JPH01227045A - Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas - Google Patents

Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas

Info

Publication number
JPH01227045A
JPH01227045A JP63051500A JP5150088A JPH01227045A JP H01227045 A JPH01227045 A JP H01227045A JP 63051500 A JP63051500 A JP 63051500A JP 5150088 A JP5150088 A JP 5150088A JP H01227045 A JPH01227045 A JP H01227045A
Authority
JP
Japan
Prior art keywords
gas
oil
infrared detector
combustible
oil sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051500A
Other languages
Japanese (ja)
Inventor
Etsuo Oe
大江 悦男
Ichitaro Tani
谷 一太郎
Toshio Tsukioka
月岡 淑郎
Etsunori Mori
森 悦紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63051500A priority Critical patent/JPH01227045A/en
Publication of JPH01227045A publication Critical patent/JPH01227045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the simultaneous detection of CO2 and a combustible gas, by a construction wherein a gas collector detecting CO2 by an infrared detector is provided in a part of a piping system of a collecting element of gas in oil. CONSTITUTION:After pure air containing no CO2 is introduced and air inside a system is removed by operating an air pump 2', a prescribed quantity of oil in a transformer tank 28 is collected into a deaerated vessel 19. Next, gas is bubbled in the oil in the deaerated vessel 19 by the operation of the air pump 2', and the gas dissolved in the oil is extracted into a gas space part on the surface of the oil by bubbling and put in a state of equilibrium with the gas concentration in the gas. When the state of equilibrium is reached, on the other side, the air pump 2' is stopped by a timer 22, CO2 in a gas collector 25 with an infrared detector is detected, and the concentration of CO2 is detected by means of an amplifier operating element 14, an indicator and a recorder 16. When the detection of CO2 is ended, the collected gas in an amount-checking tube II 21 is sent into a gas separation column 4 and separated into gas components, and these components are detected sequentially by a combustible gas sensor 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は油入機器用ガス検出装置に係り、特に油中ガス
採取装置+ C02検出器、可燃性ガス用のガス検量管
、ガス分離カラム、ガスセンサ等のガス検出装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas detection device for oil-filled equipment, and in particular to a gas-in-oil sampling device + CO2 detector, a gas calibration tube for combustible gas, and a gas separation column. , relates to gas detection devices such as gas sensors.

〔従来の技術〕[Conventional technology]

従来のポータプルタイプ、あるいは、変圧器設置タイプ
の油中ガス検出装置ではH2,Co。
Conventional portaple-type or transformer-installed gas-in-oil detection devices detect H2 and Co.

CH4r Cz H2* C2Ha t CZ Hs等
の六成分可燃性ガスを検出し、異常を診断しており、寿
命診断に必要なCO2を検出していない。Co2を可燃
性ガスセンサ、FID付属ガスクロマトグラフ装置を利
用して検出するにはメタライザを用いてCH4に還元し
て検出している。しかし、H2ガスボンベからメタライ
ザにH2を流す必要があり、H2ガスボンベのリーク爆
発の危険性があり、ポータプルタイプ、あるいは、変圧
器設置タイプには適用しにくい問題がある。
Six-component combustible gases such as CH4r Cz H2* C2Ha t CZ Hs are detected and abnormalities are diagnosed, but CO2, which is necessary for life diagnosis, is not detected. In order to detect Co2 using a combustible gas sensor and a gas chromatograph device attached to FID, it is reduced to CH4 using a metallizer and then detected. However, it is necessary to flow H2 from the H2 gas cylinder to the metallizer, and there is a risk of leakage and explosion of the H2 gas cylinder, making it difficult to apply to a portable type or a transformer installed type.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はCOzの検出に考慮されておらず、変圧
器の寿命診断には利用できないという問題があった。
The above-mentioned conventional technology does not take COz detection into consideration, and there is a problem in that it cannot be used for diagnosing the life of a transformer.

本発明の目的は精度よく、安全性の高いCo2、可燃性
ガスを同時に検出する油入機器用ガス検出装置を提供す
ることにある。
An object of the present invention is to provide a gas detection device for oil-filled equipment that simultaneously detects Co2 and combustible gas with high accuracy and safety.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、油中ガス採取装置に付属させたガス捕集容
器(赤外セル)のガス中CO2を赤外線検出器で検出し
、可燃性ガスはガス検量管・ガス分離カラム・ガスセン
サからなる油中ガス検出装置で検出することにより達成
される。
The above purpose is to detect CO2 in the gas in the gas collection container (infrared cell) attached to the gas in oil sampling device with an infrared detector, and detect combustible gas in the oil, which consists of a gas measuring tube, gas separation column, and gas sensor. This is achieved by detecting with a medium gas detection device.

〔作用〕[Effect]

赤外線検出器でCo2を検出するガス捕集容器(赤外セ
ル)を可燃性ガス検出装置のガス検量管手前に、つまり
、油中ガス採取装置の配管系の一部に付属させることに
より、可燃性ガス検出時のテーリングがなく、分離、精
度よく検出できる。
By attaching a gas collection container (infrared cell) that detects Co2 with an infrared detector in front of the gas measuring tube of the flammable gas detection device, that is, as part of the piping system of the gas-in-oil sampling device, There is no tailing when detecting gases, allowing for separation and accurate detection.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図は本発明の一実施例を示す。本実施例ではバブリン
グ式油中ガス採取装置と可燃性ガス検出装置とに二分さ
れ、さらにCOzを検出する装置である。まず、ニード
ル弁13Bを閉じ、空気ポンプ2′を作動させてニード
ル弁13CからCo2を含まない純空気を入れ、ニード
ル弁13Aを開いて系内の空気を除く。次いでニードル
弁13Cを閉じ、バルブ27、ニードル弁130を開い
て脱気容器19に変圧器タンク中の油を一定量(例えば
、100mu)採取する。次いで、ニードル弁130、
バルブ27を閉じ、ニードル弁13Bを開いて、ニード
ル弁13Aを閉じる。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. In this embodiment, the apparatus is divided into a bubbling-type gas-in-oil sampling apparatus and a combustible gas detection apparatus, and is also an apparatus for detecting COz. First, the needle valve 13B is closed, the air pump 2' is operated to introduce pure air containing no Co2 from the needle valve 13C, and the needle valve 13A is opened to remove air from the system. Next, the needle valve 13C is closed, the valve 27 and the needle valve 130 are opened, and a certain amount (for example, 100 mu) of the oil in the transformer tank is collected into the degassing container 19. Next, the needle valve 130,
Close the valve 27, open the needle valve 13B, and close the needle valve 13A.

次いで、空気ポンプ2′の作動で脱気容器19内の油に
ガスがバブリングされ、油中溶解ガスはバブリングする
ことにより油面上のガス空間部に抽出され、士ないし二
十分間バブリングすると油中とガス中のガス濃度は平衡
状態に達する。この平衡状態は予め既知濃度のガスを溶
解させた油について油中濃度と気中濃度との平衡係数を
測定し、その平衡係数から油中濃度を補正し真の値が測
定できる。一方、平衡状態に達した時にタイマー22で
空気ポンプ2′を止め、赤外検出器付属赤外セル25中
のCO2を検出し、アンプ操作部14、指示計15.記
録計16でCO2の濃度を検出する。また、CO2の既
知濃度ガスを12がら注入し予め検量しておく。Co2
の検出が終了した時に検量管■21の捕集ガスは、予め
ガス分離カラム4、可燃性ガスセンサを所定の一定温度
に保持し、空気ポンプ2を作動させ、圧力計3を使用し
系内の空気キャリアガスの流速も一定にしておき、切換
弁23を切換えて、空気キャリアガスによりガス分離カ
ラム4に送り込み、ガス分離カラム4によりH2,Co
、CH4,C2H8,CzLtC2Hzのガス成分に分
離し、順次可燃性ガスセンサで検出し、mVメータ9、
測定器11により測定記録される。一方、ミニジヨイン
ト17をはずして17′にとりつけ、標準ガス注入口1
2から既知濃度ガスを注入して各可燃性ガスの検量がで
きる。その検量データと脱気容器19で油中ガスと気中
ガスの平衡係数をもとにデータ処理すると真の変圧器油
中ガス濃度が算出できる。なお、ガスの検出が終了した
時、脱気容器19の残油(100mQ)はニードル弁1
3Cを開いて、空気ポンプ2′を作動し、ニードル弁1
3Dを開くと油排出口24から排出される。
Next, gas is bubbled into the oil in the degassing container 19 by the operation of the air pump 2', and the dissolved gas in the oil is extracted into the gas space above the oil surface by bubbling, and after bubbling for about 20 minutes. The gas concentrations in the oil and gas reach an equilibrium state. This equilibrium state can be determined by measuring the equilibrium coefficient between the concentration in oil and the concentration in air for oil in which a known concentration of gas is dissolved in advance, and correcting the concentration in oil from the equilibrium coefficient to determine the true value. On the other hand, when the equilibrium state is reached, the air pump 2' is stopped by the timer 22, CO2 in the infrared cell 25 attached to the infrared detector is detected, and the amplifier operation section 14, indicator 15. The recorder 16 detects the concentration of CO2. In addition, 12 volumes of gas with a known concentration of CO2 are injected and calibrated in advance. Co2
When the detection is completed, the gas collected in the calibration tube 21 is collected by keeping the gas separation column 4 and combustible gas sensor at a predetermined constant temperature, operating the air pump 2, and using the pressure gauge 3 to collect the gas in the system. The flow rate of the air carrier gas is also kept constant, and the switching valve 23 is switched to send the air carrier gas to the gas separation column 4.
, CH4, C2H8, CzLtC2Hz, and sequentially detected with a combustible gas sensor, mV meter 9,
The measurement is recorded by the measuring device 11. On the other hand, remove the mini joint 17 and attach it to the standard gas inlet 1.
Each combustible gas can be calibrated by injecting a known concentration gas from step 2. By processing the calibration data and the equilibrium coefficient of gas in oil and gas in air in the degassing container 19, the true concentration of gas in oil of the transformer can be calculated. In addition, when gas detection is completed, residual oil (100 mQ) in the deaeration container 19 is removed from the needle valve 1.
3C, operate air pump 2', and close needle valve 1.
When the 3D is opened, oil is discharged from the oil discharge port 24.

Co2.可燃性ガス検出装置において、まず、バブリン
グ式油中ガス抽出器の代りにストリッピング式油中ガス
抽出器の場合にも同様に適用できる。又、ガス分離カラ
ムは充填剤が異なる一本以上、好ましくはニないし三本
用いるのがよい。さらに、ニードル弁13Cより注入す
るガスはCO2が不純物として混入していることは望ま
しくなく、純空気、脱COxの空気、Nz、Ar、He
などの不活性ガスが望ましい。一方、Coz用赤外検出
器は赤外線吸収波長が2250cm−”を利用するとポ
ータプル化が可能になる。
Co2. In the combustible gas detection device, first, the present invention can be similarly applied to a stripping type gas-in-oil extractor instead of a bubbling type gas-in-oil extractor. Further, it is preferable to use one or more gas separation columns, preferably two or three gas separation columns with different packing materials. Furthermore, it is undesirable for the gas injected from the needle valve 13C to contain CO2 as an impurity; pure air, COx-free air, Nz, Ar, He
An inert gas such as is preferable. On the other hand, if the infrared detector for Coz uses an infrared absorption wavelength of 2250 cm-'', it can be made into a portaple.

以上の002、可燃性ガスを検出する装置では、Co2
は精度よく検出することができ、Co2用の赤外セル2
5を可燃性検出用検量管21の手前に設けることにより
可燃性ガス検出時における各ガス成分の分離が悪く、テ
ィーリングが大きくなるという問題がなくなる。これは
仮に、赤外セル25を検量管21の後へ設けると、ガス
分離カラム・可燃性ガスセンサで検出した時にティーリ
ングが大きく分mが悪く、検出精度が非常に悪くなる。
In the above 002, a device for detecting combustible gas, Co2
can be detected with high precision, and infrared cell 2 for Co2
5 in front of the calibration tube 21 for flammability detection eliminates the problem of poor separation of each gas component and large teeing when detecting combustible gas. This is because if the infrared cell 25 is installed after the calibration tube 21, tealing will be large and the detection accuracy will be very poor when detected by a gas separation column or combustible gas sensor.

バブリング式油中ガス採取装置、COz検出装置、可燃
性ガス装置を用いることにより、従来の可燃性ガスばか
りでなく、CO2も精度よく、安全に検出することがで
きる。
By using a bubbling type gas-in-oil sampling device, a COz detection device, and a combustible gas device, not only conventional combustible gases but also CO2 can be detected accurately and safely.

第2図の実施例は、ガス透過高分子膜を用いたガス透過
式油中ガス採取装置、CO2検出装置。
The embodiment shown in FIG. 2 is a gas-permeable gas-in-oil sampling device and CO2 detection device using a gas-permeable polymer membrane.

可燃性ガス検出装置を示す。まず、ガス透過室21、ガ
ス透過膜22.油導入室23.赤外セル19、検量管■
17.六方切換弁18等からなるガス透過装置を変圧器
タンク25のフランジ弁24にセットし、土日〜十日経
過すると油中ガスはガス透過室21、赤外セル19に透
過してきて油中とガス室中のガス濃度は平衡に達する。
A combustible gas detection device is shown. First, the gas permeable chamber 21, the gas permeable membrane 22. Oil introduction chamber 23. Infrared cell 19, calibration tube■
17. A gas permeation device consisting of a six-way switching valve 18, etc. is set on the flange valve 24 of the transformer tank 25, and after 10 days from Saturdays and Sundays, the gas in the oil permeates into the gas permeation chamber 21 and the infrared cell 19, and the gas in the oil and gas The gas concentration in the chamber reaches equilibrium.

従って、土日〜十日毎に、常時、油中ガスを検出するこ
とができる。なお、フランジ弁24にガス透過装置をセ
ット時にバルブ2OAから注入するガスはCo2が不純
物として混入していることは望ましくなく、純空気、脱
CO2の空気、Nz、Hr。
Therefore, gas in oil can be constantly detected every 10 days from Saturdays and Sundays. Note that when the gas permeation device is set in the flange valve 24, it is not desirable that the gas injected from the valve 2OA contains Co2 as an impurity, and may be pure air, CO2-free air, Nz, or Hr.

Heなどの不活性ガスが望ましい。フランジ弁24にガ
ス透過装置をセットし、バルブ2OAを開いてガスを注
入し、バルブを閉じる。七日〜十日経過後に、赤外セル
中のCotをセルに付属させた赤外検出器で検出し、ア
ンプ操作部14.指示計15.記録計16でCo2の濃
度を測定する。
An inert gas such as He is preferred. A gas permeation device is set on the flange valve 24, the valve 2OA is opened to inject gas, and the valve is closed. After seven to ten days have elapsed, Cot in the infrared cell is detected by an infrared detector attached to the cell, and the amplifier operating section 14. Indicator 15. The recorder 16 measures the concentration of Co2.

また、Co2の既知濃度ガスをバルブ20Aから注入し
予め検量しておく、さらに、油中とガス室中のガス平衡
係数を予め測定しておき、その係数とガス透過室のCO
2濃度、検量データをもとに変圧器油中のCOx濃度を
測定する。
In addition, a gas with a known concentration of Co2 is injected from the valve 20A and calibrated in advance.Furthermore, the gas equilibrium coefficients in the oil and gas chamber are measured in advance, and the coefficient and the CO2 in the gas permeation chamber are measured in advance.
2. Measure the COx concentration in the transformer oil based on the concentration and calibration data.

Cozの検出が終了した時に、検量管17の捕集ガスは
、予めガス分離カラム4、可燃性ガスセンサを所定の一
定温度に保持し、空気ポンプ2を作動させ、圧力計3を
使用し、系内の空気キャリアガスの流速も一定にしてお
き、六方切換弁18を切換えて、空気キャリアガスによ
りガス分離カラム4に送り込み、ガス分離カラム4によ
りH2゜Co、CH4,C2H6,(、kH2のガス成
分に分離し、順次可燃性ガスセンサで検出し、mVメj
り9、測定器11により測定記録される。一方、可燃性
ガスの検量方法は第1図の場合と同様である。
When the detection of Coz is completed, the gas collected in the calibration tube 17 is collected by keeping the gas separation column 4 and the combustible gas sensor at a predetermined constant temperature, operating the air pump 2, and using the pressure gauge 3. The flow rate of the air carrier gas in the tank is also kept constant, and the six-way switching valve 18 is switched to send the air carrier gas to the gas separation column 4. Separate into components, sequentially detect with combustible gas sensor, mV meter
9, measured and recorded by the measuring device 11. On the other hand, the method of measuring combustible gas is the same as in the case of FIG.

その検量データとガス透過室の各可燃性ガス濃度、油中
とガス室中のガス平衡係数をもとにデータ処理すると、
真の変圧器油中可燃性ガス濃度が算出できる。Co2.
可燃性ガスを検出する装置は、第1図の場合と同様に、
可燃性ガス検出時にティーリングなく精度よく検出でき
、また、可燃性ガスばかりでな(COzも精度よく、安
全に検出することができる。
When the data is processed based on the calibration data, the concentration of each flammable gas in the gas permeation chamber, and the gas equilibrium coefficient in the oil and gas chamber,
The true flammable gas concentration in transformer oil can be calculated. Co2.
The device for detecting combustible gas is as in the case of Fig. 1.
Combustible gases can be detected accurately without tealing, and not only combustible gases (COz) can also be detected accurately and safely.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、CO2と可燃性ガスを同時に精度よく
検出でき、異常診断と寿命診断に利用できる油入機器用
ガス検出器を提供することができる。
According to the present invention, it is possible to provide a gas detector for oil-filled equipment that can simultaneously detect CO2 and combustible gas with high accuracy and can be used for abnormality diagnosis and lifespan diagnosis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例の油入機器用ガス検
出器の系統図である。
1 and 2 are system diagrams of a gas detector for oil-filled equipment according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、油中ガス採取部と可燃性ガス検出部とから成るガス
検出装置において、 前記油中ガス採取部が炭酸ガスの赤外線検出器とガス捕
集器を含み、前記可燃性ガス検出部がガス検量管、ガス
分離カラムおよびガスセンサを含むことを特徴とする油
入機器用ガス検出装置。 2、油中ガス採取部と可燃性ガス検出部とから成るガス
検出装置において、 前記油中ガス採取部が炭酸ガスの赤外線検出器とガス捕
集器を含み、前記可燃性ガス検出部がガス検量管、ガス
分離カラムおよびガスセンサを含み、かつ、前記炭酸ガ
スの赤外線検出器が前記可燃性ガス検出部の前記ガス検
量管の手前に設けられていることを特徴とする油入機器
用ガス検出装置。 3、前記赤外線検出器を動作時に、前記油中ガス採取部
のガス流路内のガス流を停止する停止手段を設けたこと
を特徴とする特許請求の範囲第1項または第2項記載の
油入機器用ガス検出装置。 4、前記赤外線検出器は動作手段と、ガス流路内のガス
流を停止する手段とを連動させたことを特徴とする特許
請求の範囲第3項記載の油入機器用ガス検出装置。 5、油中ガス採取部と炭酸ガスの赤外線検出器を設けた
ことを特徴とする油入機器の油中ガス採取装置。 6、前記赤外線検出器を動作時に、前記油中ガス採取部
のガス流路内のガス流を停止する停止手段を設けたこと
を特徴とする特許請求の範囲第5項記載の油入機器の油
中ガス採取装置。 7、前記赤外線検出器の動作手段とガス流路内のガス流
を停止する手段とを連動させたことを特徴とする特許請
求の範囲第6項記載の油入機器の油中ガス採取装置。 8、油入機器のガス検出方法において、 (1)前記油入機器に設けた油採取弁に連結した油中ガ
ス採取装置中の残存ガスを、前記油中ガス採取装置に設
けたガス循環手段により外気に置換した後、系を外気と
遮断する、 (2)前記油採取弁を開放して前記油入機器内の油をガ
ス分離器内に導入し、系内のガスを循環して採取された
前記油をバブリングすることにより溶存ガスを抽出する
、 (3)前記抽出ガスを、系内に設けられた赤外線検出器
内を循環させた後、ガス流の停止手段を作動して前記赤
外線検出器内にガスを停留させる、 (4)前記赤外線検出器を作動させて、前記抽出ガス中
の炭酸ガス濃度を測定する、 工程を含む油入機器のガス検出方法。
[Claims] 1. A gas detection device comprising a gas-in-oil sampling section and a combustible gas detection section, wherein the gas-in-oil sampling section includes an infrared detector and a gas collector for carbon dioxide gas, 1. A gas detection device for oil-filled equipment, wherein the gas detection section includes a gas calibration tube, a gas separation column, and a gas sensor. 2. A gas detection device comprising a gas-in-oil sampling section and a combustible gas detection section, wherein the gas-in-oil sampling section includes an infrared carbon dioxide detector and a gas collector, and the combustible gas detection section Gas detection for oil-filled equipment, comprising a calibration tube, a gas separation column, and a gas sensor, and wherein the carbon dioxide infrared detector is provided in front of the gas calibration tube of the combustible gas detection section. Device. 3. The apparatus according to claim 1 or 2, further comprising a stop means for stopping the gas flow in the gas flow path of the gas-in-oil sampling section when the infrared detector is operated. Gas detection device for oil-filled equipment. 4. The gas detection device for oil-filled equipment according to claim 3, wherein the infrared detector has operating means and means for stopping the gas flow in the gas flow path linked together. 5. A gas-in-oil sampling device for oil-immersed equipment, characterized in that it is equipped with a gas-in-oil sampling section and an infrared detector for carbon dioxide gas. 6. The oil-immersed equipment according to claim 5, further comprising a stop means for stopping the gas flow in the gas flow path of the gas-in-oil sampling section when the infrared detector is operated. Gas-in-oil sampling equipment. 7. The gas-in-oil sampling device for oil-immersed equipment according to claim 6, wherein the operating means of the infrared detector and the means for stopping the gas flow in the gas flow path are linked. 8. In a gas detection method for oil-filled equipment, (1) residual gas in a gas-in-oil sampling device connected to an oil sampling valve provided in the oil-filled equipment is removed by gas circulation means provided in the gas-in-oil sampling device; (2) Open the oil sampling valve and introduce the oil in the oil-filled equipment into the gas separator, circulate and collect the gas in the system. (3) After the extracted gas is circulated through an infrared detector provided in the system, a gas flow stop means is activated to extract the dissolved gas by bubbling the extracted oil. A gas detection method for oil-filled equipment, including the steps of: (4) activating the infrared detector to measure the carbon dioxide concentration in the extracted gas.
JP63051500A 1988-03-07 1988-03-07 Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas Pending JPH01227045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051500A JPH01227045A (en) 1988-03-07 1988-03-07 Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051500A JPH01227045A (en) 1988-03-07 1988-03-07 Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas

Publications (1)

Publication Number Publication Date
JPH01227045A true JPH01227045A (en) 1989-09-11

Family

ID=12888700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051500A Pending JPH01227045A (en) 1988-03-07 1988-03-07 Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas

Country Status (1)

Country Link
JP (1) JPH01227045A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265136A (en) * 1988-04-18 1989-10-23 Nissin Electric Co Ltd Instrument for measuring gas dissolved in oil
JPH02112744A (en) * 1988-10-21 1990-04-25 Kansai Electric Power Co Inc:The Method and device for detecting dissolved gas in insulating oil
JPH0552787A (en) * 1991-08-26 1993-03-02 Nissin Electric Co Ltd Device for measuring dissolved gas within oil
JPH05164754A (en) * 1991-12-16 1993-06-29 Toshiba Corp Automatically monitoring device for in-oil gas of transformer
JPH0633061U (en) * 1992-10-02 1994-04-28 三菱電機株式会社 Gas measuring device in oil
JP2007309770A (en) * 2006-05-18 2007-11-29 Hitachi Ltd Analyzer for in-oil gas, transformer equipped with the analyzer for in-oil gas, and analysis method for in-oil gas
JP2009236583A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and analysis method therefor
JP2010025899A (en) * 2008-07-24 2010-02-04 Mitsubishi Electric Corp Apparatus for analyzing gas dissolved in oil
JP2010139421A (en) * 2008-12-12 2010-06-24 Hitachi Ltd Gas component analyzer
JP2015034781A (en) * 2013-08-09 2015-02-19 三菱電機株式会社 Gas analyser and gas analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111044A (en) * 1982-12-17 1984-06-27 Fuji Electric Corp Res & Dev Ltd Apparatus for measuring gas in oil of oil contained insulating electric device
JPS62162961A (en) * 1986-01-10 1987-07-18 Union Denshi Kogyo:Kk Method and device for detecting oil exchange period
JPS62231164A (en) * 1986-03-31 1987-10-09 Japan Spectroscopic Co Data processing method for chromatography using plural detectors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111044A (en) * 1982-12-17 1984-06-27 Fuji Electric Corp Res & Dev Ltd Apparatus for measuring gas in oil of oil contained insulating electric device
JPS62162961A (en) * 1986-01-10 1987-07-18 Union Denshi Kogyo:Kk Method and device for detecting oil exchange period
JPS62231164A (en) * 1986-03-31 1987-10-09 Japan Spectroscopic Co Data processing method for chromatography using plural detectors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265136A (en) * 1988-04-18 1989-10-23 Nissin Electric Co Ltd Instrument for measuring gas dissolved in oil
JPH02112744A (en) * 1988-10-21 1990-04-25 Kansai Electric Power Co Inc:The Method and device for detecting dissolved gas in insulating oil
JPH0552787A (en) * 1991-08-26 1993-03-02 Nissin Electric Co Ltd Device for measuring dissolved gas within oil
JPH05164754A (en) * 1991-12-16 1993-06-29 Toshiba Corp Automatically monitoring device for in-oil gas of transformer
JPH0633061U (en) * 1992-10-02 1994-04-28 三菱電機株式会社 Gas measuring device in oil
JP2007309770A (en) * 2006-05-18 2007-11-29 Hitachi Ltd Analyzer for in-oil gas, transformer equipped with the analyzer for in-oil gas, and analysis method for in-oil gas
JP2009236583A (en) * 2008-03-26 2009-10-15 Yazaki Corp Gas chromatograph device and analysis method therefor
JP2010025899A (en) * 2008-07-24 2010-02-04 Mitsubishi Electric Corp Apparatus for analyzing gas dissolved in oil
JP2010139421A (en) * 2008-12-12 2010-06-24 Hitachi Ltd Gas component analyzer
JP2015034781A (en) * 2013-08-09 2015-02-19 三菱電機株式会社 Gas analyser and gas analysis method

Similar Documents

Publication Publication Date Title
Pye et al. Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus
US5361625A (en) Method and device for the measurement of barrier properties of films against gases
JP3245102B2 (en) Water penetration test method for filters
US3590634A (en) Instrument for determining permeation rates through a membrane
Suzuki et al. A high-temperature catalytic oxidation method for the determination of dissolved organic carbon in seawater: analysis and improvement
EP2113764B1 (en) Humidity control system for the sensing cell of an analyte permeation testing instrument
US7709267B2 (en) System and method for extracting headspace vapor
CA1184786A (en) Apparatus for measuring gas transmission through films
US9945826B2 (en) Functional test for gas sensors
US6324891B1 (en) Method and apparatus for monitoring GAS(ES) in a dielectric fluid
JPH01227045A (en) Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas
JP6444373B2 (en) Mixed breath gas analyzer for bad breath detection and analysis method
US4815316A (en) Diffusion measurement
US20140013824A1 (en) Method and apparatus for increasing the speed and/or resolution of gas permeation measurements
JPS63175740A (en) Detector for gaseous component of air
Lomax Permeation of gases and vapours through polymer films and thin sheet—part I
US3258896A (en) Determination of impurities in pure gases, preferably hydrogen
US4835395A (en) Continuous aqueous tritium monitor
CA1265357A (en) Method and a device for detecting leakage of a tube section
JP2748751B2 (en) Oil dissolved gas measuring device
CN219977699U (en) Sample gas passage air tightness detection device of ion chromatograph such as insulating oil
CZ36119U1 (en) Equipment for determining the transport properties of non-porous polymeric materials for gases
CN113023919B (en) Pressurized water reactor sample water gas-liquid separation device and fission gas measurement method
CN219532912U (en) Tester for carbon dioxide absorption capacity based on NDIR technology
JPH05164754A (en) Automatically monitoring device for in-oil gas of transformer