JPH01228752A - Spindle synchronizing system - Google Patents

Spindle synchronizing system

Info

Publication number
JPH01228752A
JPH01228752A JP5666088A JP5666088A JPH01228752A JP H01228752 A JPH01228752 A JP H01228752A JP 5666088 A JP5666088 A JP 5666088A JP 5666088 A JP5666088 A JP 5666088A JP H01228752 A JPH01228752 A JP H01228752A
Authority
JP
Japan
Prior art keywords
spindle
slave
speed
torque
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5666088A
Other languages
Japanese (ja)
Inventor
Hideaki Kawamura
川村 英昭
Kentaro Fujibayashi
謙太郎 藤林
Haruhiko Kozai
香西 治彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP5666088A priority Critical patent/JPH01228752A/en
Publication of JPH01228752A publication Critical patent/JPH01228752A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/04Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps
    • B23Q39/048Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps the work holder of a work station transfers directly its workpiece to the work holder of a following work station

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To prevent torsion applied to work in the spindle synchronizing system of a lathe having opposed spindles by calculating a command value for a slave spindle from the difference of each feedback value of position, speed, and torque. CONSTITUTION:A work 1 is held by chucks 11, 21. A slave spindle 12 is connected with a spindle motor 15 through gears 13, 14. And a master spindle 22 is connected with a spindle motor 25 through gears 23, 24. The motor 15 is driven by a spindle amplifier 17, while the motor 25 is driven by a spindle amplifier 27. The sum of speed command CM and a corrected command value CP for the slave spindle is given to the spindle amplifier 17 as a command value. On the other hand, only the command value CM is given to the spindle amplifier 27. Accordingly, the slave spindle 12 is synchronized with the master spindle 22 by giving the corrected command CP to the amplifier 17. Besides, the command values CM, CP are given as speed command values.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主軸同j11方式a、′iii、 I!Jj 
j、、、特に対向しノ、・、主軸を有する旋盤の主軸を
I]:6育に同期運転するための主軸同期方式に関する
4 〔従来の技術] 長いワークを加工しまたり、ワ クイ;突っ切るため番
こ対向した主軸を有嗅“るhhi盤が実用化されている
。、丁の旋盤では」二8軸の回転速度が相当の精度で等
しくなっていなげればならない。このために、両方のス
ピンドルアンプに同一の指令を与え、同一仕様のスピン
ドルアンプ、主軸モータを使用し、機械の負荷も同一に
する。しかし、実際は主軸モータ、スピンドルアンプ等
のわずかな特性の違いのために、完全に同期をとること
はできない。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the spindle j11 system a, 'iii, I! Jj
4. Related to the spindle synchronization system for synchronized operation of the main spindle of a lathe with especially opposed main spindles. A high-speed lathe with two spindles facing each other has been put into practical use.In a single lathe, the rotational speeds of the 28 axes must be made equal with considerable precision. For this purpose, the same command is given to both spindle amplifiers, the spindle amplifiers and spindle motors with the same specifications are used, and the machine loads are also the same. However, in reality, perfect synchronization cannot be achieved due to slight differences in characteristics of the spindle motor, spindle amplifier, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このために、ワークに無理な捩じれ力等がかかり、加工
精度を低下させ、ワークに歪を与えてワークを突っ切っ
たときに、ワークの切り口の中心に涙しられた切残し部
が残ってしまう等の問題点がある。
For this reason, excessive torsional force is applied to the workpiece, reducing machining accuracy, and when the workpiece is distorted and cut through, a weeping uncut portion is left in the center of the cut end of the workpiece. There is a problem with this.

本発明はこのような点に鑑みてなされたものであり、対
向した主軸を有する旋盤の主軸を正確に同期運転するた
めの主軸同期方式を提供することを目的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide a spindle synchronization method for accurately synchronously operating the spindles of a lathe having opposing spindles.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はでは上記課題を解決するために、対向した主軸
を有する旋盤の主軸を制御する主軸同期方式において、 第1の主軸をマスタ主軸とし、他の主軸をスレーブ主軸
として指定し、 該マスタ主軸及び該スレーブ主軸の位置、速度及びトル
クをフィードバックし、 前記マスタ主軸の位置、速度及びトルクと前記スレーブ
主軸の位置、速度及びトルクとの差からスレーブ主軸に
対する補正値を算出し、前記マスタ主軸とスレーブ主軸
を同期させるようにしたことを特徴とする主軸同期方式
が、提供される。
In order to solve the above problems, the present invention provides a spindle synchronization method for controlling spindles of a lathe having opposed spindles, in which the first spindle is designated as a master spindle, the other spindles are designated as slave spindles, and the master spindle is designated as a slave spindle. and feed back the position, speed and torque of the slave spindle, calculate a correction value for the slave spindle from the difference between the position, speed and torque of the master spindle and the position, speed and torque of the slave spindle, and A spindle synchronization method characterized in that slave spindles are synchronized is provided.

〔作用〕[Effect]

マスタ主軸とスレーブ主軸の位置、速度及びトルク差か
らスレーブ主軸に与える補正値を算出するので、正確な
補正値が計算でき、マスタ主軸とスレーブ主軸の同期を
正確にとることができる。
Since the correction value given to the slave spindle is calculated from the position, speed, and torque difference between the master spindle and the slave spindle, accurate correction values can be calculated and the master spindle and slave spindle can be accurately synchronized.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に本発明の一実施例の主軸同期方式の概略のブロ
ック図を示す。図において、1はワークであり、それぞ
れのチャック11及び21によって保持されている。、
12はスレーブ主軸であり、歯車13及び14を介して
、主軸モータ15に結合されている。22はマスタ主軸
であり、歯車23及び24を介して、主軸モータ25に
結合されている。
FIG. 1 shows a schematic block diagram of a spindle synchronization system according to an embodiment of the present invention. In the figure, 1 is a workpiece, which is held by chucks 11 and 21, respectively. ,
12 is a slave spindle, which is coupled to the spindle motor 15 via gears 13 and 14. 22 is a master spindle, which is coupled to a spindle motor 25 via gears 23 and 24.

主軸モータ15には位置及び速度フィードバック用にパ
ルスコーダ16が取り付けられている。
A pulse coder 16 is attached to the main shaft motor 15 for position and velocity feedback.

同様に、主軸モータ25には位置及び速度フィードバッ
ク用にパルスコーダ26が取り付けられている。これら
のパルスコーダは、バルスコーダをスレーブ主軸12と
マスタ主軸22に取り付け、主軸モータ15及び16に
速度フィードバック用にタコジェネレータを設けるよう
に構成することもできる。
Similarly, a pulse coder 26 is attached to the spindle motor 25 for position and velocity feedback. These pulse coders can also be configured such that pulse coders are attached to the slave spindle 12 and master spindle 22, and the spindle motors 15 and 16 are provided with tacho generators for speed feedback.

主軸モータ15はスピンドルアンプ17によって駆動さ
れ、主軸モータ25はスピンドルアンプ27によって駆
動される。ここで、スピンドルアンプ17及び27はマ
イクロプロセッサ、メモリ等を有する速度制御回路、パ
ワートランジスタ等を有するパワーアンプから構成され
ている。
The main shaft motor 15 is driven by a spindle amplifier 17, and the main shaft motor 25 is driven by a spindle amplifier 27. Here, the spindle amplifiers 17 and 27 are composed of a microprocessor, a speed control circuit having a memory, etc., and a power amplifier having a power transistor, etc.

スピンドルアンプ17には速度指令CMとスレーブ主軸
用の補正指令値C2の和が指令値として与えられる。こ
れに対して、スピンドルアンプ27には指令値C8のみ
が与えられる。すなわち、スレーブ主軸12用のスピン
ドルアンプ17に対して、補正指令C1を与えることに
より、スレーブ主軸12とマスタ主軸22の同期をとる
。なお、指令値0.4及びCPは速度指令値として与え
られる。
The sum of the speed command CM and the correction command value C2 for the slave spindle is given to the spindle amplifier 17 as a command value. On the other hand, only the command value C8 is given to the spindle amplifier 27. That is, by giving the correction command C1 to the spindle amplifier 17 for the slave spindle 12, the slave spindle 12 and the master spindle 22 are synchronized. Note that the command value 0.4 and CP are given as speed command values.

一方、この補正指令値C7を算出するために、主軸モー
タ15及び主軸モータ25から、位置、速度、トルクの
フィードバックが取られる。
On the other hand, in order to calculate this correction command value C7, feedback of position, speed, and torque is taken from the main shaft motor 15 and the main shaft motor 25.

位置フィードバックはパルスコーダ16と26からP、
、P、とじて、そのまま数値制御装置(CNC)1にフ
ィードバックされる。
Position feedback from pulse coders 16 and 26 P,
, P, and is fed back as is to the numerical control device (CNC) 1.

速度はパルスコーダ16及び26から、■8、v、とし
−c 、 数イ1!′1制御22 M l t:1−、
/ 4 〜i’ ハフ り’i’5れる。実ト祭はバル
スイ1S号i:’、!’、’: しCソイ ドパ′ツク
5“ぺれたものを、数値制御ヤ1ニア71内でパルス列
φ”速度i=号に変換1゛る。
The speed is from the pulse coders 16 and 26, ■8, v, and -c, number I1! '1 control 22 M l t:1-,
/ 4 〜i' huff ri'i'5 reru. The actual festival is Barsui 1S i:',! ',': The C soid pulse 5' is converted into a pulse train φ' speed i= in the numerical control unit 71.

トルクはスピンドルアンプ17.bるいCよン゛l内の
1−軸千一夕の電流から検出5−トれ7A1)変換2)
)18及び28でデイバクタル値c1.゛変換されて、
数(IQ制御装置1にソイ・・ドパツクされる。
Torque is spindle amplifier 17. Detection from the current of 1-axis 1,000 in blue C channel 5-Torrent 7A1) Conversion 2)
) 18 and 28, the devactor value c1.゛Transformed,
number (socketed to the IQ control device 1).

これらの位置、速度、トルクのソイ・−ドパツク信υを
一〇速度信−号6J”′変10 +57、適))なゲイ
ンを一乗じて、スレーブ主軸12用の」軸土−夕1 =
5 K、対する補止(1^C1擾、、1♀′出゛りる6
、′れらのゲインは主軸モータ、機械のイノ゛−シャ等
の特性G、′よ、)”r決定される。
These position, speed, and torque signals υ are multiplied by the gain of 10 speed signal 6J"' change 10 + 57, appropriate) to obtain the "shaft power 1 =
5 Correction for K (1^C1 擾,, 1♀' comes out 6
,' These gains are determined by the characteristics G,') of the spindle motor, machine innovation, etc.

なお、スレー・ブ」:輔12へのトルク指令が余りに過
大になる。鼾、力へ−i ”?:ワ・−り6.′:過大
な庄・カづ・:かけることになり5.加ニー1−好1:
1、くないので、スレーブ主軸12用のトロ軸中・−り
100月・ルクが−・定植以J”にな2.たときは、ス
レー・ゾ主軸12のトルクを−・定値G、“、制[!Y
、ti”る。この制限イ1^はバ・−アメ・・タ等?一
般1jM ”3るJ、’X: (、’、−がt′八る。
Note that the torque command to slave 12 becomes too large. Snoring, to power -i ”?: Wa -ri 6.': Excessive Sho Kazu: It will be applied 5. Kanji 1 - Good 1:
1. Since there is no torque on the slave spindle 12, set the torque of the slave spindle 12 to a fixed value G, " , system [! Y
, ti"ru. This restriction I1^ is ba - ame... ta, etc.? General 1jM "3ru J, 'X: (, ', - is t' eight.

第2[121(a)及び(Ii ) i::::本R”
A OJ) JE m 同uJl 万代のソフl昌シ]
、ノ′のタル埋の71′1  チャ ・l・図を示4o
図6m ;liい?:、SL続く数値δよステンブ朝号
を小゛4・ (S l )−rスター)・軸のトルクソイ ・ドパツ
ク1.14.1ス1/−ブ+軸のドルクツイー・ドパツ
タ(、を読み取る。
Second [121(a) and (Ii) i::::This R”
A OJ) JE m same uJl Bandai no Sofu l Changshi]
, No' barrel-filled 71'1 Cha・l・show the diagram 4o
Figure 6m; Lii? :, SL followed by the numerical value δ, read the Stenbian number as small ゛4.

(S2)i・ルクす1、がバノメ −夕で設定されたl
・ルクt p以十か調べ、1.、、以l−であれば51
6’\1、以1・ならS3へい(。
(S2) i・lux1, set in vanome-evening
・Check if there are more than 10 ruku t p, 1. ,, if l- then 51
6'\1, if it is 1, go to S3 (.

(S3〕マスター1′軸のトルク1 +lとス1/−ブ
フt:軸のトルクi、1.との差1 +44・“求める
、。
(S3) Master 1' shaft torque 1 +l and S1/-buf t: shaft torque i, 1. Difference 1 +44・"Find.

(34)l・ルク差t i+ ’%E: l・ルク差を
累積さぜ人t、・ζ・Z′加え、tlTと置;\換Aる
つ(S J”) ) t、 f 4ニゲ・fンKl 4
−掛け、トルク差による補止分を算出する4゜ (S G) 補11:分゛rば補正(iu l:: L
、 ”’−C出力5きれるので、J゛れをl・ルク差の
累積(直t、5から差j7引く。
(34) l・lux difference t i+ '%E: Add l・lux difference t,・ζ・Z' and replace it with tlT; Nige fn Kl 4
- Multiply and calculate the correction amount due to the torque difference 4° (SG) Supplementary 11: Min.r correction (iul:: L
, ``' - Since the C output is 5, the J angle is the accumulation of l and the luke difference (direct t, 5 minus the difference j7.

I記の33・・5′;6の演′p、はブロック図で力く
ずと第3図のよ・)ζ、゛、なる。第3し1ばトルク差
番。′、よるスレーブ主軸の補正イ直4算出するための
ブロック図である。また、スレ・−ブ主軸の補正値はス
ピンドルアンプ17−・の速度指令値の補正値C,−と
j2で与えられるので、トルク差に対し2”(積分演算
4おこない補正値をiuf算し”Cいる。
33...5';6's operation 'p' in Book I is a block diagram, and is similar to Figure 3.)ζ, ゛, becomes. Number 3 is the torque difference number. ′ is a block diagram for calculating the slave spindle correction A4 according to In addition, since the correction value of the slave spindle is given by the correction value C, - of the speed command value of the spindle amplifier 17-. ``C is here.

[S7]マスタj軸の位;ηソイ 〜ドパツクPxxス
!/−ブ、t;軸の(17置ノイ・−ドパツクI)3.
苓、読・み取る。
[S7] Master j-axis position; η soi ~ Dopatsuku Pxx! /-B, t; Axis (17 position Neutral Pack I) 3.
Rei, read and understand.

〔S8〕両者のZ′、■1を求める。[S8] Find both Z' and ■1.

〔S9〕差分I)8か61回前の差分1” oとの−j
s? r・〉を求める。
[S9] Difference I) 8 or 61 times previous difference 1” -j with o
S? Find r.

(510)差分1・〕桑4′ゲインに2を掛り、位置の
差による補正値l)を求める。
(510) Difference 1.] Mulberry 4' Gain is multiplied by 2 to obtain a correction value l) due to the difference in position.

(S11.)差分1.INを1回前の差分13oL丁7
19 p3 pえる。
(S11.) Difference 1. Difference from IN one time before 13oL7
19 p3 p.

(312)マスタ主軸の速度フィー ドパツクVH、ス
j/−・ブ」ユ軸の速度ソイ ドパツクV、を読み取る
(312) Read the speed feed pack VH of the master spindle and the speed soid pack V of the main spindle.

(S13)両者の差)14[求める。(S13) Difference between the two) 14 [Find.

(:、’h 14 ) 速1.’差v66′ゲイ゛/ 
K 3’A−掛けこ、補正値■く・求める。
(:,'h 14) Speed 1. 'difference v66'gay/
K 3'A- Multiply, correction value ■ Calculate/find.

(S15)以l−求めノ、・:、、  1−ルク差によ
る補正値′1゛、位置の差による補正値I)、速度差(
5こよる補正値Vを加えて、ス1)−・ブ主軸に対づ“
る補正値〔;1を未める。
(S15) From now on, 1-calculation value, 1-luke difference correction value '1', position difference correction value I), speed difference (
Adding the correction value V of 5,
Correction value [; Subtract 1.

(516)スレーブF1・、軸のトルクがバラノC−タ
で設定された値t1.・以1.−Cあるので、補正(!
: CFを0にする。
(516) Slave F1・, the torque of the shaft is set at the value t1.・Below 1. - Since there is C, correction (!
: Set CF to 0.

(S 11 ) −、r ス9 HFJdl 4;m対
4る指令イii CM t’s スI/・・ゾ[1軸C
1“〕対4゛る補1指令値C,、を加えて、ス1/−ブ
」−軸Gご対する指令値C1を求める。
(S 11 ) -, r S9 HFJdl 4; m vs. 4 command II CM t's S I/...zo [1st axis C
By adding the complementary 1 command value C, which is 1" to 4, the command value C1 for the axis G is determined.

なオ;、−U−記のゲイ7Kli<2、K3はそれぞれ
の1:軸子・・夕、機械的条件(1ごよ、−7て決定さ
れる。
7Kli<2, K3 is determined by the mechanical conditions (1 and -7).

(発明の効果) 以、−1−説明したよ・’y &:’′、本発明(’I
 iJ、’、ス1./−グーi、軸の指令値4位ff、
速度及び!・ルクのそれぞれのフィー・Fバック値の差
分から13出するよ・)に構成し7ノ、”ので、精度□
の高い土、軸の同1111運転が可能Q、゛なり1、ワ
ークにかかる捩じりを防止し、ワークの加工精度を向上
させることができる。
(Effect of the invention) Hereinafter, -1- I explained.
iJ,', S1. /-Goo i, axis command value 4th ff,
Speed and!・We will get 13 from the difference between the respective fee and F back values of ・).
It is possible to operate the shaft at the same time in high soil conditions, which can prevent twisting of the workpiece and improve the machining accuracy of the workpiece.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の主軸同期方式の概略のブロ
ック図、 第2図(a)及び(b)に本発明の主軸同期方式のソフ
トウェアの処理のフローチャート図、第3図はトルク差
によるスレーブ主軸の補正値を算出するためのブロック
図である。 1−・−・・・・−−−−−・−ワーク2−−−−−−
−−−数値側iTI装fi (CNC)11−・・−一
−−−−−・−チャック12・−・−・−・−一−−−
−−スレーブ主軸15−・・・−一−−−−・−主軸モ
ータ16−・・・−−一−−−−・−パルスコーダ17
−・−・・・〜・・・スピンドルアンプ18・−・−・
−・−・・−AD変換器21・−・−・−・−−−−−
チャック22−・−−−−−−−・−・・マスタ主軸2
5・〜・−・−−一−−−−−・主軸モータ26・−−
−−−−・・・−・−バルスコーダ27−・−・−・・
・スピンドルアンプ2B−−−−〜−〜−−・−・・・
・AD変換器CH・−・−−−−一−−−−−−速度指
令値C3・・−−一−−−−−・−・−スレーブ主軸に
対する補正指令値特許出願人 ファナック株式会社 代理人   弁理士  服部毅巖 第2図CG) 第72図(L)) 第3
FIG. 1 is a schematic block diagram of the spindle synchronization method according to an embodiment of the present invention, FIGS. 2(a) and (b) are flowcharts of the software processing of the spindle synchronization method of the present invention, and FIG. 3 is a torque FIG. 7 is a block diagram for calculating a slave spindle correction value based on a difference. 1−・−・・−−−−−・−Work 2−−−−−−
---Numerical side iTI device fi (CNC) 11-...-1----------Chuck 12--------1---
--Slave spindle 15--1---Main shaft motor 16--1--Pulse coder 17
−・−・・・〜・・・Spindle amplifier 18・−・−・
−・−・・−AD converter 21・−・−・−・−−−−
Chuck 22 ------------- Master spindle 2
5・〜・−・−−1−−−−・Spindle motor 26・−−
−−−−・・・−・−Valse coder 27−・−・−・・
・Spindle amplifier 2B-------------...
- AD converter CH - - - - - - Speed command value C3 - - - - Correction command value for slave spindle Patent applicant Agent for FANUC Corporation Person Patent Attorney Takeshi Hattori Figure 2 CG) Figure 72 (L)) 3rd

Claims (4)

【特許請求の範囲】[Claims] (1)対向した主軸を有する旋盤の主軸を制御する主軸
同期方式において、 第1の主軸をマスタ主軸とし、他の主軸をスレーブ主軸
として指定し、 該マスタ主軸及び該スレーブ主軸の位置、速度及びトル
クをフィードバックし、 前記マスタ主軸の位置、速度及びトルクと前記スレーブ
主軸の位置、速度及びトルクとの差からスレーブ主軸に
対する補正値を算出し、 前記マスタ主軸とスレーブ主軸を同期させるようにした
ことを特徴とする主軸同期方式。
(1) In the spindle synchronization method for controlling the spindles of a lathe with opposing spindles, the first spindle is designated as the master spindle, the other spindles are designated as slave spindles, and the position, speed, and The torque is fed back, and a correction value for the slave spindle is calculated from the difference between the position, speed, and torque of the master spindle and the position, speed, and torque of the slave spindle, and the master spindle and the slave spindle are synchronized. Spindle synchronization system featuring:
(2)前記マスタ主軸と前記スレーブ主軸の指定は加工
プログラムで指定することを特徴とする特許請求の範囲
第1項記載の主軸同期方式。
(2) The spindle synchronization method according to claim 1, wherein the master spindle and the slave spindle are specified in a machining program.
(3)前記マスタ主軸と前記スレーブ主軸との位置、速
度及びトルクの差にそれぞれ所定の係数を乗じて前記補
正値を算出することを特徴とする特許請求の範囲第1項
記載の主軸同期方式。
(3) The spindle synchronization method according to claim 1, wherein the correction value is calculated by multiplying the differences in position, speed, and torque between the master spindle and the slave spindle by respective predetermined coefficients. .
(4)前記スレーブ主軸に対して、トルク制限を設けた
ことを特徴とする特許請求の範囲第1項記載の主軸同期
方式。
(4) The spindle synchronization system according to claim 1, wherein a torque limit is provided for the slave spindle.
JP5666088A 1988-03-10 1988-03-10 Spindle synchronizing system Pending JPH01228752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5666088A JPH01228752A (en) 1988-03-10 1988-03-10 Spindle synchronizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5666088A JPH01228752A (en) 1988-03-10 1988-03-10 Spindle synchronizing system

Publications (1)

Publication Number Publication Date
JPH01228752A true JPH01228752A (en) 1989-09-12

Family

ID=13033545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5666088A Pending JPH01228752A (en) 1988-03-10 1988-03-10 Spindle synchronizing system

Country Status (1)

Country Link
JP (1) JPH01228752A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204009A (en) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd Biaxial synchronizing driver
JPH03222012A (en) * 1990-01-26 1991-10-01 Nakamuratome Seimitsu Kogyo Kk Two main shaft confronting type cnc lathe and work processing method
JPH03278108A (en) * 1990-03-27 1991-12-09 Yaskawa Electric Corp Follow-up control system between two servo-system
EP0464496A2 (en) * 1990-07-05 1992-01-08 Mitsubishi Denki Kabushiki Kaisha Method for synchronously interlocking feed axes of a lathe
JPH05204420A (en) * 1992-01-29 1993-08-13 Mitsubishi Electric Corp Machine tool controller having two main spindles
US6333615B1 (en) 1997-07-02 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Synchronization control device for servo motors
US6404160B2 (en) 1998-12-24 2002-06-11 Mitsubishi Denki Kabushiki Kaisha Numerical control apparatus
JP2005176493A (en) * 2003-12-11 2005-06-30 Yaskawa Electric Corp Emergency stop method for motor driving device
US7183739B2 (en) 2003-03-04 2007-02-27 Fanuc Ltd Synchronous control device
WO2012132795A1 (en) * 2011-03-31 2012-10-04 コマツNtc株式会社 Crankshaft miller and crankshaft manufacturing method
JP2012196748A (en) * 2011-03-23 2012-10-18 Nakamura Tome Precision Ind Co Ltd Two-spindle opposed type nc lathe and vibration-proof machining method
JP2019145032A (en) * 2018-02-23 2019-08-29 ファナック株式会社 Numerical control device
WO2023053696A1 (en) * 2021-09-30 2023-04-06 中村留精密工業株式会社 Vibration-control machining method for long workpiece

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082518A (en) * 1973-11-26 1975-07-04
JPS5348291A (en) * 1976-10-13 1978-05-01 Toshiba Corp Control system for dual-circuitry drive source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082518A (en) * 1973-11-26 1975-07-04
JPS5348291A (en) * 1976-10-13 1978-05-01 Toshiba Corp Control system for dual-circuitry drive source

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204009A (en) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd Biaxial synchronizing driver
JPH03222012A (en) * 1990-01-26 1991-10-01 Nakamuratome Seimitsu Kogyo Kk Two main shaft confronting type cnc lathe and work processing method
JPH03278108A (en) * 1990-03-27 1991-12-09 Yaskawa Electric Corp Follow-up control system between two servo-system
EP0464496A2 (en) * 1990-07-05 1992-01-08 Mitsubishi Denki Kabushiki Kaisha Method for synchronously interlocking feed axes of a lathe
JPH0465701A (en) * 1990-07-05 1992-03-02 Mitsubishi Electric Corp Method for synchronously interlocking feed shaft of applied board
US5181441A (en) * 1990-07-05 1993-01-26 Mitsubishi Denki K.K. Method for synchronously interlocking feed axes of a lathe
JPH05204420A (en) * 1992-01-29 1993-08-13 Mitsubishi Electric Corp Machine tool controller having two main spindles
DE19882519B4 (en) * 1997-07-02 2005-12-22 Mitsubishi Denki K.K. Synchronization control unit for a servomotor
US6333615B1 (en) 1997-07-02 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Synchronization control device for servo motors
US6404160B2 (en) 1998-12-24 2002-06-11 Mitsubishi Denki Kabushiki Kaisha Numerical control apparatus
US7183739B2 (en) 2003-03-04 2007-02-27 Fanuc Ltd Synchronous control device
JP2005176493A (en) * 2003-12-11 2005-06-30 Yaskawa Electric Corp Emergency stop method for motor driving device
JP4565312B2 (en) * 2003-12-11 2010-10-20 株式会社安川電機 Servo controller and emergency stop method
JP2012196748A (en) * 2011-03-23 2012-10-18 Nakamura Tome Precision Ind Co Ltd Two-spindle opposed type nc lathe and vibration-proof machining method
WO2012132795A1 (en) * 2011-03-31 2012-10-04 コマツNtc株式会社 Crankshaft miller and crankshaft manufacturing method
JP5073126B1 (en) * 2011-03-31 2012-11-14 コマツNtc株式会社 Crankshaft mirror and method of manufacturing crankshaft
CN103124939A (en) * 2011-03-31 2013-05-29 小松Ntc株式会社 Crankshaft miller and crankshaft manufacturing method
JP2019145032A (en) * 2018-02-23 2019-08-29 ファナック株式会社 Numerical control device
US10901390B2 (en) 2018-02-23 2021-01-26 Fanuc Corporation Numerical controller
WO2023053696A1 (en) * 2021-09-30 2023-04-06 中村留精密工業株式会社 Vibration-control machining method for long workpiece

Similar Documents

Publication Publication Date Title
EP1742128B1 (en) Servo controller
JP2518457B2 (en) How to synchronize the feed axis of the lathe
JPH01228752A (en) Spindle synchronizing system
JP2581797B2 (en) Synchronous control method and device
JP3755054B2 (en) Synchronous control device
EP0374259A4 (en) Two opposed main shaft type cnc lathe
EP0098309A1 (en) Numerical control machining system
EP0335659A3 (en) A setting control method of machining coordinate system in a machine tool
JP2791917B2 (en) Polygon processing method
EP0364593B1 (en) Machine tool having two main spindles
JPH02220103A (en) Spindle control command system
JPH0649260B2 (en) Synchronous control device
JPH05138497A (en) Correction of wear of tool
JPS5848295B2 (en) Machine tool spindle control device
JP3568173B2 (en) Switching method of coordinate data specification format in numerically controlled machine tools
JPS6039488B2 (en) Automatic tooth alignment method on numerically controlled hobbing machine
JP3159317B2 (en) Turret type numerical control lathe
JPH0319748A (en) Spindle driving gear for machine tool
JPS58115504A (en) Controlling system of smoothing time constant of numerical controller
JPH0763226B2 (en) Synchronous control device
JPH04294963A (en) Control device for spindle synchronizm
JPS632610A (en) Thread cutting control method
JPH03126104A (en) Feed speed control system
JPS6062439A (en) Numerical control device
JPH01177893A (en) Synchronized operation method for main shaft