JPH01230444A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH01230444A
JPH01230444A JP5376788A JP5376788A JPH01230444A JP H01230444 A JPH01230444 A JP H01230444A JP 5376788 A JP5376788 A JP 5376788A JP 5376788 A JP5376788 A JP 5376788A JP H01230444 A JPH01230444 A JP H01230444A
Authority
JP
Japan
Prior art keywords
glass
raw material
flame
gas
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5376788A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Tsunehisa Kyodo
倫久 京藤
Hiroshi Yokota
弘 横田
Toshio Danzuka
弾塚 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5376788A priority Critical patent/JPH01230444A/en
Publication of JPH01230444A publication Critical patent/JPH01230444A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To contrive prevention of damaging of manufacturing device and reduction of impurities in semiprocessed material, by flame hydrolyzing glass raw material containing alkoxide and depositing formed glass fine particles. CONSTITUTION:Glass raw material containing alkoxide expressed by the formula Si(OR)4, etc., (with a proviso that R is hydrocarbon group) is prepared. The raw material is flame hydrolyzed by combustion gas such as hydrocarbon gas, combustion improving gas such as O2 or inert gas and glass fine particles are generated. Next, the glass fine particles are deposited on a rotating starting material, resultant porous material is dehydrated and sintered at a high temperature to obtain processed material of transparent glass. In a flame hydrolysis of alkoxide, generated R-OH is completely burned and remained carbon is removed as oxide. As a result of above process, no further generation of hydrogen halide is occurred, thus damaging of device is prevented and impurities in semiprocessed material is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は光ファイバ用母材の製造方法に関し、詳しくは
ガラス原料を火炎中で加水分解反応させることによシ生
成したガラス微粒子(スート)を堆積させて光ファイバ
用多孔質ガラス体を合成するいわゆるスート法による新
規な製法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a base material for optical fibers, and more specifically, glass fine particles (soot) produced by subjecting a glass raw material to a hydrolysis reaction in a flame. The present invention relates to a new manufacturing method using the so-called soot method, in which a porous glass body for optical fibers is synthesized by depositing.

〔従来の技術〕[Conventional technology]

従来のスート法においては、ガラス原料としてS i 
Ct、やGθat、% T i C4等のハロゲン化物
を用いることが一般的であシ、これをH!等の燃焼ガス
、O7等の助燃ガスさらにはAr 等の不活性ガスと共
にバーナに導入し、火炎中で加水分解させてガラス微粒
子を合成していた。ハロゲン化物原料を用いる利点は、
原料精製が容易で、気相反応できるので反応系での汚染
防止が容易なため原料系からの不純物含盆を小さくでき
る点でおる。
In the conventional soot method, Si
It is common to use halides such as Ct, Gθat, % Ti C4, and H! It was introduced into a burner together with combustion gases such as O7, auxiliary combustion gases such as O7, and inert gases such as Ar, and was hydrolyzed in a flame to synthesize glass particles. The advantages of using halide raw materials are
It is easy to purify the raw material, and since the gas phase reaction can be performed, it is easy to prevent contamination in the reaction system, so the amount of impurities contained in the raw material system can be reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようなハロゲン化物、例えば塩化物からガラス微粒
子810. f合成する方法では、下記(1)式 %式%(11 のようにHCtが生成するだめ、反応系からこのHCt
を処理する必要があるに加え、装置の金属が侵食されや
すく設備保全がやっかいなこと、ガラス多孔質体へ装置
からの不純物が混入し易い等の難点がある。
From such a halide, for example, a chloride, glass fine particles 810. In the f-synthesis method, HCt is not produced as shown in formula (1) below (11), but this HCt is removed from the reaction system.
In addition to the need to treat the metal, there are other drawbacks such as the metal of the device being easily corroded, making equipment maintenance a hassle, and impurities from the device easily entering the glass porous body.

本発明は上記の難点を解消した新規なスート法による光
ファイバ用母材の製造方法を提供すること全目的とし、
特にHatのような侵食性が大きいガスの生成を見ない
ガラス原料を用いて、安全で設備コストが低く、しかも
不純物混入の危険もない方法を提案するものである。
The entire purpose of the present invention is to provide a method for manufacturing an optical fiber base material using a novel soot method that eliminates the above-mentioned difficulties.
In particular, we propose a method that is safe, has low equipment costs, and has no risk of contamination with impurities, using a glass raw material that does not generate highly corrosive gases such as Hat.

〔課題を解決するだめの手段] 本発明は火炎中にガラス原料を導入して該ガラス原料を
火炎加水分解させることにより生成したガラス微粒子を
回転する出発材に堆積させて多孔質ガラス体を形成する
方法において、ガラス原料がアルコキシドを含有するこ
とを特徴5i(OOH,)、  (ただしRは炭化水素
基)で表される化合物であることが特に好ましい実施態
様として挙げられる。
[Means for Solving the Problems] The present invention involves introducing a glass raw material into a flame and flame hydrolyzing the glass raw material, thereby depositing glass fine particles on a rotating starting material to form a porous glass body. In a particularly preferred embodiment, the glass raw material contains an alkoxide and is a compound represented by (OOH,) (where R is a hydrocarbon group).

本発明はVAD法(気相軸付法)、外付は法その他の火
炎加水分解反応を利用してガラス微粒子を生成させる方
法において、ガラス原料がアルコキシド金倉むことを特
徴としている。特にst素のアルコキシドで5t(oR
)、の一般式で表される化合物をガラス原料として用い
ることが原料調達の容易さ、気化性、母材への影響のな
い点で好ましい。上記一般式においてRは−CHB r
  −CtHs +  ” ” ” CnH2n+1 
 等のアルキル基であるが、R= −CH,が最も沸点
が低く気化し易い、分子中においてSl  に対するC
(炭素原子)の割合が最も小さい点から特に好ましい。
The present invention is a method of producing glass particles using a VAD method (vapor deposition method), an external deposition method, or other flame hydrolysis reactions, and is characterized in that the glass raw material is an alkoxide metal. In particular, 5t (oR
) It is preferable to use a compound represented by the general formula as the glass raw material in terms of ease of raw material procurement, vaporization, and no effect on the base material. In the above general formula, R is -CHBr
-CtHs + ” ” ” CnH2n+1
Among the alkyl groups, R= -CH, has the lowest boiling point and is easily vaporized.
(carbon atoms) is particularly preferred since it has the smallest ratio.

また金属Si  とCjH,ORから簡単に合成するこ
とができる。
Moreover, it can be easily synthesized from metal Si, CjH, and OR.

本発明ではガラス原料のすべてをアルコキシドとしても
よ5し、塩化物等のハロゲン化物とアルコキシドとを混
合して用いてもよい。また添加物については、Gem、
  を添加する場合を例にとるとae(OR)tを用い
てもよいし、Ge04等のハロゲン化物或は両方を混じ
て用いることも可能である。
In the present invention, all of the glass raw materials may be alkoxides, or a mixture of halides such as chlorides and alkoxides may be used. Regarding additives, Gem,
For example, ae(OR)t may be used, or a halide such as Ge04 or a mixture of both may be used.

本発明はガラス原料VCアルコキ/ド?含逢ぜる意思外
は、従来公知の火炎加水分解法に準じて行なうことがで
きる。燃焼ガスとしては例えばH2、C!H,、O,H
,等の炭化水素ガス等を用いることができる。助燃ガス
としては例えばO7、さらに不活性ガスとして例えばA
r、He等を用いることができる。5i(OR)、又は
5i(OR)、と81 のハロゲン化物、これに要すれ
ば添カロ剤を加え、燃焼ガス、助燃ガス、不活性ガスを
ガラス微粒子合成用バーナーに導入し、バーナの火炎中
で加水分解反応によりガラス微粒子を生成させて、これ
を回転する出発材に堆積しガラス多孔質体(多孔質母材
)を得る。得られたガラス多孔質体を要すれば周知の脱
水処理例えばat、ガス等の脱水ガス中で加熱する等の
処理により脱水し高温加熱により焼結して透明ガラス母
材を得ることができる。焼結工程において雰囲気ガス中
にO,ガス金倉ませることもできる。
The present invention is based on glass raw material VC alkoxy/de? Except for the purpose of inclusion, it can be carried out according to the conventionally known flame hydrolysis method. Examples of combustion gas include H2, C! H,,O,H
, etc. can be used. As the auxiliary gas, for example, O7, and further as the inert gas, for example, A.
r, He, etc. can be used. 5i (OR), or 5i (OR), and 81 halide, if necessary, add a calorific agent, and introduce combustion gas, auxiliary combustion gas, and inert gas into a burner for glass particle synthesis, and the flame of the burner Glass particles are generated by a hydrolysis reaction in the chamber, and deposited on a rotating starting material to obtain a glass porous body (porous base material). If necessary, the obtained porous glass body can be dehydrated by a known dehydration treatment such as heating in a dehydrating gas such as AT or gas, and then sintered by high temperature heating to obtain a transparent glass base material. In the sintering process, O or gas can be added to the atmospheric gas.

なお、アルコキシド原料全バーナに導入するには微tの
場合は加熱蒸気とし、多量供給の際は噴霧によることが
できる。
In order to introduce the alkoxide raw material into all burners, heated steam can be used when a small ton is required, and spraying can be used when a large amount is supplied.

〔作用〕[Effect]

本発明でガラス原料に含まれるアルコキシドは、火炎中
で下記(11式のように反応する。
In the present invention, the alkoxide contained in the glass raw material reacts in a flame as shown in the following equation (11).

5t(oR)、 + 2 n、o→SiO,−1−4R
−OH・・・(1)生成するR−OHは完全に燃焼して
反応系から除去されるし、もし母材中に炭素が残留して
も焼結時に雰囲気中に02  を流すことによ5 co
 。
5t (oR), + 2 n, o → SiO, -1-4R
-OH... (1) The generated R-OH is completely burned and removed from the reaction system, and even if carbon remains in the base material, it can be removed by flowing 02 into the atmosphere during sintering. 5 co
.

CO,として除去することができる。したがって本発明
の方法ではハロゲン化水素例えばHClの発生を見ない
か、非常に減少できるので、母材中への不純物混入や機
器の損傷がなくな9、廃ガス後処理を簡単にできる。さ
らに、本発明によれば従来法よりも収率(Sin、スー
ト重量/5lOt 3!1算原料投入量×100)が向
上できることが実験によシ確認された。
It can be removed as CO. Therefore, in the method of the present invention, generation of hydrogen halides, such as HCl, is not generated or can be greatly reduced, so that there is no contamination of impurities into the base material or damage to equipment9, and waste gas post-treatment can be simplified. Furthermore, it has been confirmed through experiments that the present invention can improve the yield (Sin, soot weight/5 lOt 3!1 calculated raw material input amount x 100) compared to the conventional method.

〔実施例〕〔Example〕

実施例 ガラス原料としてS i (OCR,)、を用いて本発
明により多孔質ガラス母材を製造した。多重管バーナの
中心の第1ポートに5i(0(1!H,)、をisz/
分、第2ポートに燃焼ガスとしてH,15t/分、第3
ボートに不活性ガスとしてAr5t/分、第4ボートに
助燃ガスとして0.251/分を流し、通常の方法によ
シスート付したところ、ガラス微粒子の堆槓床度41/
分で、母材外径12f)+smφの多孔質ガラス母材が
製造できた。収率は60%で、母材には割れ等なく良好
であった。なお5ic4’l原料として同様条件の従来
法で多孔質母材を作製した場合の収率は約40%である
EXAMPLE A porous glass preform was manufactured according to the present invention using Si (OCR, ) as a glass raw material. 5i (0 (1!H,), isz/
min, H as combustion gas in the 2nd port, 15t/min, 3rd port
When 5 t/min of Ar was flowed into the boat as an inert gas and 0.251 t/min as an auxiliary gas was flowed into the fourth boat and syst was applied in the usual manner, the degree of sedimentation of glass particles was 41/min.
A porous glass preform with a preform outer diameter of 12 f)+smφ could be produced in minutes. The yield was 60%, and the base material was in good condition with no cracks or the like. Note that when a porous base material is produced using the conventional method under the same conditions as the 5ic4'l raw material, the yield is about 40%.

以上で得られた本発明母材を電気炉中で加熱して脱水・
透明化処理し透明プリフォームを得た。プリフォーム中
に気泡や結晶の生成はなかった。該ブリフォームラ線引
きして光ファイバとし、その特性を調べたところ、伝送
損失は1、511mで0.3 s aB/km、 t 
s sμmで025d B /kmと良好であった。
The base material of the present invention obtained above is heated in an electric furnace to dehydrate and
A transparent preform was obtained by transparentization treatment. There were no bubbles or crystals formed in the preform. When we drew the briformula to make an optical fiber and investigated its characteristics, the transmission loss was 0.3 s aB/km at 1,511 m, t
It was good at 025dB/km in ssμm.

上記実施例ではガラス原料が5i(OCR5)、のみで
ある場合を挙げたが、これとS i Ot、を併用した
り、G e (0CH3)t 又はGe04等を添加し
たシすることも同様の効果が得られる。又、5i(OC
R,)。
In the above example, the glass raw material is only 5i (OCR5), but it is also possible to use it in combination with SiOt, or add Ge(0CH3)t or Ge04 etc. Effects can be obtained. Also, 5i (OC
R,).

にかえて51(oa、a、)、等を用いることも本発明
の範囲に包含されるものである。
It is also within the scope of the present invention to use 51 (oa, a,), etc. instead.

〔発明の効果] 以上説明のように、本発明は塩化物等のハロゲン化脛素
のみ(il−原料とする火炎加水分解法によるガラス微
粒子合成の際のよりなHot等のハロゲン化水素の発生
がないか低減できるので、機器の損傷とこれによる不純
物の母材中への混入を防止できるに加え、ハロゲン化水
素除去や廃ガス処理も不要でめ9、収率も向上するとい
う非常に有利な方法であり、光ファイバ用ガラス母材や
その他の高品質ガラスの製造分野に用いて多大の効果ヲ
萎する。
[Effects of the Invention] As explained above, the present invention is effective in reducing the generation of hydrogen halides such as hot halides such as chlorides during the synthesis of glass fine particles by flame hydrolysis using only chlorides and other halides (IL) as raw materials. This has the great advantage of not only preventing damage to equipment and contamination of impurities into the base material, but also eliminating the need for hydrogen halide removal and waste gas treatment,9 and improving yields. This method has great effects when used in the field of manufacturing glass preforms for optical fibers and other high-quality glasses.

Claims (1)

【特許請求の範囲】[Claims] (1)火炎中にガラス原料を導入して該ガラス原料を火
炎加水分解させることにより生成したガラス微粒子を回
転する出発材に堆積させて多孔質ガラス体を形成する方
法において、ガラス原料がアルコキシドを含有すること
を特徴とする光ファイバ用母材の製造方法。(2)アル
コキシドが一般式Si(OR)_4(ただしRは炭化水
素基)で表される化合物である特許請求の範囲第1項記
載の光ファイバ用母材の製造方法。
(1) In a method in which a porous glass body is formed by depositing glass fine particles produced by introducing a glass raw material into a flame and flame hydrolyzing the glass raw material on a rotating starting material, the glass raw material contains alkoxides. 1. A method for producing an optical fiber base material, characterized in that: (2) The method for producing an optical fiber preform according to claim 1, wherein the alkoxide is a compound represented by the general formula Si(OR)_4 (where R is a hydrocarbon group).
JP5376788A 1988-03-09 1988-03-09 Production of preform for optical fiber Pending JPH01230444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5376788A JPH01230444A (en) 1988-03-09 1988-03-09 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5376788A JPH01230444A (en) 1988-03-09 1988-03-09 Production of preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH01230444A true JPH01230444A (en) 1989-09-13

Family

ID=12951960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5376788A Pending JPH01230444A (en) 1988-03-09 1988-03-09 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH01230444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529189A2 (en) * 1991-08-26 1993-03-03 Corning Incorporated Method of making fused silica

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529189A2 (en) * 1991-08-26 1993-03-03 Corning Incorporated Method of making fused silica

Similar Documents

Publication Publication Date Title
US5154744A (en) Method of making titania-doped fused silica
EP0529189B1 (en) Method of making fused silica
FI93822C (en) Improved vitreous silica products
CA2037102C (en) Method of making fused silica
KR900008503B1 (en) Manufacture of preform for glass fibres
EP0063272B1 (en) Synthesis of silicon nitride
JP3170094B2 (en) Method for producing titanium oxide
AU743831B2 (en) Germanium chloride and siloxane feedstock for forming silica glass and method
US4765815A (en) Method for producing glass preform for optical fiber
JPH01230444A (en) Production of preform for optical fiber
JPS61236628A (en) Manufacture of alumina-doped silica fiber using organic metal compound
JPH0788231B2 (en) Manufacturing method of optical fiber preform
EP0156370A2 (en) Method for producing glass preform for optical fiber
KR940006410B1 (en) Method of producing glass article
KR20020067992A (en) Method of forming soot preform
JPH03279238A (en) Quartz glass for light transmission and production thereof
JP2000169155A (en) High viscous synthetic quartz glass and its production
JP4230074B2 (en) Method for producing aluminum-added quartz porous matrix
JPH0451497B2 (en)
JP3788073B2 (en) Manufacturing method of optical fiber preform
JPS6144823B2 (en)
JP3118723B2 (en) Method for producing porous glass preform for optical fiber
JPS60239338A (en) Preparation of parent material for optical fiber
JP2002316814A (en) METHOD AND DEVICE FOR PRODUCING HIGH PURITY SiO2
JPH0729807B2 (en) Method for manufacturing preform for optical fiber