JPH01229611A - Method for controlling temperature of cylinder of extruder - Google Patents

Method for controlling temperature of cylinder of extruder

Info

Publication number
JPH01229611A
JPH01229611A JP63056607A JP5660788A JPH01229611A JP H01229611 A JPH01229611 A JP H01229611A JP 63056607 A JP63056607 A JP 63056607A JP 5660788 A JP5660788 A JP 5660788A JP H01229611 A JPH01229611 A JP H01229611A
Authority
JP
Japan
Prior art keywords
cooling
temperature
control
extruder
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63056607A
Other languages
Japanese (ja)
Other versions
JP2512519B2 (en
Inventor
Yasuhiko Nagakura
長倉 靖彦
Katsuhiro Iguchi
勝啓 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP63056607A priority Critical patent/JP2512519B2/en
Publication of JPH01229611A publication Critical patent/JPH01229611A/en
Application granted granted Critical
Publication of JP2512519B2 publication Critical patent/JP2512519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make it possible to command optimum control constant in response to change by a method wherein the constant of proportional action of a controller is changed on the basis of the temperature deviation and state of operating output so as to eliminate the temperature deviation between the set temperature and the measured temperature of a cylinder. CONSTITUTION:The temperature deviation e(t) deg.C between the set temperature sent from a temperature setting part 1 and a controlling point temperature in a process 5 is obtained by a comparator 3 and inputted in a PID controller 4, which calculates an operating output m(t) so as to output to the process 5, which is the controlled system of the controller 4, in order to control the process by heating or cooling. A plurality of cooling proportional bands including the maximum and minimum cooling proportional bands, which are determined in advance based upon the amount of cooling water, are stored in a memory operator 6. The memory operator 6 operates the temperature deviation e(t) sent from the comparator 3 and the operating output m(t) sent from the PID controller 4 so as to judge whether the measured temperature is too much larger than the set temperature or not from the temperature deviation e(t) and whether the operating output is stable or not in order to command the optimum cooling proportional band to the PID controller 4 on the basis of the resultant judgement.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は加熱制御と冷却制御により押出機のシリンダ温
度を制御する押出機のシリンダ温度制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an extruder cylinder temperature control method for controlling the extruder cylinder temperature by heating control and cooling control.

(従来の技術) 押出機に投入されたプラスチック材料はスクリュによっ
て、前方に移送されながらシリンダ外部からの加熱とス
クリュの剪断作用により生ずる内部発熱により溶融され
る。このとき自然放冷により冷却しきれない発熱量は、
強制的に気体や液体で冷却する温度制御方法が採られて
いる。このように加熱制御と冷却制御をおこなうために
、加熱出力と冷却出力を有するデュアルタイプのPID
調節計が用いられている。
(Prior Art) A plastic material introduced into an extruder is transferred forward by a screw and melted by internal heat generated by heating from the outside of the cylinder and the shearing action of the screw. At this time, the amount of heat that cannot be cooled by natural cooling is
A temperature control method that uses forced gas or liquid cooling is used. In order to perform heating control and cooling control in this way, a dual type PID with heating output and cooling output is used.
A controller is used.

従来の押出機のシリンダ温度制御方法を第7図を用いて
説明する。温度設定部1からの設定温度とプロセス5に
おける制御点温度との偏差温度e (t)  (”C)
を比較器3により求め、PID調節計4に入力する。p
tDg節計4は次の(1)式で示されるような操作出力
m (t)を算出し、制御対象であるプロセス5に出力
し、加熱制御又は冷却制御するようになっている。m(
t)が正であれば加熱制御が行われ、負であれば冷却制
御が行われる。
A conventional method for controlling the cylinder temperature of an extruder will be explained with reference to FIG. Deviation temperature e (t) (”C) between the set temperature from temperature setting unit 1 and the control point temperature in process 5
is determined by the comparator 3 and inputted to the PID controller 4. p
The tDg moderator 4 calculates the operation output m (t) as shown by the following equation (1), outputs it to the process 5 to be controlled, and performs heating control or cooling control. m(
If t) is positive, heating control is performed, and if it is negative, cooling control is performed.

(ただし、PB:比例帯(”l:)、Ti:積分時間(
sec)、Td:微分時間(sec))これらPBST
ISTdはPID定数と呼ばれ、運転状態に応じて適宜
設定する。このPID定数を不適切に設定すると良い制
御ができなくなる。
(However, PB: Proportional band ("l:), Ti: Integral time (
sec), Td: Differential time (sec)) These PBST
ISTd is called a PID constant, and is set as appropriate depending on the operating state. If this PID constant is set inappropriately, good control will not be possible.

一般に定数PBが大きければ大きいほどm (t)は小
さくなり、定常状態での安定性は増すが、設定温度や外
乱に対してのe (t)の変化に対して設定温度に達す
るのに時間がかかるという傾向にある。
In general, the larger the constant PB, the smaller m (t) becomes, and the stability in a steady state increases. There is a tendency for it to cost more.

また押出機のシリンダでは前述のように加熱制御と冷却
制御があり、加熱制御ではヒータを使用していてPID
調節計からの操作出力がプロセスに与える影響がほぼ線
形となり適正なPID定数を決定することができるが、
冷却制御では冷却媒体である水の液体と気体間の相変化
のため操作出力がプロセスに与える影響が非線形になり
、適正なPID定数を決定することができなかった。
In addition, as mentioned above, the extruder cylinder has heating control and cooling control, and heating control uses a heater and PID
The influence of the operation output from the controller on the process is almost linear, and an appropriate PID constant can be determined.
In cooling control, the influence of the operating output on the process becomes non-linear due to the phase change between the liquid and gas of the cooling medium, making it impossible to determine an appropriate PID constant.

押出機の温度制御系てPID調節計からの操作出力方法
としていわゆる時間比例の考え方が採用されている。例
えば冷却の場合は第8図に示すようにある一定の冷却制
御周期Tに従って冷却水量を電磁弁のON、OFF時間
によって操作するものである。(1)式のm(’t)と
電磁弁のON時間の関係は(2)式によって示される。
In the temperature control system of an extruder, a so-called time proportional concept is adopted as a method of operating output from a PID controller. For example, in the case of cooling, the amount of cooling water is controlled by the ON/OFF time of a solenoid valve according to a certain cooling control period T as shown in FIG. The relationship between m('t) in equation (1) and the ON time of the solenoid valve is shown by equation (2).

ON時間−T−m(t) / 100   −  (2
)例えば、水冷パイプ付アルミ鋳込ヒータを用いてヒー
タ温度を150℃に保ち冷却制御周期Tが30秒のとき
の冷却水を通す電磁弁のON率(操作出力m(t))と
静的冷却能力との関係である静的冷却特性を第9図に示
す。この第9図に示されているように、通常押出機が運
転される100〜300℃の温度では、冷却水量が少な
いときは冷却パイプ内のほとんど全ての水が気化するの
で冷却効果がよい。しかし、冷却水量が多くなるにした
がって奪取熱量は増加し冷却パイプ内壁温度が十分に回
復しない内に新たな冷却水が注入されるため、水温と冷
却パイプ内壁との温度差が小さくなり、冷却水に与える
ヒータ熱量の低下により気化する割合いが減少し冷却効
果が低下する。さらに冷却水量が多くなるとほとんど気
化しなくなり、さらに冷却効果が低下する。
ON time - T-m (t) / 100 - (2
) For example, when using a cast-in aluminum heater with a water-cooled pipe and keeping the heater temperature at 150°C and the cooling control cycle T being 30 seconds, the ON rate (operational output m(t)) and static Fig. 9 shows the static cooling characteristic as a relationship with the cooling capacity. As shown in FIG. 9, at a temperature of 100 to 300° C. at which the extruder is normally operated, when the amount of cooling water is small, almost all the water in the cooling pipe is vaporized, so the cooling effect is good. However, as the amount of cooling water increases, the amount of heat absorbed increases, and new cooling water is injected before the inner wall temperature of the cooling pipe has fully recovered, so the temperature difference between the water temperature and the inner wall of the cooling pipe becomes smaller, and the cooling water The rate of vaporization decreases due to the decrease in the amount of heater heat applied to the gas, and the cooling effect decreases. Furthermore, when the amount of cooling water increases, almost no vaporization occurs, further reducing the cooling effect.

更に詳細に説明すると、スクリュ速度が低速の場合、す
なわち発熱量が低く電磁弁のON率が低いときはヒータ
内の冷却パイプにおける冷却水の量は少なく冷却水は容
易に気化し、電磁弁ON時間当りの冷却熱量、即ち冷却
ゲインは大きくなる。
To explain in more detail, when the screw speed is low, that is, when the amount of heat generated is low and the ON rate of the solenoid valve is low, the amount of cooling water in the cooling pipe in the heater is small and the cooling water easily vaporizes, causing the solenoid valve to turn ON. The amount of cooling heat per hour, that is, the cooling gain increases.

一方、スクリュの回転が高速の場合は発熱量も多く電磁
弁のON率が高く、供給水量が多くなる結果、冷却効果
の低下により冷却ゲインは減少する。  。
On the other hand, when the screw rotates at high speed, the amount of heat generated is large and the ON rate of the solenoid valve is high, and as a result, the amount of water supplied increases, resulting in a decrease in cooling effect and a decrease in cooling gain. .

(発明が解決しようとする課題) このように非線形である静的冷却特性は、押出機のサイ
ズや冷却系により異なり、また設定温度によっても異な
る。さらに、スクリュ回転数やシリンダの場所によって
も発熱量が異なり、静的冷  1却特性に影響がある。
(Problems to be Solved by the Invention) Such nonlinear static cooling characteristics vary depending on the size and cooling system of the extruder, and also vary depending on the set temperature. Furthermore, the amount of heat generated varies depending on the screw rotation speed and the location of the cylinder, which affects the static cooling characteristics.

このため、このような多く  ]のフファンを考慮した
PID定数を決定すること  −は極めて困難であった
For this reason, it has been extremely difficult to determine a PID constant that takes such a large number of fufans into consideration.

本発明は上記事情を考慮してなされたもので、設定温度
や発熱量が変化しても最適な制御定数で制御することが
できる押出機のシリンダ温度制御方法を提供することを
目的とする。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to provide a method for controlling the cylinder temperature of an extruder, which can be controlled with optimal control constants even if the set temperature and calorific value change.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的は、シリンダの設定温度と測定温度との偏差温
度をなくすように、少なくとも比例動作と積分動作を行
って操作出力を演算する調節計により冷却制御又は加熱
制御を行う押出機のシリンダ温度制御方法において、前
記偏差温度及び前記す作出力の状態に基づいて前記調節
計の比例動作の定数を変更することを特徴とする押出機
のシリンダ温度制御方法によって達成される。
(Means for Solving the Problem) The above purpose is to control cooling or heating using a controller that performs at least a proportional operation and an integral operation to calculate the operating output so as to eliminate the temperature deviation between the set temperature and the measured temperature of the cylinder. Achieved by a cylinder temperature control method for an extruder that performs control, characterized in that the constant of proportional operation of the controller is changed based on the state of the deviation temperature and the operating force. be done.

(作 用) 本発明の押出機のシリンダ温度制御方法にょれ:f1設
定温度と測定温度の偏差温度及び調節計のm作出力の状
態の変化に応じて比例定数を変更しで、非線形の冷却特
性に応じた最適な制御をするようにしている。
(Function) The method for controlling the cylinder temperature of an extruder according to the present invention is as follows: Non-linear cooling is achieved by changing the proportionality constant according to the deviation temperature between the f1 set temperature and the measured temperature and the change in the state of the m production output of the controller. We are trying to perform optimal control according to the characteristics.

(実施例) 以下本発明を図示の一実施例に基づいて説明する。(Example) The present invention will be explained below based on an illustrated embodiment.

本発明の一実施例による押出機のシリンダ温度制御方法
を第1図を用いて説明する。従来の押出機のシリンダ温
度制御方法と同様に、温度設定部1からの設定温度とプ
ロセス5における制御点温度との偏差温度e(t)(℃
)を比較器3により求め、PID調節計4に入力する。
A method for controlling the cylinder temperature of an extruder according to an embodiment of the present invention will be described with reference to FIG. Similar to the conventional extruder cylinder temperature control method, the deviation temperature e(t) (℃
) is determined by the comparator 3 and input to the PID controller 4.

PID調節計4は前述の(1)式で示されるような操作
出力m (t)を算出し、制御対象であるプロセス5に
出力し、加熱制御又は冷却制御する。
The PID controller 4 calculates the operation output m (t) as shown by the above-mentioned equation (1), outputs it to the process 5 to be controlled, and performs heating control or cooling control.

本実施例の特徴はさらに記憶演算器6が設けられている
点である。記憶演算器6には予め冷却水量により決定さ
れる最大と最小の冷却比例帯を含むこの間の複数の冷却
比例帯PBI、PB2、・・・、PBn (FBI<P
B2<・=<PBn)を記憶しておく。記憶演算器6は
、比較器3からの偏差温度e (t)とPID調節計4
からの操作出力m (t)を演算し、偏差温度e (t
)から測定温度が設定温度より大きすぎないか否か、操
作出力は安定しているか否かを判断し、この判断結果に
基づいて最適な冷却比例帯PBをPID調節計4に指令
する。
A feature of this embodiment is that a storage computing unit 6 is further provided. The storage calculator 6 stores a plurality of cooling proportional bands PBI, PB2, ..., PBn (FBI<P
B2<.=<PBn) is stored. The memory calculator 6 stores the deviation temperature e(t) from the comparator 3 and the PID controller 4.
The operating output m (t) from is calculated, and the deviation temperature e (t
), it is determined whether the measured temperature is not too higher than the set temperature and whether the operation output is stable or not, and based on the results of this determination, the optimum cooling proportional band PB is commanded to the PID controller 4.

この制御において基本となるPID定数は加熱制御のP
ID定数で、例えば、Ziegler−Nichols
による過渡応答法や、限界限度法や、測定温度の応答波
形を用いるエキスパート法や、PID:A茹汁からの操
作出力に同定用信号をのせて求める方法等により予め求
めておく。
The basic PID constant in this control is P for heating control.
ID constant, e.g. Ziegler-Nichols
It is determined in advance by a transient response method, a limit limit method, an expert method using a response waveform of the measured temperature, a method in which an identification signal is added to the operation output from PID:A boiling water, or the like.

次に最大と最小の冷却比例帯を冷却水量から決定する方
法について第2図を用いて説明する。第9図の静的冷却
特性を近似したのが第2図の特性である。冷却ON率に
より3つの領域1〜■に分けている。領域Iでは冷却水
がほとんど全て気化し、領域■では冷却水の一部が気化
し、領域■では冷却水はほとんど気化しない。あからし
め任意のパルプ開度での冷却水量F(kg/hour)
を測定しておくと、冷却ON率から冷却水の流量がわか
るので、第2図の横軸の冷却ON率Aを次の(3)式に
より冷却水流量Fl  (kg/hour)に換算する
;とができる。
Next, a method for determining the maximum and minimum cooling proportional bands from the amount of cooling water will be explained using FIG. 2. The characteristic shown in FIG. 2 is an approximation of the static cooling characteristic shown in FIG. 9. It is divided into three regions 1 to 3 depending on the cooling ON rate. In region I, almost all of the cooling water is vaporized, in region (2), a portion of the cooling water is vaporized, and in region (2), almost no cooling water is vaporized. Cooling water amount F (kg/hour) at any pulp opening
By measuring , the flow rate of cooling water can be determined from the cooling ON rate, so convert the cooling ON rate A on the horizontal axis in Figure 2 to the cooling water flow rate Fl (kg/hour) using the following equation (3). ;Can be done.

Fl−0,01・F−A       ・・・(3)領
域Iで冷却水が全て気化するとすれば、流量Flでの冷
却能力H1(kW)は次の(4)式で求めることができ
る。
Fl-0,01·F-A (3) If all the cooling water is vaporized in region I, the cooling capacity H1 (kW) at the flow rate Fl can be determined by the following equation (4).

Hl −(Fl /860) x (540+T2−Tl )  ・・・(4)ここで
540は気化熱、Tl  (”C)は冷却水の入口温度
、T2  (’C)は冷却水の出口温度、860はkc
al/hourをkwに変換するための定数である。T
2  (”C)は冷却水が気化するので100℃と考え
てよい。また冷却水の出口温度は100℃となるけれど
全然気化しない場合の冷却能力H2(kW)は次の(5
)式で求めることができる。
Hl - (Fl /860) x (540 + T2 - Tl ) ... (4) where 540 is the heat of vaporization, Tl ('C) is the inlet temperature of the cooling water, T2 ('C) is the outlet temperature of the cooling water, 860 is kc
This is a constant for converting al/hour to kw. T
2 ("C) can be considered to be 100℃ because the cooling water vaporizes.Also, the outlet temperature of the cooling water is 100℃, but if it does not vaporize at all, the cooling capacity H2 (kW) is as follows (5
) can be obtained using the formula.

H2−(Fl /860) X (100−Tl )      ・・・(5)この
ように冷却バルブ開度が決定されると、冷却ON率から
冷却水が特定の状態での冷却能力を理論的に求めること
ができる。
H2-(Fl /860) You can ask for it.

また、第2図の縦軸の冷却能力(kw)は、押出機の最
大ヒータ出力がわかれば加熱ON率(%)にすることが
できる。
Moreover, the cooling capacity (kw) on the vertical axis in FIG. 2 can be expressed as the heating ON rate (%) if the maximum heater output of the extruder is known.

したがって、第2図は任意のON率でのヒータによる加
熱能力と冷却水による冷却能力との関係を表すことにな
る。最も大きい加熱能力と冷却能力との比は、(4)式
と最大出力から直線11の傾きで示され、その次に大き
い加熱能力と冷却能力との比は、(5)式と最大出力か
ら直線12の傾きで示される。この直線11と加熱比例
帯との積を最大の冷却比例帯とし、直線12の傾きと加
熱比例帯との積を最小の冷却比例帯とする。
Therefore, FIG. 2 represents the relationship between the heating capacity of the heater and the cooling capacity of the cooling water at a given ON rate. The ratio of the largest heating capacity and cooling capacity is shown by the slope of straight line 11 from equation (4) and the maximum output, and the ratio of the next largest heating capacity and cooling capacity is shown from equation (5) and the maximum output. It is indicated by the slope of straight line 12. The product of this straight line 11 and the heating proportional band is the maximum cooling proportional band, and the product of the slope of the straight line 12 and the heating proportional band is the minimum cooling proportional band.

次に本実施例による押出機のシリンダ温度制御方法を第
3図のフローチャートを用いて説明する。
Next, a method for controlling the cylinder temperature of an extruder according to this embodiment will be explained using the flowchart shown in FIG.

第3図は記憶演算器6における動作を示すものであり、
全体の制御フローの一部をなすものである。
FIG. 3 shows the operation in the memory arithmetic unit 6.
It forms part of the overall control flow.

第3図の動作は一定時間ごとに行われる。また、最初に
冷却比例帯を最小の冷却比例帯FBIに設定しておく。
The operation shown in FIG. 3 is performed at regular intervals. Also, the cooling proportional band is first set to the minimum cooling proportional band FBI.

記憶演算器6の制御フローでは、まずステップ21で現
在設定されている冷却比例帯が最小の冷却比例帯FBI
か否か判断する。最小の冷却比例帯FBIであれば何も
処理せずステップ23以降の処理に移る。現在の冷却比
例帯が最小の冷却比例帯FBIでなければ、ステップ2
2で偏差温度e (t)が−TT”Cより小さいか否か
判断する。偏差温度e (t)が−TT”Cより小さい
、すなわち/J11定温度が設定温度より所定の温度T
T’Cより高いときは、ステップ28に移り、例えば、
最小の冷却比例帯FBIをPID調節計4に指令する。
In the control flow of the storage calculator 6, first, in step 21, the currently set cooling proportional band is set to the minimum cooling proportional band FBI.
Decide whether or not. If it is the minimum cooling proportional band FBI, no processing is performed and the process moves to step 23 and subsequent steps. If the current proportional cooling band is not the minimum cooling proportional band FBI, step 2
2, it is determined whether the deviation temperature e (t) is smaller than -TT"C. If the deviation temperature e (t) is smaller than -TT"C, that is, the /J11 constant temperature is lower than the set temperature by a predetermined temperature T.
If it is higher than T'C, proceed to step 28, for example,
The minimum cooling proportional band FBI is commanded to the PID controller 4.

なお、ステップ28で現在より1段低い冷却比例帯をP
ID調節計4に指令してもよい。すなわち、現在の冷却
比例帯がPBlであれば、1段低い冷却比例帯P B 
i−1にする。偏差温度e (t)が−TT”Cより大
きい、すなわち測定温度が設定温度より所定の温度TT
’Cより高くないときにはステップ23以降の処理に移
る。
In addition, in step 28, the cooling proportional band that is one stage lower than the current one is set to P.
The command may also be given to the ID controller 4. In other words, if the current proportional cooling band is PBl, the proportional cooling band P B is one step lower.
Make it i-1. The deviation temperature e (t) is greater than -TT''C, that is, the measured temperature is lower than the set temperature by a predetermined temperature TT.
If it is not higher than 'C, the process moves to step 23 and subsequent steps.

ステップ23では現在の冷却比例帯が最大の冷却比例帯
PBnか否か判断し、最大であれば何も処理しないでリ
ターンに移り、記憶演算器6の処理を終了する。最大で
なければステップ24に移る。
In step 23, it is determined whether the current cooling proportional band is the maximum cooling proportional band PBn, and if it is the maximum, no processing is performed and the process moves to return, and the processing of the storage calculator 6 is ended. If it is not the maximum, the process moves to step 24.

次に、操作出力が加熱と冷却を交互に繰返しなされてお
り、かつ不安定か否か演算して判断する(ステップ24
.25)。短い周期で加熱と冷却を繰返せば不安定であ
るとする。例えば、第4図(a)に示すように、ある期
間T内において加熱制御期間TIHと72Hの間隔T)
lと冷却制御期間TICとT2Cの間隔TCとを求め、
この間隔THとTCの比Tll/TCを演算する。この
比Tll/TCが例えば次の(6)式を満足すれば「不
安定」と判断する。
Next, it is calculated and determined whether the operation output is unstable due to repeated heating and cooling (step 24).
.. 25). It is assumed that if heating and cooling are repeated in short periods, it becomes unstable. For example, as shown in FIG. 4(a), the interval T between the heating control periods TIH and 72H within a certain period T)
1 and the interval TC between the cooling control period TIC and T2C,
The ratio Tll/TC between this interval TH and TC is calculated. If this ratio Tll/TC satisfies, for example, the following equation (6), it is determined to be "unstable".

0、 7<TH/TC< 1.3   ・・・ (6)
ステップ25で不安定であると判断されると、ステップ
29で1段大きな冷却比例帯をPIDI節計4茹汁令す
る。すなわち、現在の冷却比例帯がPBiであればP 
B i+1を指令する。そして、リターンに移り記憶演
算器6の処理を終了する。
0, 7<TH/TC<1.3... (6)
If it is determined in step 25 that it is unstable, in step 29 a one step larger cooling proportional band is ordered as a PIDI mode. In other words, if the current cooling proportional band is PBi, then P
Command B i+1. Then, the process moves to return and the processing of the storage arithmetic unit 6 ends.

操作出力が冷却のみである場合にはステップ26.27
に移り、不安定か否か演算し判断する。
If the operation output is cooling only, step 26.27
Then, calculate and judge whether or not it is unstable.

冷却ON率が繰返し大きく変化していれば不安定である
とする。例えば、第4図(b)に示すように、冷却ON
率の最小M I N (+)と最大MAX(1)が交互
に生じ、最大冷却ON率MAX(i)が3回連続して3
%以上であり、比M I N (1) /MA X (
i)が2以上であれば不安定であるとする。ステップ2
7で不安定であると判断されると、ステップ30で現在
の冷却比例帯FBIより例えば20%大きな冷却比例帯
をPID:A節計4に指令する。
If the cooling ON rate repeatedly changes significantly, it is assumed that the system is unstable. For example, as shown in FIG. 4(b), cooling is turned on.
The minimum M I N (+) and maximum MAX (1) of the rate occur alternately, and the maximum cooling ON rate MAX (i) is 3 consecutive times.
% or more, and the ratio M I N (1) /MAX (
If i) is 2 or more, it is considered unstable. Step 2
If it is determined in step 7 that the cooling proportional band is unstable, in step 30, the PID: A moderator 4 is commanded to set a cooling proportional band that is, for example, 20% larger than the current cooling proportional band FBI.

これは、冷却制御が続いている場合の「不安定」は、冷
却と加熱を交互に繰返している場合より少し冷却比例帯
を増加させてやれば解消するからである。
This is because the "instability" that occurs when cooling control continues can be resolved by increasing the cooling proportional band a little more than when cooling and heating are repeated alternately.

第5図に本実施例による温度制御の実験結果を示し、第
6図に従来の温度制御の実験結果を示す。
FIG. 5 shows the experimental results of temperature control according to this embodiment, and FIG. 6 shows the experimental results of conventional temperature control.

それぞれ上側のグラフが温度制御結果で、下側のグラフ
がそのときの操作出力である。実験は、90φmmの単
軸押出機の第3ゾーンにステップ状の外乱(内部発熱)
を意図的に入れて行った。
The upper graph is the temperature control result, and the lower graph is the operation output at that time. In the experiment, a step-like disturbance (internal heat generation) was applied to the third zone of a 90φmm single-screw extruder.
I intentionally included it.

比較すれば明らかなように。最大偏差温度が従来より本
実施例の方が約1/2と小さくなり、設定温度に達する
時間も従来より本実施例の方が約10分間短い。
As is clear from the comparison. The maximum deviation temperature is about 1/2 smaller in this embodiment than in the conventional case, and the time to reach the set temperature is also about 10 minutes shorter in this embodiment than in the conventional case.

本発明は上記実施例に限らず種々の変形が可能である。The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、上記実施例では調節計は比例動作と積分動作と
微分動作を行うPID調節計であったが、比例動作と積
分動作を行うPI調節計でもよい。
For example, in the above embodiment, the controller is a PID controller that performs proportional action, integral action, and differential action, but it may also be a PI controller that performs proportional action and integral action.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明によれば、設定温度や押出機内部の発
熱量が変化しても、静的冷却特性に強い非直線性があっ
ても、その変化に応じて最適な制御定数を指令すること
ができる。したがって、制御温度は最短時間で安定し、
安全な連続運転を行うことができる。
As described above, according to the present invention, even if the set temperature or the amount of heat generated inside the extruder changes, even if there is strong nonlinearity in the static cooling characteristics, the optimal control constant is commanded according to the change. be able to. Therefore, the controlled temperature will be stable in the shortest possible time,
Safe continuous operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による押出機のシリンダ温度
制御方法を実施する装置のブロック図、第2図は押出機
のシリンダの静的冷却特性を近似的に表したグラフ、第
3図は同押出機のシリンダ温度制御方法を示すフローチ
ャート、第4図は同押出機のシリンダ温度制御方法にお
ける制御安定性を説明するためのタイムチャート、第5
図は本発明による押出機のシリンダ温度制御方法による
制御結果を示すグラフ、第6図は従来の押出機のシリン
ダ温度制御方法による制御結果を示すグラフ、第7図は
従来の押出機のシリンダ温度制御方法を実施する装置の
ブロック図、第8図は温度制御における時間比例制御を
説明するためのタイムチャート、第9図は押出機のシリ
ンダの静的冷却特性を表したグラフである。 1・・・温度設定部、3・・・比較部、4・・・PID
調節計、5・・・プロセス、6・・・記憶演算器。 出願人代理人  佐  藤  −雄 第3図 第7図 第8図 方却ON季(%) @QI!i!71 手続補正書 2 発明の名称 押出機のシリンダ温度制御方法 3 補正をする者 事件との関係  特許出願人 (345)東芝機械株式会社 4代理人 尤1 玉 8 補正の内容 (1)  明細書第3頁第2行の を                        
             1」 に訂正する。
FIG. 1 is a block diagram of an apparatus for implementing the extruder cylinder temperature control method according to an embodiment of the present invention, FIG. 2 is a graph approximately representing the static cooling characteristics of the extruder cylinder, and FIG. 3 4 is a flowchart showing the cylinder temperature control method of the extruder, FIG. 4 is a time chart for explaining control stability in the cylinder temperature control method of the extruder, and FIG.
The figure is a graph showing the control results according to the extruder cylinder temperature control method according to the present invention, Figure 6 is a graph showing the control results according to the conventional extruder cylinder temperature control method, and Figure 7 is the cylinder temperature of the conventional extruder. FIG. 8 is a block diagram of an apparatus for implementing the control method, FIG. 8 is a time chart for explaining time proportional control in temperature control, and FIG. 9 is a graph showing static cooling characteristics of the cylinder of an extruder. 1... Temperature setting section, 3... Comparison section, 4... PID
Controller, 5... Process, 6... Memory calculator. Applicant's agent Mr. Sato Figure 3 Figure 7 Figure 8 Direction ONKI (%) @QI! i! 71 Procedural amendment 2 Name of the invention Extruder cylinder temperature control method 3 Relationship with the case of the person making the amendment Patent applicant (345) Toshiba Machine Co., Ltd. 4 Agent Yu 1 Ball 8 Contents of the amendment (1) Specification No. 3rd page, 2nd line
1”.

Claims (1)

【特許請求の範囲】 シリンダの設定温度と測定温度との偏差温度をなくすよ
うに、少なくとも比例動作と積分動作を行って操作出力
を演算する調節計により冷却制御又は加熱制御を行う押
出機のシリンダ温度制御方法において、 前記偏差温度及び前記操作出力の状態に基づいて前記調
節計の比例動作の定数を変更することを特徴とする押出
機のシリンダ温度制御方法。
[Claims] A cylinder of an extruder that performs cooling control or heating control using a controller that performs at least a proportional action and an integral action to calculate the operating output so as to eliminate the temperature deviation between the set temperature and the measured temperature of the cylinder. A method for controlling a cylinder temperature of an extruder, the method comprising: changing a proportional operation constant of the controller based on the deviation temperature and the state of the operation output.
JP63056607A 1988-03-10 1988-03-10 Extruder cylinder temperature control method Expired - Lifetime JP2512519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056607A JP2512519B2 (en) 1988-03-10 1988-03-10 Extruder cylinder temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056607A JP2512519B2 (en) 1988-03-10 1988-03-10 Extruder cylinder temperature control method

Publications (2)

Publication Number Publication Date
JPH01229611A true JPH01229611A (en) 1989-09-13
JP2512519B2 JP2512519B2 (en) 1996-07-03

Family

ID=13031924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056607A Expired - Lifetime JP2512519B2 (en) 1988-03-10 1988-03-10 Extruder cylinder temperature control method

Country Status (1)

Country Link
JP (1) JP2512519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164224A (en) * 1989-11-24 1991-07-16 Toshiba Mach Co Ltd Apparatus for controlling heating temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164224A (en) * 1989-11-24 1991-07-16 Toshiba Mach Co Ltd Apparatus for controlling heating temperature

Also Published As

Publication number Publication date
JP2512519B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
Chylla et al. Temperature control of semibatch polymerization reactors
US5173224A (en) Fuzzy inference thermocontrol method for an injection molding machine with a pid control
Yang et al. Hybrid intelligent control of gas collectors of coke ovens
US4268784A (en) Control method and apparatus with reset windup prevention
Gao et al. Cavity pressure control during the cooling stage in thermoplastic injection molding
Allison et al. Design and tuning of valve position controllers with industrial applications
JPS58208817A (en) Temperature controller
Louleh et al. A new strategy for temperature control of batch reactors: experimental application
JPH01229611A (en) Method for controlling temperature of cylinder of extruder
JPS623286B2 (en)
JPS63247592A (en) Condenser cooling water flow rate control system
JP2653870B2 (en) Temperature control device
JPH0555881B2 (en)
JPH09109216A (en) Nozzle temperature controller for injection molding machine
JPS62111311A (en) Heat/cool control device
US20050114069A1 (en) Die temperature control
Xiong et al. Research on pressure control system of evaporation tank based on adaptive fuzzy PID
JPH0410642B2 (en)
JP2910136B2 (en) Temperature control system for tundish molten steel plasma heating system
SU1577081A2 (en) Device for controlling thermal conditions of methodic induction unit
JPS582902A (en) Process controlling method
JPS62275730A (en) Method for controlling injection molder
JP2535740B2 (en) Speed control method of underwater vehicle
JPS6315330B2 (en)
JP2811662B2 (en) Alkali metal engine control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term