JPH0123071B2 - - Google Patents

Info

Publication number
JPH0123071B2
JPH0123071B2 JP56195048A JP19504881A JPH0123071B2 JP H0123071 B2 JPH0123071 B2 JP H0123071B2 JP 56195048 A JP56195048 A JP 56195048A JP 19504881 A JP19504881 A JP 19504881A JP H0123071 B2 JPH0123071 B2 JP H0123071B2
Authority
JP
Japan
Prior art keywords
target
laser
detection
view
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56195048A
Other languages
Japanese (ja)
Other versions
JPS5896267A (en
Inventor
Tooru Tajime
Satoshi Wakabayashi
Toshio Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56195048A priority Critical patent/JPS5896267A/en
Publication of JPS5896267A publication Critical patent/JPS5896267A/en
Publication of JPH0123071B2 publication Critical patent/JPH0123071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 この発明は視野をラスタ状に走査し、目標の検
知を行なう走査形レーザレーダに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a scanning laser radar that scans a field of view in a raster pattern and detects a target.

まず第1図によつて従来から用いられている走
査形レーザレーダに関して説明する。
First, a conventionally used scanning laser radar will be explained with reference to FIG.

第1図において、1は送信レーザ発生器、2は
ビームスプリツタ。3はX−Yスキヤナ、4は望
遠鏡、5は検出器、6は増幅器、7は信号処理
器、8は表示器、10は送信レーザ光である。な
おここで送、受信光学系9は説明の便宜上共通と
した。また送信レーザ発生器1のレーザ送信方向
と受信光学系の瞬時視野の方向は同一方向に設定
されているものとする。
In FIG. 1, 1 is a transmitting laser generator, and 2 is a beam splitter. 3 is an X-Y scanner, 4 is a telescope, 5 is a detector, 6 is an amplifier, 7 is a signal processor, 8 is a display, and 10 is a transmitting laser beam. Note that the transmitting and receiving optical systems 9 are assumed to be the same here for convenience of explanation. Further, it is assumed that the laser transmission direction of the transmitting laser generator 1 and the direction of the instantaneous field of view of the receiving optical system are set in the same direction.

このような構成において、送信レーザ発生器1
から出射したレーザビームはビームスプリツタ2
を透過し、X−Yスキヤナ3によつてラスタ状に
視野を走査し、望遠鏡4を通じて送信される。こ
のようにして照射された送信レーザ光10は視野
内の目標によつて反射され、望遠鏡4によつて受
信される。受信光はX−Yスキヤナ3を経て、ビ
ームスプリツタ2で反射された後、検出器5に入
射する。検出器5の出力信号は増幅器6で増幅さ
れた後、信号処理器7で処理され、例えば表示器
8上に画像として表示することによつて目標の検
知が行なわれる。
In such a configuration, the transmitting laser generator 1
The laser beam emitted from the beam splitter 2
The field of view is scanned in a raster pattern by the X-Y scanner 3 and transmitted through the telescope 4. The transmitted laser beam 10 irradiated in this manner is reflected by a target within the field of view and is received by the telescope 4. The received light passes through an X-Y scanner 3, is reflected by a beam splitter 2, and then enters a detector 5. The output signal of the detector 5 is amplified by an amplifier 6, then processed by a signal processor 7, and displayed as an image on a display 8, for example, to detect the target.

ところで、いま送信レーザ光10のビーム広が
り角θt、受信瞬時視野をθrとするとS/Nの点か
らθtはθrとほぼ等しくなるように設定されてい
る。
Incidentally, if the beam spread angle θt of the transmitting laser beam 10 and the instantaneous receiving field of view are θr, then θt is set to be approximately equal to θr from the point of view of S/N.

一方受信瞬時視野に相当する1画素当りのドウ
エルタイムをτd、送信レーザ光が目標で反射され
て再び受信される迄のトランジツトタイムをτt
すると、上記反射光が検出器5で検知されるため
には、τtτdなる制約がある。
On the other hand, if the dwell time per pixel corresponding to the receiving instantaneous field of view is τ d and the transit time from when the transmitted laser beam is reflected by the target to when it is received again is τ t , then the reflected light is detected by the detector 5. In order for this to happen, there is a constraint τ t τ d .

τd,τtはそれぞれ1フレームの画素数N、フレ
ームフレートF、目標迄の距離R1とそれぞれ次
の関係を有する。
τ d and τ t have the following relationships with the number of pixels N in one frame, the frame rate F, and the distance R 1 to the target, respectively.

τt=2R1/C ……(2) ただしCは光速である。したがつて第(1)、(2)式
と上記の制約から次の条件が求まる。
τ t =2R 1 /C ...(2) where C is the speed of light. Therefore, the following conditions can be found from equations (1) and (2) and the above constraints.

上式から明かなように送信レーザ光10の送信
方向と受信瞬時視野の方向が同一に設定されてい
る従来の走査形レーザレーダでは、目標で反射さ
れたレーザ光を受信するには、方位、高低方向の
走査を行うX−Yスキヤナ3の駆動速度とレーザ
受信側視野から決まるドウエルタイムτaに比較し
てレーザ光が出射されてから反射光が受信される
迄のトランジツトタイムτtが充分小さい必要があ
る。従つてX−Yスキヤナ3の駆動速度を大きく
してデータレートをあげたり、1フレームの画素
数を多くして走査視野を広くしたり、角度分解能
を良くすると目標の最大検知距離R1が短かくな
り、この最大検知距離R1で決まる範囲内の目標
しか検知できないという欠点があつた。
As is clear from the above equation, in the conventional scanning laser radar in which the transmission direction of the transmission laser beam 10 and the direction of the reception instantaneous field of view are set to be the same, in order to receive the laser beam reflected by the target, the direction, Compared to the dwell time τ a determined from the driving speed of the X-Y scanner 3 that scans in the vertical direction and the field of view on the laser receiving side, the transit time τ t from when the laser beam is emitted until the reflected light is received is It needs to be small enough. Therefore, if you increase the drive speed of the X-Y scanner 3 to increase the data rate, increase the number of pixels in one frame to widen the scanning field of view, or improve the angular resolution, the maximum target detection distance R 1 will be shortened. This resulted in a drawback that only targets within the range determined by this maximum detection distance R1 could be detected.

そこでこの発明はこの欠点を解決するため、反
射光の検出器として複数の検知素子を配列した多
素子アレーを用い、あるひとつの反射光検知方向
に対し、この複数の検知素子を順次に対応させる
ことにより、各検知素子に同一方向からの異なる
時間帯に入射してくる反射光をそれぞれ検知させ
るようにしたもので、以下図面によつて詳細に説
明する。
Therefore, in order to solve this drawback, this invention uses a multi-element array in which a plurality of detection elements are arranged as a detector for reflected light, and sequentially corresponds the plurality of detection elements to a certain reflected light detection direction. This allows each detection element to detect reflected light incident from the same direction at different time periods, and will be described in detail below with reference to the drawings.

第2図はこの発明の一実施例で、11は偏向
器、12は遅延器、13は加算器である。検出器
5は複数の検出素子からなる多素子アレーからな
る。またX−Yスキヤナ3は送信レーザ発生器1
からの送信レーザ光を視野内で走査する送信光走
査手段と、目標からの反射光を検知するあるひと
つの方向に対する検知素子として上記検出器5の
複数の検知素子を順次に対応させる受信路走査手
段とを兼ねている。
FIG. 2 shows an embodiment of the present invention, in which 11 is a deflector, 12 is a delay device, and 13 is an adder. The detector 5 consists of a multi-element array consisting of a plurality of detection elements. In addition, the X-Y scanner 3 is a transmitting laser generator 1
A transmitting light scanning means for scanning the transmitted laser light within the field of view, and a receiving path scanning system that sequentially corresponds to a plurality of detecting elements of the detector 5 as detecting elements for a certain direction for detecting the reflected light from the target. It also serves as a means.

第3図は第2図の動作を説明するための図で、
14は走査視野、A1,A2……Aoは検出器5の多
素子アレーの各素子に対応する受信瞬時視野、B
はレーザ送信方向を示したものである。
Figure 3 is a diagram for explaining the operation of Figure 2.
14 is the scanning field of view, A 1 , A 2 ... A o is the receiving instantaneous field of view corresponding to each element of the multi-element array of the detector 5, B
indicates the laser transmission direction.

いま多素子アレーは走査方向Xに沿つた線状の
アレーとし、レーザ送信方向Bは偏向器11によ
つて受信瞬時視野A1に対して、第3図に示すよ
うに走査方向Xに沿つて角度θ0オフセツトしてい
るものとする。レーザ光の走査を行うX−Yスキ
ヤナ3が送信光および受信光に共用されているの
で、A1〜Aoの受信瞬時視野とBのレーザ送信方
向との位置関係は常に固定的である。
The multi-element array is now a linear array along the scanning direction X, and the laser transmission direction B is directed along the scanning direction Assume that the angle θ 0 is offset. Since the X-Y scanner 3 that scans the laser beam is used for both the transmitted light and the received light, the positional relationship between the instantaneous receiving fields of view A 1 to A o and the laser transmission direction of B is always fixed.

レーザ送信方向BがX−Yスキヤナ3によりX
方向に走査されると、同時に受信瞬時視野A1
AoもX方向に走査される。ここで、ある時刻に
レーザ送信方向Bにレーザ光が送信されると、こ
れが目標により反射されてトランジツトタイムτt
後に望遠鏡4に入射する。このトランジツトタイ
ムτtの間にX−Yスキヤナ3により受信瞬時視野
A1〜AoがX方向に走査されるので、この反射光
はトランジツトタイムτtに対応した角度だけレー
ザ送信方向Bからずれた受信瞬時視野、例えば受
信瞬時視野A1に対応した検知素子にて検知され
る。また、目標が同一方向でもう少し遠方に位置
していたとすると、ある時刻に送信されたレーザ
光の反射光はもう少し遅れて例えば受信瞬時視野
A2に対応する検知素子にて検知される。従つて、
このようにある一つの方向から反射光を監視する
検知素子として多素子アレーの複数の検知素子
を、順次走査してそれぞれ時間的にずらして対応
させるようにすれば、これらの各検知素子がある
一つの方向からの反射光を検知する時間帯は互い
に異なり、この時間帯の違いは目標までの距離に
相関することから、各検知素子は異なる距離範囲
を担当することになる。よつて受信瞬時視野A1
〜Aoに対応したいずれかの検出素子の出力に基
づき目標を検知するようにすれば、一方向に対し
てひとつの検知素子が対応する場合に比べて広い
距離範囲の目標を検知できることになる。具体的
には走査角速度はθr/τdで与えられるから、送信
レーザ光10のトランジツトタイムとの関係で受
信瞬時視野Ai(i=1,2…n)に対応する検知
素子からは、次に示す距離範囲R1i〜R2i(i=1,
2…n)にある目標からの反射光に対する信号出
力がなされる。
Laser transmission direction B is set to X by X-Y scanner 3.
When scanned in the direction, at the same time the received instantaneous field of view A 1 ~
A o is also scanned in the X direction. Here, when a laser beam is transmitted in the laser transmission direction B at a certain time, it is reflected by the target and the transit time τ t
Later, it enters telescope 4. During this transition time τ t , the instantaneous field of view received by the X-Y scanner 3 is
Since A 1 to A o are scanned in the X direction, this reflected light is detected by the detection element corresponding to the instantaneous receiving field of view A 1 that is shifted from the laser transmission direction B by an angle corresponding to the transit time τ t. Detected at Also, if the target is located in the same direction but a little further away, the reflected light of the laser beam transmitted at a certain time will be reflected a little later and, for example, the instantaneous field of view
Detected by the detection element corresponding to A 2 . Therefore,
In this way, if multiple sensing elements of a multi-element array are sequentially scanned as sensing elements that monitor reflected light from one direction and are made to correspond to each other with a temporal shift, each of these sensing elements The time periods for detecting reflected light from one direction are different from each other, and the difference in time period correlates with the distance to the target, so each detection element is responsible for a different distance range. Therefore, instantaneous field of view A 1
~A If the target is detected based on the output of one of the detection elements corresponding to o , the target can be detected over a wider distance range than when one detection element corresponds to one direction. . Specifically, since the scanning angular velocity is given by θ rd , in relation to the transit time of the transmitting laser beam 10, the detection element corresponding to the receiving instantaneous visual field A i (i=1, 2...n) , the following distance range R 1i to R 2i (i=1,
2...n), a signal is output for the reflected light from the target.

R1i={θ0i/θr+1/2(1+θt/θr)}Cτd
2……(4) ただし θ0i=θ0+(i−1)×(θr+△θr) ……(6) θt>△θrとすれば各検出素子の出力がカバーす
る距離範囲R11〜R21,R12〜R22…R1o〜R2oは互
にオーバラツプする。したがつてこの各検出素子
の出力を用いれば広い範囲の目標検知が行える。
例えば各検出素子の出力を各々増幅器6A1,6A2
…6Aoによつて増幅した後、各検出素子間の走査
時間の差に応じて遅延器12A1,12A2…12Ao-
によつて各出力を遅延させ、加算器13によつ
て合成すれば、加算器13の出力として結局距離
範囲R1o〜R21にある目標からの反射信号の信号
出力が得られる。この出力を信号処理器7で処理
することによつて目標の検知を行ない、例えば表
示器8上にその結果が表示される。
R 1i = {θ 0ir +1/2 (1+θ tr )}Cτ d /
2...(4) However, θ 0i = θ 0 + (i-1) × (θ r + △θ r ) ...(6) If θ t > △θ r , the distance range covered by the output of each detection element is R 11 to R 21 , R 12 to R 22 . . . R 1o to R 2o overlap each other. Therefore, targets can be detected over a wide range by using the outputs of these detection elements.
For example, the output of each detection element is connected to an amplifier 6 A1 , 6 A2, respectively.
...6 After amplification by Ao , delay devices 12 A1 , 12 A2 ...12 Ao-
When each output is delayed by 1 and combined by an adder 13, the output of the adder 13 is the signal output of the reflected signal from the target in the distance range R1o to R21 . The target is detected by processing this output in the signal processor 7, and the result is displayed on the display 8, for example.

このように多素子検出器を用いれば単一素子の
検出器を用いた場合に比べてレンジゲートの幅が
素子数に比例して大きくなり、広い距離範囲の目
標検知が可能となる。またレンジゲートの幅を一
定とすれば画素数NやフレームレートFを大きく
とることができる利点がある。
In this way, when a multi-element detector is used, the width of the range gate becomes larger in proportion to the number of elements than when a single-element detector is used, making it possible to detect targets over a wide distance range. Furthermore, if the width of the range gate is kept constant, there is an advantage that the number of pixels N and the frame rate F can be increased.

なお、以上はn個の検出素子からの出力を全て
遅延、合成する方法を示したが、例えば1,2…
k及びk,k+1,…nの各出力を2つに分け合
成し、それぞれの合成出力をカラーデイスプレイ
等で色分け表示すれば目標が如何なる距離範囲に
存在するか容易に弁別できる利点もある。
In addition, although the method for delaying and combining all the outputs from n detection elements has been described above, for example, 1, 2...
There is also the advantage that if each output of k and k, k+1, . . .

またこの発明の他の実施例として各検出素子の
出力を、信号処理器7によつて順次切換えて例え
ば表示器8上に表示することによつても目標の検
知が可能で、この方法によつて目標の距離弁別が
細かく可能となる上、送、受信方向のオフセツト
角θ0を可変にすればさらに広い距離範囲の目標検
知が行なえる。
Further, as another embodiment of the present invention, the target can also be detected by sequentially switching the output of each detection element by the signal processor 7 and displaying it on the display 8, for example. This makes it possible to finely discriminate the distance of a target, and by making the offset angle θ 0 in the transmission and reception directions variable, it is possible to detect targets over a wider distance range.

以上は送、受信光学系が共通の場合について述
べたが、送、受信光学系にそれぞれX−Yスキヤ
ナと望遠鏡を設け、X−Yスキヤナを同期して走
査するようにした場合についてもこの発明は適用
できる。さらに受信光の検出には直接検波方式の
場合について述べたが、ヘテロダイン検波方式の
場合についても、この発明は同様に適用できるこ
とは言うまでもない。
The above description deals with the case where the transmitting and receiving optical systems are common, but the present invention also applies to the case where the transmitting and receiving optical systems are each provided with an X-Y scanner and a telescope, and the X-Y scanners scan in synchronization. is applicable. Further, although the case where the direct detection method is used for detecting the received light has been described, it goes without saying that the present invention is similarly applicable to the case where the heterodyne detection method is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレーザレーダを示す図、第2図
はこの発明の一実施例を示す図、第3図はこの発
明による視野の走査を示す図である。 図中、1は送信レーザ発生器、2はビームスプ
リツタ、3はX−Yスキヤナ、4は望遠鏡、5は
検出器、6は増幅器、7は信号処理器、8は表示
器、9は送、受信光学系、10は送信レーザ光、
11は偏向器、12は遅延器、13は加算器、1
4は走査視野、Aは受信瞬時視野、Bはレーザ送
信方向である。なお、図中、同一あるいは相当部
分には同一符号を付して示してある。
FIG. 1 is a diagram showing a conventional laser radar, FIG. 2 is a diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing scanning of a field of view according to the present invention. In the figure, 1 is a transmitting laser generator, 2 is a beam splitter, 3 is an X-Y scanner, 4 is a telescope, 5 is a detector, 6 is an amplifier, 7 is a signal processor, 8 is a display, and 9 is a transmitter. , a receiving optical system, 10 a transmitting laser beam,
11 is a deflector, 12 is a delay device, 13 is an adder, 1
4 is the scanning field of view, A is the receiving instantaneous field of view, and B is the laser transmission direction. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

Claims (1)

【特許請求の範囲】 1 送信レーザ発生器と、この送信レーザ発生器
から発されたビーム状の送信レーザ光をラスタ状
に走査する送信光走査手段と、目標により反射さ
れた上記送信レーザ光の反射光を検知する複数の
検知素子からなる多素子アレーと、単一の反射光
検知方向に対して上記複数の検知素子を順次に対
応させる受信路走査手段とを備え、上記多素子ア
レーの各検知素子の出力信号に基づき目標を検知
することを特徴とするレーザレーダ。 2 各検知素子間の走査時刻差に応じて各検知素
子出力を遅延させた後合成した信号により視野内
の目標を検知することを特徴とする特許請求の範
囲第1項記載のレーザレーダ。 3 各検出素子の出力を選択的に切換えて得た信
号により目標を検知することを特徴とする特許請
求の範囲第1項記載のレーザレーダ。
[Claims] 1. A transmitting laser generator, a transmitting light scanning means for raster-scanning a beam of transmitted laser light emitted from the transmitting laser generator, and a transmitting laser beam that is reflected by a target. A multi-element array consisting of a plurality of detection elements for detecting reflected light, and a receiving path scanning means for sequentially corresponding the plurality of detection elements with respect to a single reflected light detection direction, each of the multi-element array A laser radar that detects a target based on an output signal of a detection element. 2. The laser radar according to claim 1, wherein a target within the field of view is detected by a signal synthesized after delaying the output of each detection element according to a scanning time difference between each detection element. 3. The laser radar according to claim 1, wherein the target is detected by a signal obtained by selectively switching the output of each detection element.
JP56195048A 1981-12-03 1981-12-03 Laser radar Granted JPS5896267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195048A JPS5896267A (en) 1981-12-03 1981-12-03 Laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195048A JPS5896267A (en) 1981-12-03 1981-12-03 Laser radar

Publications (2)

Publication Number Publication Date
JPS5896267A JPS5896267A (en) 1983-06-08
JPH0123071B2 true JPH0123071B2 (en) 1989-04-28

Family

ID=16334672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195048A Granted JPS5896267A (en) 1981-12-03 1981-12-03 Laser radar

Country Status (1)

Country Link
JP (1) JPS5896267A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA853615B (en) * 1984-05-31 1986-02-26 Ici Plc Vehicle guidance means
JPS6123985A (en) * 1984-07-13 1986-02-01 Nissan Motor Co Ltd Detecting device for distance between vehicles
JP2007316016A (en) * 2006-05-29 2007-12-06 Mitsubishi Electric Corp Radar device
JP6344845B2 (en) * 2014-04-14 2018-06-20 リコーインダストリアルソリューションズ株式会社 Laser distance measuring device
JP2018071988A (en) * 2016-10-24 2018-05-10 パイオニア株式会社 Sensor device, sensing method, program and storage medium
JP2018071989A (en) * 2016-10-24 2018-05-10 パイオニア株式会社 Sensor device, sensing method, program and storage medium
JP7314661B2 (en) * 2019-07-05 2023-07-26 株式会社リコー Optical scanning device, object detection device and sensing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145354A (en) * 1975-06-09 1976-12-14 Toshiba Corp Moving substance supervisor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145354A (en) * 1975-06-09 1976-12-14 Toshiba Corp Moving substance supervisor

Also Published As

Publication number Publication date
JPS5896267A (en) 1983-06-08

Similar Documents

Publication Publication Date Title
US5485009A (en) Laser imaging system with a linear detector array
EP3268771B1 (en) Coherent ladar using intra-pixel quadrature detection
EP2568314B1 (en) Laser radar device
US5134409A (en) Surveillance sensor which is provided with at least one surveillance radar antenna rotatable about at least one first axis of rotation
US5682229A (en) Laser range camera
US6879384B2 (en) Process and apparatus for measuring an object space
CN111727381A (en) Multi-pulse lidar system for multi-dimensional sensing of objects
JP2007316016A (en) Radar device
US11054524B2 (en) Optimizing a lidar system using sub-sweep sampling
US20190011539A1 (en) Light Projecting/Reception Unit And Radar
JPS6320546B2 (en)
JPS60257309A (en) Noncontacting distance measuring device
US5249577A (en) Ultrasonotomography
EP0023131B1 (en) Optical scanning devices
JPH0123071B2 (en)
US5629516A (en) Optical scanning apparatus with the rotation of array into two directions
JPH07120548A (en) Radar device
US4008371A (en) Imaging systems
US4958077A (en) Method and apparatus for displaying moving objects
US11573324B2 (en) Lidar imaging receiver
JPH04351988A (en) Laser radar
JPS6154187B2 (en)
JP2000002521A (en) Three dimensional input device
US20240183947A1 (en) Techniques for providing a variety of lidar scan patterns
US3644666A (en) Optical range discriminator for laser tv camera