ形成させないもの)を実施例2に準
拠して、簑曽寺第4図に示す様な雌雄一対の型の間に挿
入、固定し、両型を嵌合、賦形し導電性成形物を得た。
Comparative Example 4 Conductive polyvinyl chloride sheets similar to those used in Example 2 (without forming Hx to be cross-linked and cured) were molded into male and female molds as shown in Fig. 4 in accordance with Example 2. The molds were inserted and fixed in between, and both molds were fitted and shaped to obtain a conductive molded product.

得られた成形物は両面とも表面抵抗が106〜107Ω
と良好な導電性を有しているが、爪で表面をこすると導
電性繊維の毛羽立ちが発生した。
The obtained molded product has a surface resistance of 106 to 107 Ω on both sides.
However, when the surface was rubbed with a fingernail, the conductive fibers became fluffy.

比較例5 実施例1で用いたと同様の導電性ポリプロピレンシート
(コロナ放電処理済のもの)の両面に同じ〈実施例1で
用いたと同様の硬化用組成物を網点状のグラビアロール
(AP/AT−0,2)で塗布し、実施例1と同様の硬
化条件で厚み3μmの架橋硬化被at形成させた。この
シートを第1図に示すような雌雄一対の型(型温50°
C)の間に挿入、固定し、両型’frニアに97cdG
の圧力で嵌合し導電性成形物を得た。このとき、雄型の
表層にはシリコンゴム(硬度−40)を用いた。また、
雄型と雌型の間N(CL)は0.5〜0.711ogと
した。
Comparative Example 5 A dotted gravure roll (AP/ AT-0, 2) was applied, and under the same curing conditions as in Example 1, a 3 μm thick cross-linked and cured AT was formed. This sheet was molded into a pair of male and female molds (mold temperature: 50°C) as shown in Figure 1.
Insert and fix between C) and 97cdG near both types'fr.
A conductive molded article was obtained by fitting with a pressure of . At this time, silicone rubber (hardness -40) was used for the surface layer of the male mold. Also,
The N (CL) between male and female types was 0.5 to 0.711 og.

こうして得られた導電性成形物はいずれの面も表面抵抗
が104〜105Ωと良好な導電性を有していたが、爪
で表面をこすると架橋硬化被膜が形成されていない部分
に導電性繊維の毛羽立ちが見られた。
The conductive molded product thus obtained had good conductivity with a surface resistance of 104 to 105 Ω on both sides, but when the surface was rubbed with a fingernail, conductive fibers appeared in the areas where the crosslinked cured film was not formed. fuzz was observed.

比較例6 実施例1で用いたと同様の導電性ポリプロピレンシート
(コロナ放電処理済のもの)の両面に同じ〈実施例1で
用いたと同様の硬化用組成物をグラビアロールでペタ刷
り(AP/AT = 1.0 )し、実施例1と同様の
硬化条件で厚み3μmの架橋硬化被膜を形成させた。こ
のシー)f第1図に示すような雌雄一対の型(m温50
°C)の間に挿入、固定し、両型を71g / d G
の圧力で嵌合し導電性成形物を得た。このとき、雄型の
表層にはシリコンゴム(硬度−40)を用いた。
Comparative Example 6 The same curing composition as used in Example 1 was applied on both sides of a conductive polypropylene sheet (corona discharge treated) using a gravure roll (AP/AT). = 1.0), and a crosslinked cured film with a thickness of 3 μm was formed under the same curing conditions as in Example 1. This sea) f A pair of male and female molds as shown in Figure 1 (m temperature 50
Insert and fix both molds at 71g/dG
A conductive molded article was obtained by fitting with a pressure of . At this time, silicone rubber (hardness -40) was used for the surface layer of the male mold.

また、雄型と雌型の間隙(CL)は0.5〜0.7とし
た。
Moreover, the gap (CL) between the male and female molds was set to 0.5 to 0.7.

こうして得られた導電性成形物はいずれの面も表面抵抗
が104〜1011′Ωと良好な導電性を有していたが
、熱成形時の変形によって塗膜に亀裂が入シ外観が著し
く損なわれており実用に供することができるものではな
かった。
The conductive molded product obtained in this way had good conductivity with a surface resistance of 104 to 1011'Ω on all sides, but cracks appeared in the coating due to deformation during thermoforming and the appearance was significantly impaired. However, it was not possible to put it into practical use.

(発明の効果) 本発明の成形物は、導電性熱可塑性樹脂シートの表層に
基材シートと強固に接着した1〜15μmの架橋硬化被
膜を形成し、さらに、誼シートを本発明の型を用いて熱
成形するととKよって良好な導電性能を維持しつつ、導
電性繊維の毛羽立ち、引き吊りの発生が完全に抑えられ
た導電性成形物であり、しかも、成形物表面の耐スクラ
ッチ性が改良されたため、従来よυ問題となっていた導
電性繊維の毛羽立ちによる外観の悪化、導電性繊維の脱
落による周辺の汚染、導電性の悪化がまったく見られな
い成形物である。特に、内容物のこすれによる導電性繊
維の毛羽立ちの発生が完全に抑えられたことによって従
来、展開が困難だった1、C%LSI等半導体等電導体
品、精密機械部品等の輸送・保管用容器、クリーンルー
ム用各稽部品、収納容器等にも好適に使用することが可
能である。
(Effects of the Invention) The molded product of the present invention forms a crosslinked cured film of 1 to 15 μm on the surface layer of the conductive thermoplastic resin sheet, which is firmly adhered to the base sheet, and further, When thermoformed using Tok, the result is a conductive molded product that maintains good conductive performance, completely suppresses the occurrence of fluffing and hanging of the conductive fibers, and has excellent scratch resistance on the surface of the molded product. Because of this improvement, the molded product is completely free from deterioration in appearance due to the fuzzing of conductive fibers, contamination of the surrounding area due to shedding of conductive fibers, and deterioration of conductivity, which have been problems in the past. In particular, it has completely suppressed the occurrence of fuzzing of conductive fibers due to rubbing of the contents, which has previously been difficult to deploy.1.For transportation and storage of conductive products such as semiconductors such as C%LSI, precision machine parts, etc. It can also be suitably used for containers, clean room parts, storage containers, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は母材の表面に耐熱性ゴムよりなる型を張り付け
た雄型と母材のみの雌型よシなる雌雄一対の型を示す。 !R2図は母材の表面に耐熱性ゴムよりなる型を張り付
けた雄型と型取シした母材の表面に耐熱性ゴムを被覆し
た構造の雌型よりなる雌雄−対の型を示す。 第3図は壓取りした母材の表面に耐熱性ゴムを被覆した
構造の雄型と母材のみの雌凰よりなる雌雄一対の型を示
す。 また、第4図はいずれの型の母材の表面にも耐熱性ゴム
を被覆した構造を有する雌雄一対の型を示す。 以上
FIG. 1 shows a pair of male and female molds, including a male mold with a mold made of heat-resistant rubber attached to the surface of a base material, and a female mold made of only the base material. ! Figure R2 shows a male and female mold pair consisting of a male mold with a mold made of heat-resistant rubber attached to the surface of the base material and a female mold with a structure in which the surface of the molded base material is coated with heat-resistant rubber. FIG. 3 shows a pair of male and female molds consisting of a male mold whose surface is coated with heat-resistant rubber and a female mold made of only the base material. Moreover, FIG. 4 shows a pair of male and female molds each having a structure in which the surface of the base material of each mold is coated with heat-resistant rubber. that's all

Claims (6)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂膜の片面もしくは両面に熱溶融性繊
維と導電性繊維とからなる導電性編・織布を貼り合わせ
て融着一体化したのち、該導電性編・織布面に表面処理
を施し、さらに該表面処理面に不飽和樹脂と反応性希釈
剤を主成分とする硬化用組成物を塗布し、該硬化用組成
物を硬化させて膜厚1〜15μmの硬化被膜を形成せし
めてなる導電性熱可塑性樹脂シートを、少なくとも一方
の型の表面が耐熱性を有するゴムよりなる雌雄一対の型
の間に固定したのち、両型を嵌合することによつて賦形
された導電性熱可塑性樹脂成形物。
(1) After bonding and fusing a conductive knitted/woven fabric made of thermofusible fibers and conductive fibers to one or both sides of a thermoplastic resin film, the surface of the conductive knitted/woven fabric is After treatment, a curing composition containing an unsaturated resin and a reactive diluent as main components is applied to the surface-treated surface, and the curing composition is cured to form a cured film with a thickness of 1 to 15 μm. A conductive thermoplastic resin sheet made of at least one mold is fixed between a pair of male and female molds, at least one of which has a heat-resistant rubber surface, and then the two molds are fitted together to form the sheet. Conductive thermoplastic resin molded product.
(2)表面処理がコロナ放電処理である請求項1記載の
導電性熱可塑性樹脂成形物。
(2) The conductive thermoplastic resin molded article according to claim 1, wherein the surface treatment is corona discharge treatment.
(3)硬化用組成物の硬化手段として電子線を用いる請
求項1記載の導電性熱可塑性樹脂成形物。
(3) The conductive thermoplastic resin molded article according to claim 1, wherein an electron beam is used as a curing means for the curable composition.
(4)導電性繊維が炭素繊維、ステンレス鋼繊維、カー
ボン複合合成繊維、カーボン被覆合成繊維もしくはこれ
らの2以上の混合物である請求項1記載の導電性熱可塑
性樹脂成形物。
(4) The conductive thermoplastic resin molded product according to claim 1, wherein the conductive fiber is carbon fiber, stainless steel fiber, carbon composite synthetic fiber, carbon-coated synthetic fiber, or a mixture of two or more thereof.
(5)耐熱性を有するゴムがシリコンガム、アクリルゴ
ム、もしくはフツ素ゴムである請求項1記載の導電性熱
可塑性樹脂成形物。
(5) The conductive thermoplastic resin molded article according to claim 1, wherein the heat-resistant rubber is silicone gum, acrylic rubber, or fluorine rubber.
(6)硬化性組成物が網点状になつた版を用いて部分的
に塗工されており、その塗工面積(AP)と導電性熱可
塑性樹脂シートの面積(AT)ととの関係が0.3≦(
AP/AT)≦0.9である請求項1記載の導電性熱可
塑性樹脂成形物。
(6) The curable composition is partially coated using a dotted plate, and the relationship between the coated area (AP) and the area of the conductive thermoplastic resin sheet (AT) is 0.3≦(
The conductive thermoplastic resin molded article according to claim 1, wherein AP/AT)≦0.9.
JP63059795A 1988-01-04 1988-03-14 Conductive thermoplastic resin molded material Pending JPH01232019A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63059795A JPH01232019A (en) 1988-03-14 1988-03-14 Conductive thermoplastic resin molded material
CA000587278A CA1291409C (en) 1988-01-04 1988-12-29 Electroconductive thermoplastic resin molded product
EP19880121843 EP0323642A3 (en) 1988-01-05 1988-12-29 An electroconductive thermoplastic resin molded product
US07/291,958 US4929496A (en) 1988-01-05 1988-12-30 Electroconductive thermoplastic resin molded product
KR1019890000022A KR920001720B1 (en) 1988-01-05 1989-01-05 Electro conductive theromoplastic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059795A JPH01232019A (en) 1988-03-14 1988-03-14 Conductive thermoplastic resin molded material

Publications (1)

Publication Number Publication Date
JPH01232019A true JPH01232019A (en) 1989-09-18

Family

ID=13123569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059795A Pending JPH01232019A (en) 1988-01-04 1988-03-14 Conductive thermoplastic resin molded material

Country Status (1)

Country Link
JP (1) JPH01232019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107300A (en) * 2011-11-22 2013-06-06 Mikio Fukumura Thermoforming device, and forming method
JP2013107301A (en) * 2011-11-22 2013-06-06 Mikio Fukumura Thermoforming device, and forming method
JP2013173334A (en) * 2012-02-27 2013-09-05 Ibaraki Kogyo Kk Molding method of fiber-reinforced plastic molded body with solid additive
JP2015519486A (en) * 2012-05-11 2015-07-09 グロツ・ベッケルト コマンディートゲゼルシャフト Woven parts, composite material elements containing woven parts, and methods of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107300A (en) * 2011-11-22 2013-06-06 Mikio Fukumura Thermoforming device, and forming method
JP2013107301A (en) * 2011-11-22 2013-06-06 Mikio Fukumura Thermoforming device, and forming method
JP2013173334A (en) * 2012-02-27 2013-09-05 Ibaraki Kogyo Kk Molding method of fiber-reinforced plastic molded body with solid additive
JP2015519486A (en) * 2012-05-11 2015-07-09 グロツ・ベッケルト コマンディートゲゼルシャフト Woven parts, composite material elements containing woven parts, and methods of manufacturing the same
US10190239B2 (en) 2012-05-11 2019-01-29 Groz-Beckert Kg Textile part, composite material element with textile part, and production method for the same

Similar Documents

Publication Publication Date Title
US11123969B2 (en) Process for producing decorative sheet, decorative sheet, production process for a decorated resin molded article, and decorative molded article obtained using same
JP6427911B2 (en) 3D molding sheet
WO2016052628A1 (en) Decorative sheet
KR910008767B1 (en) Electric conductive themoplastic resin sheet
JP6467841B2 (en) Transfer sheet
JP2019089335A (en) Transfer film for three-dimensional molding
JP2019048472A (en) Surface processed film and manufacturing method therefor
KR920001720B1 (en) Electro conductive theromoplastic resin molded product
JP2016190332A (en) Transfer sheet and decorative resin molding using the same
JPH01232019A (en) Conductive thermoplastic resin molded material
JP6398259B2 (en) Decorative sheet and decorative resin molded product
JP6503628B2 (en) Decorative sheet and decorative resin molded article
JP4073538B2 (en) Decorative sheet, decorative plate, and method for producing decorative sheet
JP6331576B2 (en) Decorative sheet and decorative resin molded product
JP2018144235A (en) Transfer sheet for three-dimensional molding and method for producing decorative resin molding
JP2018058333A (en) Decorative sheet and decorative resin molded product
JP6146083B2 (en) Decorative sheet
JP7119506B2 (en) TRANSFER FILM FOR THREE-DIMENSIONAL MOLDING, RESIN MOLDED PRODUCT, AND PRODUCTION METHOD THEREOF
JPH01176520A (en) Conductive thermoplastic resin molded product
JP2015189042A (en) decorative sheet and decorative resin molded product
JP6273954B2 (en) Decorative sheet
JP6476694B2 (en) Production method of transfer sheet
JPH0560786B2 (en)
JPH0520270B2 (en)
JP2020055150A (en) Decorative sheet and method for producing resin molding