JPH01231015A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH01231015A
JPH01231015A JP5626488A JP5626488A JPH01231015A JP H01231015 A JPH01231015 A JP H01231015A JP 5626488 A JP5626488 A JP 5626488A JP 5626488 A JP5626488 A JP 5626488A JP H01231015 A JPH01231015 A JP H01231015A
Authority
JP
Japan
Prior art keywords
light emitting
emitting point
optical system
laser beam
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5626488A
Other languages
Japanese (ja)
Inventor
Yoshito Sekikawa
義人 関川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5626488A priority Critical patent/JPH01231015A/en
Publication of JPH01231015A publication Critical patent/JPH01231015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To reduce the size over the entire part of the device and to provide stability to mechanical strains and thermal strains to optical systems by disposing a cylindrical lens as the 1st optical system to the point nearest a modulated light emitting point. CONSTITUTION:This device is constituted by having the 1st optical system which is the cylindrical lens 12 disposed nearest the modulated light emitting point 11 and having a positive curvature in the direction perpendicular to the scanning direction, a rotary polyhedral mirror 14, and the 2nd optical system which corrects the scanning speed and face inclination and scans and exposes the surface of a photosensitive body. The laser beam emitted from the modulated light emitting point 11 is first weakened in diverting power by the cylindrical lens 12 and is then collimated to a prescribed width by a collimator lens 13. After the laser beam is deflected by the rotary polyhedral mirror 14, the laser beam is subjected to correction of the scanning speed by an f-theta lens and scans and exposes the surface of the photosensitive body via a cylindrical reflecting mirror or the like which makes the inclination correction. The distance between the light emitting point and the rotary polyhedral mirror is thereby shortened and the compact optical scanner is obtd.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、電子写真技術を応用したレーザプリンタ等に
係り、特に感光体を露光するために使用するレーザプリ
ンタの光学走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser printer or the like that applies electrophotographic technology, and particularly relates to an optical scanning device of a laser printer used to expose a photoreceptor.

「従来の技術」 一般に、光学走査装置は例えばレーザビームプリンタや
デジタル複写機等の走査は構として広く使用されている
``Prior Art'' In general, optical scanning devices are widely used as a scanning mechanism for, for example, laser beam printers and digital copying machines.

従来の例えばレーザビームプリンタ等に適用される光Y
走査装置の一例として第3I21〜第6図に示すような
ものが提案されている。ここで、第3図はビーム整形を
するだめの第1の光学系を示す側面図、第4図はその平
面図、第5図は走査速度および回転多面鏡の而倒れを補
正するための第2の光学系を示す平面図、第6図はその
側面図である。
Light Y applied to conventional laser beam printers, etc.
As an example of a scanning device, those shown in FIGS. 3I21 to 6 have been proposed. Here, Fig. 3 is a side view showing the first optical system for beam shaping, Fig. 4 is a plan view thereof, and Fig. 5 is a side view showing the first optical system for beam shaping. FIG. 6 is a plan view showing the optical system of No. 2, and FIG. 6 is a side view thereof.

第4図に示す如く変調された発光点2から発せられたタ
ンジェンンヤル方向のレーザビームはコリメータレンズ
3により幅Wの平行化ビームとされた後、シリンドリカ
ルレンズ4を介して回転多面鏡5へ入射される。また、
第3図に示す如く発光点2から発せられたサジタル方向
のレーザビームはコリメークレンズ3でその発散力を弱
めた後シリンドリカルレンズ4により収束された後、記
録信号に応じて変調されたレーザビームを所定方向へ偏
向するビーム偏向器としての回転多面鏡5上へ入射され
る。入射されたレーザビームはこの回転多面鏡5により
偏向走査された後、第5図、第6図に示す如くf−θレ
ンズ6によりレーザビームの走査速度を補正する。走査
速度が補正されレーザビームはシリンドリカルミラー7
で倒れ補正された後、図外の光学窓を通過して感光体表
面を走査、露光する。
As shown in FIG. 4, the modulated laser beam in the tangential direction emitted from the light emitting point 2 is made into a collimated beam with a width W by the collimator lens 3, and then enters the rotating polygon mirror 5 via the cylindrical lens 4. Ru. Also,
As shown in FIG. 3, the laser beam in the sagittal direction emitted from the light emitting point 2 has its divergent power weakened by the collimating lens 3, and is then converged by the cylindrical lens 4. The laser beam is then modulated according to the recording signal. The beam is incident on a rotating polygon mirror 5 which serves as a beam deflector that deflects the beam in a predetermined direction. After the incident laser beam is deflected and scanned by the rotating polygon mirror 5, the scanning speed of the laser beam is corrected by the f-theta lens 6 as shown in FIGS. 5 and 6. The scanning speed is corrected and the laser beam passes through the cylindrical mirror 7.
After the tilt is corrected, the photoreceptor surface is scanned and exposed through an optical window (not shown).

「発明が解決しようとする課題」 ところで、上述した従来の光学走査装置にあっては、第
2の光学系で定まるビーム径R若しくはWが太い場合に
は従来の第1の光学系では発光点2から回転多面鏡5ま
での距離が著しく長くなってしまい光学系の安定性が悪
くなると言う欠点が存在した。つまり、光学系が長くな
ると機械的歪や熱歪によりビームが振れてしまうからで
ある。
"Problems to be Solved by the Invention" By the way, in the conventional optical scanning device described above, when the beam diameter R or W determined by the second optical system is large, the conventional first optical system There was a drawback that the distance from the rotary polygon mirror 2 to the rotating polygon mirror 5 became extremely long and the stability of the optical system deteriorated. In other words, if the optical system becomes long, the beam will deflect due to mechanical strain or thermal strain.

また、介在させるミラーなどの部品が増加するか或いは
ハウジングが大きくなりコストアップにつながるという
欠点が存在した。
Further, there is a drawback that the number of intervening parts such as a mirror increases or the housing becomes larger, leading to an increase in cost.

本発明の目的は、上述した欠点に鑑みなされたもので変
調される発光点に最も近接したレンズを走査方向と垂直
な方向に正の曲率を有したシリンドリカルレンズとし、
発光点と回転多面鏡との距離を短くすることによりコン
パクトな光学走査装置を提供することにある。
The object of the present invention is to make the lens closest to the light emitting point to be modulated a cylindrical lens having a positive curvature in the direction perpendicular to the scanning direction, which has been made in view of the above-mentioned drawbacks,
The object of the present invention is to provide a compact optical scanning device by shortening the distance between a light emitting point and a rotating polygon mirror.

「課題を解決するための手段」 本発明に係る光学走査装置は、変調される発光点に最も
近接したレンズが走査方向と垂直な方向に正の曲率を有
したシリンドリカルレンズである第1の光学系と回転多
面鏡と走査速度および面倒れを補正し感光体表面を走査
露光する第2の光学系を備えた構成としたものである。
"Means for Solving the Problem" An optical scanning device according to the present invention includes a first optical scanning device in which the lens closest to the light emitting point to be modulated is a cylindrical lens having a positive curvature in a direction perpendicular to the scanning direction. This configuration includes a rotating polygon mirror, a second optical system that corrects the scanning speed and surface tilt, and scans and exposes the surface of the photoreceptor.

「作用」 このように本発明に係る光学走査装置は、第1の光学系
であるシリンドリカルレンズを変調される発光点に最も
近接させたので装置全体をコンパクトにすることができ
るとともに光学系を機械歪や熱歪に対して安定させるこ
とが可能となる。
"Function" As described above, in the optical scanning device according to the present invention, the cylindrical lens, which is the first optical system, is brought closest to the light emitting point to be modulated, so that the entire device can be made compact, and the optical system can be mechanically It becomes possible to stabilize against distortion and thermal distortion.

「実施例」 以下、添付図面に従って本発明の一実施例を説明する。"Example" An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の光学走査装置に用いられるヒ゛−ム整
形をするための第1の光学系の一実施例を示す側面図、
第2図はその第1の光学系を示す平面図である。両図に
おいて光学走査装置は、変調された発光点11から発せ
られたレーザビームの発散力を弱めるシリンドリカルレ
ンズ12と、レーザビームを所定幅にコリメートするコ
リメータレンズ13と、記録信号に応じて変調されたレ
ーザビームを所定方向へ偏向するビーム偏向器としての
回転多面鏡14と、レーザビームの走査速度を補正する
図外のf−θレンズ、走査速度の補正されたレーザビー
ムの倒れ補正を行う円筒反射鏡等から構成されている。
FIG. 1 is a side view showing an embodiment of a first optical system for beam shaping used in the optical scanning device of the present invention;
FIG. 2 is a plan view showing the first optical system. In both figures, the optical scanning device includes a cylindrical lens 12 that weakens the divergence power of the laser beam emitted from the modulated light emitting point 11, a collimator lens 13 that collimates the laser beam to a predetermined width, and a laser beam that is modulated according to the recording signal. A rotating polygon mirror 14 as a beam deflector that deflects the laser beam in a predetermined direction, an f-theta lens (not shown) that corrects the scanning speed of the laser beam, and a cylinder that corrects the tilt of the laser beam whose scanning speed has been corrected. It consists of reflecting mirrors, etc.

ここで、光源としてλ−632.8nmの)Ie−Ne
を使用した場合、従来の構成の場合には変調される発光
点2におけるビーム径を100μm1回転多面鏡5にお
けるサジクルビーム径を200μm9回転多面鏡5にお
けるタンジエンシャルビーム幅を3mmと設定した場合
に発光点2から回転多面鏡5まての光路長は少なくとも
1100mm程度必要となるが、本発明における光学走
査装置においては発光点11から回転多面鏡14までの
光路長を600mm程度とすることができる。
Here, the light source is λ-632.8 nm) Ie-Ne
When using a conventional configuration, the beam diameter at the modulated light emitting point 2 is set to 100 μm, the sasicle beam diameter at the single-rotation polygon mirror 5 is set to 200 μm, and the tangential beam width at the nine-rotation polygon mirror 5 is set to 3 mm. The optical path length from the point 2 to the rotating polygon mirror 5 is required to be at least about 1100 mm, but in the optical scanning device of the present invention, the optical path length from the light emitting point 11 to the rotating polygon mirror 14 can be about 600 mm.

次に、以上のように構成された本実施例の光学走査装置
の動作について説明する。
Next, the operation of the optical scanning device of this embodiment configured as described above will be explained.

まず、変調された発光点11から発せられたレーザビー
ムは、シリンドリカルレンズ12により発散力を弱めら
れたのちコリメータレンズ13により所定幅にコリメー
トされる。コリメートされたレーザビームは回転多面鏡
14で偏向された後、図外のf−θレンズで走査速度の
補正が行われ然る後、倒れ補正を行う円筒反射鏡等を介
して図示しない感光体表面を走査露光する。
First, the laser beam emitted from the modulated light emitting point 11 has its diverging force weakened by the cylindrical lens 12, and is then collimated to a predetermined width by the collimator lens 13. After the collimated laser beam is deflected by the rotating polygon mirror 14, the scanning speed is corrected by an f-theta lens (not shown), and then it is sent to a photoreceptor (not shown) via a cylindrical reflector etc. that performs tilt correction. The surface is scanned and exposed.

ここで感光体の表面に到達したレーザビームは感光体表
面を記録信号に対応した露光を行い静電潜像を形成する
。形成された潜像は図外の現像器で例えば、黒や赤に現
像される。このように、本実施例の光学走査装置は第1
の光学系とじてシリンドリカルレンズをコリメータレン
ズの前に配置したので装置全体をコンパクトにすること
ができる。
Here, the laser beam reaching the surface of the photoreceptor exposes the surface of the photoreceptor to light corresponding to the recording signal, thereby forming an electrostatic latent image. The formed latent image is developed into black or red, for example, using a developing device (not shown). In this way, the optical scanning device of this embodiment has the first
Since the cylindrical lens of the optical system is placed in front of the collimator lens, the entire device can be made compact.

なお、本実施例では発光点11から回転多面鏡14まで
の光路長を600mm程度とすることができるがコリメ
ークレンズ系およびシリンドリカルレンズ系を2枚組み
以上とすれば発光点11かろ回転多面鏡14までの光路
長を300mm程度まで短縮することができる。
In this embodiment, the optical path length from the light emitting point 11 to the rotating polygon mirror 14 can be set to about 600 mm, but if the collimating lens system and the cylindrical lens system are used as a set of two or more lenses, the length of the optical path from the light emitting point 11 to the rotating polygon mirror 14 can be set to about 600 mm. The optical path length up to 14 can be shortened to about 300 mm.

「発明の効果」 以上詳細に説明したように、本発明に係る光学走査装置
は、第1の光学系としてシリンドリカルレンズを変調さ
れた発光点に最も近接して配置したので装置全体をコン
パクトにすることができるとともに光学系を機械歪や熱
歪に対して安定させることができる。
"Effects of the Invention" As explained in detail above, the optical scanning device according to the present invention has the cylindrical lens as the first optical system placed closest to the modulated light emitting point, making the entire device compact. At the same time, the optical system can be stabilized against mechanical strain and thermal strain.

また、光学系の光路長を短くすることができるのでハウ
ジングの剛性が増すこととなり光学走査装置が撓んだり
、歪むことが少なくなりレーザビームの位置がずれたり
することなく画像の位置調整が簡便となる。そして、ハ
ウジングの外形が小さくなるので装置設計上の自由度を
著しく増大することができる。
In addition, since the optical path length of the optical system can be shortened, the rigidity of the housing is increased, which reduces the possibility of bending or distortion of the optical scanning device, making it easy to adjust the image position without shifting the position of the laser beam. becomes. Furthermore, since the outer shape of the housing is reduced, the degree of freedom in designing the device can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学走査装置に用いられるビーム整J
f2をするだめの第1の光学系を示す側面図、第2図は
その第1の光学系を示す平面図、第3図は従来の光学走
査装置に用″7)られるビーム整形をするための第1の
光学系を示す側面図、第4図はその平面図、第5図は従
来の光学走査装置に用いられる走査速度および回転多面
鏡の面倒れを補正するための第2の光学系を示す平面図
、第6図はその側面図である。 11・・・・発光点、 12・・・・・シリンドリカルレンズ、13・・・・・
・コリメータレンズ、 14・・・・・・回転多面鏡。 第1図 第2図 第4図 第6図
Figure 1 shows the beam adjustment J used in the optical scanning device of the present invention.
Fig. 2 is a side view showing the first optical system for performing f2, Fig. 2 is a plan view showing the first optical system, and Fig. 3 is for beam shaping used in a conventional optical scanning device. FIG. 4 is a side view showing the first optical system, FIG. 5 is a plan view thereof, and FIG. 5 is a second optical system for correcting the scanning speed and surface tilt of the rotating polygon mirror used in a conventional optical scanning device. 6 is a side view thereof. 11... Luminous point, 12... Cylindrical lens, 13...
・Collimator lens, 14...Rotating polygon mirror. Figure 1 Figure 2 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 1、レーザ光源と、 変調されたレーザビームをビーム整形するとともに変調
される発光点に最も近接したレンズが走査方向と垂直な
方向に正の曲率を有したシリンドリカルレンズである第
1の光学系と、回転多面鏡と、 走査速度および面倒れを補正し感光体表面を走査露光す
る第2の光学系とを備えたことを特徴とする光学走査装
置。 2、前記発光点が音響光学素子中の集光点であることを
特徴とする請求項1記載の光走査装置。 3、前記発光点がレーザダイオードであることを特徴と
する請求項1記載の光学走査装置。
[Claims] 1. A laser light source, and a lens that shapes the modulated laser beam and is closest to the modulated light emitting point is a cylindrical lens having a positive curvature in a direction perpendicular to the scanning direction. An optical scanning device comprising: a first optical system; a rotating polygon mirror; and a second optical system that scans and exposes the surface of a photoreceptor while correcting scanning speed and surface tilt. 2. The optical scanning device according to claim 1, wherein the light emitting point is a condensing point in an acousto-optic element. 3. The optical scanning device according to claim 1, wherein the light emitting point is a laser diode.
JP5626488A 1988-03-11 1988-03-11 Optical scanner Pending JPH01231015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5626488A JPH01231015A (en) 1988-03-11 1988-03-11 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5626488A JPH01231015A (en) 1988-03-11 1988-03-11 Optical scanner

Publications (1)

Publication Number Publication Date
JPH01231015A true JPH01231015A (en) 1989-09-14

Family

ID=13022221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5626488A Pending JPH01231015A (en) 1988-03-11 1988-03-11 Optical scanner

Country Status (1)

Country Link
JP (1) JPH01231015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131812A (en) * 1990-09-21 1992-05-06 Dainippon Screen Mfg Co Ltd Light beam scanner
US5859721A (en) * 1995-04-27 1999-01-12 Dainippon Screen, Mfg. Co., Ltd. Optical device using a point light source
CN107561691A (en) * 2016-06-30 2018-01-09 秦倞 Rotary laser galvanometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178769A (en) * 1984-02-24 1985-09-12 Ricoh Co Ltd Conversion method of picture element density for optical scan system
JPS6187123A (en) * 1984-10-05 1986-05-02 Konishiroku Photo Ind Co Ltd Scanning optical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178769A (en) * 1984-02-24 1985-09-12 Ricoh Co Ltd Conversion method of picture element density for optical scan system
JPS6187123A (en) * 1984-10-05 1986-05-02 Konishiroku Photo Ind Co Ltd Scanning optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131812A (en) * 1990-09-21 1992-05-06 Dainippon Screen Mfg Co Ltd Light beam scanner
JP2559898B2 (en) * 1990-09-21 1996-12-04 大日本スクリーン製造株式会社 Light beam scanning device
US5859721A (en) * 1995-04-27 1999-01-12 Dainippon Screen, Mfg. Co., Ltd. Optical device using a point light source
CN107561691A (en) * 2016-06-30 2018-01-09 秦倞 Rotary laser galvanometer

Similar Documents

Publication Publication Date Title
JP4505134B2 (en) Raster output scanning (ROS) image forming system
US5557446A (en) Optical scanning apparatus having tilted scanning lens system
US6965466B2 (en) Light scanner, multibeam scanner, and image forming apparatus using the same
US20020131137A1 (en) Scanning image formation optical system, optical scanner using the optical system, and image forming apparatus using the optical scanner
US20040047018A1 (en) Scanning optical system
JP4642627B2 (en) Scanning optical device and image forming apparatus using the same
JP4541523B2 (en) Multi-beam optical scanning optical system, multi-beam optical scanning device, and image forming apparatus
US6519070B2 (en) Optical scanning apparatus, multi-beam optical scanning apparatus, and image forming apparatus using the same
JP3104618B2 (en) Optical scanning device and optical lens
JPH01231015A (en) Optical scanner
JPH07111509B2 (en) Optical scanning device
JPH0553067A (en) Lens for optical scan and optical scanner
JPH0720399A (en) Raster scanner
JP3747668B2 (en) Optical scanning device
JP3595374B2 (en) Scanning optical system and method of correcting spherical aberration in scanning optical system
JPS61184515A (en) Laser scanning device
US6618071B2 (en) Exposure device including pre-deflection optical system
JP2999853B2 (en) Optical scanning device
JPH0560086B2 (en)
JPS61126528A (en) Photoscanning device
JP3324161B2 (en) Laser scanning device
JPH0743627A (en) Optical scanning device
JP4642182B2 (en) Optical scanning optical device and image forming apparatus using the same
JPH10239608A (en) Optical scanner
JP3946037B2 (en) Multi-beam light source device, optical scanning device, and image forming apparatus