JPH01230481A - Production of sintered aluminum nitride - Google Patents

Production of sintered aluminum nitride

Info

Publication number
JPH01230481A
JPH01230481A JP63056355A JP5635588A JPH01230481A JP H01230481 A JPH01230481 A JP H01230481A JP 63056355 A JP63056355 A JP 63056355A JP 5635588 A JP5635588 A JP 5635588A JP H01230481 A JPH01230481 A JP H01230481A
Authority
JP
Japan
Prior art keywords
aluminum nitride
carbon
thermal conductivity
powder
sintering assistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63056355A
Other languages
Japanese (ja)
Other versions
JP2661113B2 (en
Inventor
Kazunari Watanabe
一成 渡辺
Katsumasa Nakahara
勝正 中原
Naoshi Irisawa
直志 入沢
Mitsuo Takahata
高畠 満夫
Mikio Sasaki
幹夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63056355A priority Critical patent/JP2661113B2/en
Publication of JPH01230481A publication Critical patent/JPH01230481A/en
Application granted granted Critical
Publication of JP2661113B2 publication Critical patent/JP2661113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Abstract

PURPOSE:To stably obtain a sintered aluminum nitride having high thermal conductivity, by forming an article from aluminum nitride powder mixed with a sintering assistant and calcining the article together with a carbon source in a capsule having non-carbonaceous inner face in a non-oxidizing atmosphere. CONSTITUTION:A mixture of aluminum nitride and a sintering assistant is formed and the obtained formed aluminum nitride is put together with a carbon source into a capsule having a non-carbonaceous face at least on the inner face and calcined in a non-oxidizing atmosphere to obtain the objective sintered material. The aluminum nitride powder used in the present process preferably has high purity, e.g., >=98%. Powder having particle diameter of >10mum undesirably decreases the sinterability. The sintering assistant to be added to the aluminum nitride powder is effective in giving a dense sintered material and is preferably Y2O3, CaO, etc. Too much sintering assistant undesirably increases the crystal phase other than aluminum nitride and lowers the thermal conductivity. The preferable amount of the sintering assistant is <=10wt.%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化アルミニウム焼結体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing an aluminum nitride sintered body.

(従来の技術) 近年、半導体素子の高集積化、高機能化が進み従来のA
l2O3ではSiチ・シブの発熱量の増大、チップサイ
ズの大型化による熱膨張のミスマツチの問題への対応が
難かしく、新しい高熱伝導性絶縁材料が求められている
(Conventional technology) In recent years, semiconductor devices have become highly integrated and highly functional.
With l2O3, it is difficult to deal with the problems of increased heat generation of Si chips and thermal expansion mismatch due to larger chip sizes, and new high thermal conductivity insulating materials are required.

窒化アルミニウム(AIN)は高熱伝導性の他に、熱膨
張率がSiチップに近く、又高電気絶縁性などの優れた
材料特性を有する為、半導体装用基板材料として特に注
下を集めている。
Aluminum nitride (AIN) has excellent material properties such as high thermal conductivity, a coefficient of thermal expansion close to that of Si chips, and high electrical insulation properties, so it is attracting attention as a substrate material for semiconductor devices.

AINは難焼結性物質であるため緻密な焼結体を得るこ
とが困難である。また原料中には不純物酸素を通常1〜
3wt%程度含有しており、焼結助剤なしでホットプレ
ス等で緻密に焼結させてもAIN粒子のまわりにAl−
0−Nなどの酸素固溶層が形成され、熱伝導率が著しく
低下することが知られている。
Since AIN is a difficult-to-sinter substance, it is difficult to obtain a dense sintered body. In addition, the impurity oxygen in the raw material is usually 1~
It contains about 3wt%, and even if it is densely sintered with hot press etc. without a sintering aid, Al-
It is known that an oxygen solid solution layer such as 0-N is formed and the thermal conductivity is significantly reduced.

従来より、AINの緻電化、高熱伝導化をはかるため、
種々の焼結助剤か検討されてきたが、これらの中でY2
03 、 GaOなとの醇化物が4+jに有効であるこ
とがわかってきた。(Proc、1st IEEECH
MT Syms、、+5(+984))例えばY2O3
添加による高熱伝導化の機構についてはY2O3か不純
物酸素と反応し、AIN粒界の三重点にYAGなとの化
合物を形成し、酸素をトランプするためと考えられてい
る。このようにY2O3添加により高熱伝導化は、はか
られるが、熱伝導率は約100W/mk程度と理論値の
320W/mkに比較して充分高いとはいいがたい。そ
の他、多数の焼結助剤が提案されているが、本発明のカ
ーボン添加に関連した従来技術についてもいくつか報告
されている。
Conventionally, in order to make AIN denser and more thermally conductive,
Various sintering aids have been studied, but among these, Y2
03, It has been found that infusions with GaO are effective for 4+j. (Proc, 1st IEEECH
MT Syms, +5 (+984)) e.g. Y2O3
The mechanism of high thermal conductivity due to addition is thought to be that Y2O3 reacts with impurity oxygen, forms a compound such as YAG at the triple point of the AIN grain boundary, and trumps the oxygen. As described above, high thermal conductivity can be achieved by adding Y2O3, but the thermal conductivity is about 100 W/mk, which is not sufficiently high compared to the theoretical value of 320 W/mk. Many other sintering aids have been proposed, and some prior art related to the addition of carbon in the present invention has also been reported.

カーボンを成形体中に添加する方法については、特開昭
6O−18F1479号公報、特開昭81−15526
3号公報に記載されている。前者ではAIN粉末に炭素
又は分解して炭素になる化合物を、後者ではAIN粉末
に遊#炭素、酸化イツトリウムを添加し成形、焼成を経
て、熱伝導率がそれぞれ50W/mk 、 150W/
mk程度のAIN焼結体をえている。
Regarding the method of adding carbon into a molded body, JP-A No. 6O-18F1479 and JP-A No. 81-15526
It is described in Publication No. 3. In the former, carbon or a compound that decomposes into carbon is added to the AIN powder, and in the latter, free carbon and yttrium oxide are added to the AIN powder, and through molding and firing, the thermal conductivity is 50 W/mk and 150 W/mk, respectively.
An AIN sintered body of about mk is obtained.

更に特開昭81−270263号公報ではAIN粉末に
Tiなどの元素又は化合物を添加し、硼素及び/又は炭
素の供給源を有する非酸化性雰囲気中で焼成することに
より、約90W/mkの熱伝導率を有する焼結体を得て
いる。以上のようにカーボン添加に関連した系でいくつ
か報告されているが、いずれも熱伝導率は150W/m
k程度で不十分であり、更に熱伝導率の高い窒化アルミ
ニウム焼結体が求められていた。
Furthermore, in JP-A No. 81-270263, an element or compound such as Ti is added to AIN powder, and by firing in a non-oxidizing atmosphere with a boron and/or carbon source, a heat of about 90 W/mk is produced. A sintered body with conductivity has been obtained. As mentioned above, several systems related to carbon addition have been reported, but all have thermal conductivity of 150 W/m.
A sintered aluminum nitride body having even higher thermal conductivity was required.

[発明の解決しようとする問題点] 本発明はカーボン添加に関連した従来技術が有していた
前述の欠点を解消しようとするものであり、熱伝導率が
200W/mk程度の高熱伝導性窒化アルミニウム焼結
体を安定的に供給する製造方法を提供することを目的と
するものである。
[Problems to be Solved by the Invention] The present invention attempts to solve the above-mentioned drawbacks of the conventional technology related to carbon addition, and uses a highly thermally conductive nitrided material with a thermal conductivity of about 200 W/mk. The object of the present invention is to provide a manufacturing method that stably supplies aluminum sintered bodies.

[問題点を解決するだめの手段] 本発明は前述の問題点を解決すべくなされたものであり
、窒化アルミニウム粉末と焼結助剤・を混合して成形し
た後、この窒化アルミニウムの成形体とカーボン供fI
@源を少なくとも内面が非カーボン質のサヤの中に入れ
、非酸化性雰囲気中で焼成することを特徴とする窒化ア
ルミニウム焼結体の製造方法を提供するものである。
[Means for solving the problem] The present invention was made to solve the above-mentioned problem, and after mixing aluminum nitride powder and a sintering aid and molding, the aluminum nitride molded body is and carbon supply fI
The present invention provides a method for producing an aluminum nitride sintered body, characterized in that a source is placed in a pod whose inner surface is at least non-carbonaceous and fired in a non-oxidizing atmosphere.

(構成の詳細説明) 以下、本発明について詳細に説明する。(Detailed explanation of the configuration) The present invention will be explained in detail below.

まず、窒化アルミニウムの粉末は高純度のもの、例えば
98%以上のものが好ましいが、95〜98%程度のも
のも使用可能である。粒径は10μm以下、好ましくは
2μm以下のものか良い。粒径か10gmをこえると焼
結性か低下し好ましくない。
First, aluminum nitride powder is preferably of high purity, for example, 98% or higher, but powder of about 95 to 98% can also be used. The particle size may be 10 μm or less, preferably 2 μm or less. If the particle size exceeds 10 gm, the sinterability will deteriorate, which is not preferable.

かかる窒化アルミニウムの粉末に添加される焼結助剤は
緻密な焼結体を得るものて、Y、03゜CaOなどか好
ましいか、緻密化を促進するものてあれば、これに限定
されるものではない。−方、焼結助剤の添加量か多過ぎ
ると窒化アルミニウム以外の結晶相か増加し、熱伝導率
か低下するものて好ましくない。従って、好ましい焼結
助剤の添加量は10wt%以下、特に好ましくは5wt
%以下である。
The sintering aid added to the aluminum nitride powder is preferably one that produces a dense sintered body, and is preferably Y, 03°CaO, or is limited to any agent that promotes densification. isn't it. On the other hand, if the amount of the sintering aid added is too large, crystal phases other than aluminum nitride will increase and the thermal conductivity will decrease, which is not preferable. Therefore, the amount of the sintering aid added is preferably 10 wt% or less, particularly preferably 5 wt%.
% or less.

また、焼結助剤の粒径は細かい方が好ましく、特に1戸
11以下か望ましい。かかる窒化アルミニウム粉末と焼
結助剤を所定の割合て混合後、ドクターブレード法又は
プレス法により所定形状に成形し、A1と耐素の反応に
より熱伝導率か低下するのを防ぐためにこれを窒素など
の非酸化性雰囲気中て焼成する。この際成形体は少なく
とも内面か非カーボン質のサヤに収められるか、サヤの
材質としては、常圧て窒化アルミニウム焼成温度より融
点、又は昇華分解温度の高い例えば窒化アルミニウム、
窒化ホウ素、炭化ケイ素などが望ましい。特に窒化アル
ミニウム、窒化ホウ素製のサヤは窒化アルミニウム焼結
体の焼結性、熱伝導性の向上を阻害せずより望ましい。
Further, the particle size of the sintering aid is preferably fine, and particularly preferably 11 or less per unit. After mixing the aluminum nitride powder and the sintering aid in a predetermined ratio, it is formed into a predetermined shape by a doctor blade method or a press method, and then nitrogen gas is added to prevent the thermal conductivity from decreasing due to the reaction between A1 and the element. Calcinate in a non-oxidizing atmosphere such as In this case, the molded body is housed in a non-carbon sheath at least on the inner surface, or the material of the sheath is aluminum nitride, which has a melting point or sublimation decomposition temperature higher than the firing temperature of aluminum nitride at normal pressure.
Boron nitride, silicon carbide, etc. are preferable. In particular, sheaths made of aluminum nitride or boron nitride are more desirable because they do not impair the improvement of the sinterability and thermal conductivity of the aluminum nitride sintered body.

又サヤとして安価で軽く、加工性に優れたカーボンを使
用する場合は、少なくともサヤの内面を上記の窒化アル
ミニウム、窒化ホウ素などの材質でコーティングするこ
とにより、焼成時でのカーボンの遊離を押える効果をも
たせることが望ましい。
In addition, when using cheap, lightweight, and easily workable carbon as the pod, coating at least the inner surface of the pod with the above-mentioned materials such as aluminum nitride or boron nitride is effective in suppressing the release of carbon during firing. It is desirable to have

更に、上記サヤ内には同時にカーボンの供給源としてカ
ーボン粉末、カーボンセラミックス、容易にカーボンに
転換しうる炭素化合物(例えば、バインダーに使用され
る炭素化合物)のうち少なくとも1つを入れる。これら
カーボン供給源にはAIN焼結体の物性を左右する適量
か存在し、供給量か不足の場合は熱伝導率は100〜1
20W/mk程度と低く、供給過剰になると熱伝導率は
200W/mk程度まて向上するか絶縁抵抗は109〜
1010Ωcmまて劣化し、いずれも好ましくない。
Further, at the same time, at least one of carbon powder, carbon ceramics, and a carbon compound that can be easily converted into carbon (for example, a carbon compound used in a binder) is placed in the pod as a carbon supply source. These carbon sources exist in appropriate amounts that influence the physical properties of the AIN sintered body, and if the supply is insufficient, the thermal conductivity will be 100 to 1.
The thermal conductivity is low at around 20W/mk, and if there is an oversupply, the thermal conductivity increases to around 200W/mk or the insulation resistance is 109~
It deteriorated by 1010 Ωcm, which is not preferable.

カーボン供給源か適量の場合、熱伝導率は200W/m
kをこえ、絶縁抵抗1014Ωcm以上と良好な特性を
示す。このようにカーボン供給源の適量添加か重要てあ
り、例えば焼成時に使用するカーボンサヤ、発熱体など
の炭素をその供給源とした場合、サヤ、発熱体の形状、
表面状態、使用状態位置などによりカーボン供給量か著
しく変動し、良好な特性を有するAIM焼結体を安定的
に確保することか困難である。そのため本発明てはカー
ボンの適量添加をはかるため、前述のようにサヤの少な
くとも内面を非カーボン質として、サヤ、発熱体からの
カーボンの侵入を防止した上て、サヤ内に適量のカーボ
ン供給源を入れる方法を採用した。
In case of carbon source or proper amount, thermal conductivity is 200W/m
It exhibits good characteristics with an insulation resistance of 1014 Ωcm or more. In this way, it is important to add an appropriate amount of carbon source.For example, when carbon is used as a source of carbon such as a carbon pod or heating element used during firing, the shape of the pod or heating element,
The amount of carbon supplied varies significantly depending on the surface condition, position of use, etc., and it is difficult to stably secure an AIM sintered body with good characteristics. Therefore, in the present invention, in order to add an appropriate amount of carbon, at least the inner surface of the pod is made non-carbonaceous to prevent carbon from entering from the pod and the heating element, and an appropriate amount of carbon is added within the pod. We adopted the method of adding .

組成中にすてにカーボンを添加する方式についても実験
を行なったか、熱伝導率は150W/mk程度までしか
上からなかった。
An experiment was also conducted on a method in which carbon was already added to the composition, and the thermal conductivity increased only to about 150 W/mk.

[作用] 本発明てはサヤ内にカーボン供給源を適量添加すること
により熱伝導率か著しく向上することを見い出した。こ
の高熱伝導化のメカニズムについてはまた明らかてはな
いか、サヤに入れる窒化アルミニウム成形体の重量とと
もに最適なカーボン量も増加する傾向にあることや、−
般にAINの高熱伝導化に不純物酸素か密接に関連して
いることから、成形体中に含まれる不純物酸素かサヤ内
にカーボンを適量入れることにより、焼結過程で結果的
に粒界の三重点などにトラップされるか又は系外に除去
されるために高熱伝導化か達成されたものと考えられる
[Function] In the present invention, it has been discovered that the thermal conductivity can be significantly improved by adding an appropriate amount of a carbon supply source into the pod. The mechanism behind this high thermal conductivity is not yet clear, and it is known that the optimal amount of carbon tends to increase with the weight of the aluminum nitride molded body placed in the pod.
In general, impurity oxygen is closely related to high thermal conductivity of AIN, so by adding an appropriate amount of carbon to the impurity oxygen contained in the molded body or the shard, three grain boundaries can be improved during the sintering process. It is thought that high thermal conductivity was achieved because it was trapped in a focal point or removed from the system.

したかって、最適なカーホン量は窒化アルミニウム成形
体の重量たけてなく、窒化アルミニウム原料に含まれる
不純物酸素量、焼成助剤の種類とその量、工程中に混入
する不純物、パインターなどの成形助剤の種類とその量
、焼成温度などに依存することか考えられる。
Therefore, the optimal amount of carphone depends on the weight of the aluminum nitride molded body, the amount of impurity oxygen contained in the aluminum nitride raw material, the type and amount of firing aid, impurities mixed in during the process, and shaping aids such as painter. It is conceivable that this depends on the type and amount of carbon dioxide, the firing temperature, etc.

[実施例1] 平均粒径か2gmの窒化アルミニウム粉末にY20:l
粉末を2.5wt%添加し、アルコール中で湿式混合し
た。次いて乾燥後2tノCl112の圧力て70x 7
0X 3 mmの形状に成形した。この成形体を1個、
窒化アルミニウムのサヤ(内寸法100 X 100 
X 20mm)の中に収容し、そのまわりにカーボンブ
ラック粉末を敷き、サヤにフタをした状態で窒素雰囲気
下1850°Cで5時間保持して窒化アルミニウム焼結
体を得た。この窒化アルミニウム焼結体について相対密
度、熱伝導率、絶縁抵抗を測定した。第1表にカーボン
ブラック粉末の添加量及び測定結果を示す。試料NOI
、2はカーボン捺加量が少なく熱伝導率は150W#n
k以下と低かったのに対し試料No5,6てはカーボン
か過剰添加となっており、絶縁抵抗の劣化かみられた。
[Example 1] Y20:l was added to aluminum nitride powder with an average particle size of 2 gm.
2.5 wt% of powder was added and wet mixed in alcohol. Then, after drying, the pressure of 2 tons of Cl112 was 70x7.
It was molded into a shape of 0x3 mm. One of this molded body,
Aluminum nitride pod (inner dimensions 100 x 100
The aluminum nitride sintered body was obtained by placing carbon black powder around the pod and holding it at 1850° C. for 5 hours in a nitrogen atmosphere with the pod covered. The relative density, thermal conductivity, and insulation resistance of this aluminum nitride sintered body were measured. Table 1 shows the amount of carbon black powder added and the measurement results. Sample NOI
, 2 has a small amount of carbon printing and a thermal conductivity of 150W#n
On the other hand, samples Nos. 5 and 6 had an excessive amount of carbon added, and deterioration of insulation resistance was observed.

一方試料3,4ては熱伝導率は200W/mk前後にな
り、絶縁抵抗も1014Ω・cm以上と良好な結果か得
られた。
On the other hand, in Samples 3 and 4, the thermal conductivity was around 200 W/mk, and the insulation resistance was also 10 14 Ω·cm or more, giving good results.

[実施例2コ Y2O3粉末のかわりにCaOを1.5wt%添加した
他は実施例1と同様な方法て焼成し、窒化アルミニウム
焼結体を得た。第2表にカーボンブラック粉末の添加量
及び測定結果を示す。Y2O3を添加した系と同様の傾
向を示し、カーボンブラック粉末の適量添加となってい
るNo9,10ては熱伝導率、絶縁抵抗ともに良好な特
性を有していた。
[Example 2] An aluminum nitride sintered body was obtained by firing in the same manner as in Example 1 except that 1.5 wt% of CaO was added instead of Y2O3 powder. Table 2 shows the amount of carbon black powder added and the measurement results. It showed the same tendency as the system to which Y2O3 was added, and Nos. 9 and 10, in which an appropriate amount of carbon black powder was added, had good characteristics in both thermal conductivity and insulation resistance.

[実施例3] 実施例1において窒化アルミニウムのサヤのかわりに内
面を窒化ホウ素てコーチインクしたカーボンサヤ(内寸
法圓Ox 100 x 20mm)を用いた以外は同様
な方法て実験を行なった。力−ボンフラック粉末の添加
量及び測定結果は下記のとおりてあった。
[Example 3] An experiment was carried out in the same manner as in Example 1, except that instead of the aluminum nitride sheath, a carbon sheath (inner dimensions Ox 100 x 20 mm) whose inner surface was coated with boron nitride was used. The amount of added Bonfrac powder and the measurement results are as follows.

カーボンブラック添加量:   0.4’g相対密度:
        ’  99.2%熱伝導率:    
     230W/mk絶縁抵抗:        
 7 X 10”Ωcmこのように内面を窒化ホウ素で
コープインクしたカーボンサヤを用いても良好な特性か
得られた。
Carbon black addition amount: 0.4'g Relative density:
'99.2% thermal conductivity:
230W/mk insulation resistance:
7.times.10" .OMEGA.cm Good characteristics were obtained even by using a carbon sheath whose inner surface was coated with boron nitride cope ink.

[比較例1コ 実施例1て用いたAIN、Y2O3,カーボンブラック
粉末を第3表に示す組成て混合し、同様に70x ’y
ox 3 +nmに成形した。この形成体のまわりにカ
ーボンブラック粉末を敷かずに1他の条件については実
施例1と同様焼成を行なった。第3表にその測定結果を
示す。
[Comparative Example 1] The AIN, Y2O3, and carbon black powders used in Example 1 were mixed with the composition shown in Table 3, and 70x'y was prepared in the same manner.
It was molded to ox 3 +nm. Firing was carried out in the same manner as in Example 1 except for the fact that carbon black powder was not spread around the formed body. Table 3 shows the measurement results.

熱伝導率は実施例1に比較し、150W/mk程度しか
なく、相対密度も低下していた。
Compared to Example 1, the thermal conductivity was only about 150 W/mk, and the relative density was also lower.

[比較例2] 実施例1において窒化アルミニウムのサヤのかわりにカ
ーボンサヤ(内寸法Jon x 100 x2〔)〕を
用い、それ以外の条件は実施例1と同様に実験をイIな
った。カーボンブラック粉末の添加品及びA11定結果
を第4表に示す。
[Comparative Example 2] The experiment was carried out in the same manner as in Example 1, except that a carbon pod (inner dimensions: Jon x 100 x 2 [)] was used instead of the aluminum nitride pod in Example 1. Table 4 shows the carbon black powder additives and A11 results.

試料No19はカーボンサヤ内にカーボンブラック粉末
を敷いていないにもかかわらずカーボンサヤからカーボ
ンか過剰に供給されたため絶縁抵抗か劣化しており、熱
伝導率、嵩密度も低かった。
Sample No. 19 had deteriorated insulation resistance and low thermal conductivity and bulk density because carbon was supplied in excess from the carbon pod even though carbon black powder was not spread inside the carbon pod.

第1表 第2表 第3表 第4表 [発明の効果] 本発明により製造した窒化アルミニウム焼結体は高密度
で200W/mk前後と熱伝導性に優れ、良好な電気特
性を示すことから半導体装用基板、各種ヒートシンクと
してのみならず、ルツボ、蒸着用容器、耐熱シフ高温部
材等の高温材料としての応用も可能てあり、工業的に多
くの利点を有するものである。
Table 1 Table 2 Table 3 Table 4 [Effects of the Invention] The aluminum nitride sintered body produced according to the present invention has a high density and excellent thermal conductivity of around 200 W/mk, and exhibits good electrical properties. It can be applied not only as semiconductor substrates and various heat sinks, but also as a high-temperature material such as crucibles, vapor deposition containers, and heat-resistant sifter high-temperature members, and has many industrial advantages.

代理人(弁理士)平イニ14・1」才Agent (patent attorney) 14.1 years old

Claims (1)

【特許請求の範囲】[Claims] (1)窒化アルミニウム粉末と焼結助剤を混合して成形
した後、この窒化アルミニウムの成形体とカーボン供給
源を少なくとも内面が非カーボン質のサヤの中に入れ、
非酸化性雰囲気中で焼成することを特徴とする窒化アル
ミニウム焼結体の製造方法。
(1) After mixing and molding aluminum nitride powder and a sintering aid, the aluminum nitride molded body and a carbon source are placed in a sheath whose inner surface is at least non-carbonaceous,
A method for producing an aluminum nitride sintered body, which comprises firing in a non-oxidizing atmosphere.
JP63056355A 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body Expired - Fee Related JP2661113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056355A JP2661113B2 (en) 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056355A JP2661113B2 (en) 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01230481A true JPH01230481A (en) 1989-09-13
JP2661113B2 JP2661113B2 (en) 1997-10-08

Family

ID=13024935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056355A Expired - Fee Related JP2661113B2 (en) 1988-03-11 1988-03-11 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2661113B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533551A (en) * 1998-12-23 2002-10-08 デグサ アクチエンゲゼルシャフト Doped carbon black
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
US7737065B2 (en) 2004-03-29 2010-06-15 Denki Kagaku Kogyo Kabushiki Kaisha Process for producing aluminum nitride sintered compacts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207882A (en) * 1983-05-12 1984-11-26 株式会社東芝 Manufacture of aluminum nitride sintered body
JPS62252374A (en) * 1986-04-24 1987-11-04 株式会社村田製作所 Manufacture of aluminum nitride sintered body
JPS63277573A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207882A (en) * 1983-05-12 1984-11-26 株式会社東芝 Manufacture of aluminum nitride sintered body
JPS62252374A (en) * 1986-04-24 1987-11-04 株式会社村田製作所 Manufacture of aluminum nitride sintered body
JPS63277573A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533551A (en) * 1998-12-23 2002-10-08 デグサ アクチエンゲゼルシャフト Doped carbon black
JP4822306B2 (en) * 1998-12-23 2011-11-24 エボニック カーボンブラック ゲゼルシャフト ミット ベシュレンクテル ハフツング Doped carbon black
US7737065B2 (en) 2004-03-29 2010-06-15 Denki Kagaku Kogyo Kabushiki Kaisha Process for producing aluminum nitride sintered compacts
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
KR100912641B1 (en) * 2004-06-21 2009-08-17 가부시끼가이샤 도꾸야마 Nitride sintered compact and method for production thereof
US7876053B2 (en) 2004-06-21 2011-01-25 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
US7973481B2 (en) 2004-06-21 2011-07-05 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
JP4937738B2 (en) * 2004-06-21 2012-05-23 株式会社トクヤマ Nitride sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2661113B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
JP4346151B2 (en) High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
KR20030043701A (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
US6143677A (en) Silicon nitride sinter having high thermal conductivity and process for preparing the same
JPH01230481A (en) Production of sintered aluminum nitride
JP3100892B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH0748174A (en) Highly thermally conductive silicon nitride sinterted compact and its production
JP2807430B2 (en) Aluminum nitride sintered body and method for producing the same
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
EP0172382B1 (en) Mullite-beta spodumene composite ceramic
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2000327424A (en) Aluminum nitride base sintered compact, its production and susceptor using the same
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JP4264236B2 (en) Method for producing aluminum nitride sintered body
JP4069610B2 (en) Surface-coated silicon nitride sintered body
JP2541150B2 (en) Aluminum nitride sintered body
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JPH0678195B2 (en) Aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPH1112039A (en) Production of aluminum nitride-based sintered material for high heat-irradiating lid
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JP2000095569A (en) High heat conductivity silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees