JPH01225118A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPH01225118A
JPH01225118A JP63049849A JP4984988A JPH01225118A JP H01225118 A JPH01225118 A JP H01225118A JP 63049849 A JP63049849 A JP 63049849A JP 4984988 A JP4984988 A JP 4984988A JP H01225118 A JPH01225118 A JP H01225118A
Authority
JP
Japan
Prior art keywords
ray
windows
storage chamber
window
blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63049849A
Other languages
Japanese (ja)
Inventor
Yutaka Tanaka
裕 田中
Yuji Chiba
千葉 裕司
Koji Marumo
丸茂 光司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63049849A priority Critical patent/JPH01225118A/en
Publication of JPH01225118A publication Critical patent/JPH01225118A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the scaling up of an exhaust system and thin each interrupting window sufficiently, and to enable evacuation by installing a sluice valve between the first and second interrupting windows while making both sides of respective interrupting window communicate by a bypass pipe and evacuating the title device. CONSTITUTION:Valves 14, 16 are opened, a high vacuum pump 19 and a low vacuum pump 20 are driven, and exhaust operation is conducted. When the high vacuum pump 19 is operated at that time, rough evacuation is performed by an auxiliary pump up to approximately 10<-1>Torr from atmospheric pressure. A sluice valve 5 is closed in the evacuation operation, and both sides of first and second interrupting windows 4, 7 communicate respectively by bypass pipes 21, 22, thus preventing the working of differential pressure to each of the interrupting windows 4, 7. Consequently, the thickness of the windows may be thinned as much as possible, and most of absorption of X-ray through the interrupting windows 4, 7 can be ignored. Accordingly, the attenuation of X-rays is inhibited sufficiently without scaling up an evacuation system, and the possibility of the breaking of the interrupting windows can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体集積回路の微細パターンを軟X線を用
いてウニへ上に転写形成するX線露光装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray exposure apparatus that transfers and forms a fine pattern of a semiconductor integrated circuit onto a sea urchin using soft X-rays.

[発明の背景] X線露光装置用X線源としては、電子線励起によりX線
を発生させる管球方式、プラズマから発生するX線を利
用するもの、シンクロトロン軌道放射光を利用するもの
などがある。これらのX線源はいずれの場合も真空中で
X線を発生するものである。真空度は管球方式で10−
6〜1O−7Torr、プラズマ方式では10 ””T
orr以下、シンクロトロン軌道放射光では10′−9
〜10′−10TOrrといった超高真空が要求される
。したがって、X線源は真空雰囲気室内におかれ、発生
したX線をマスク、ウェハ等に照射させる場合、X線の
透過率の高い材質から成る遮断窓を通して照射している
。そして、また、管球方式やプラズマ方式の線源は0.
1〜数ff1II+といった大きさであり、また発散光
であることがら半影ぼけを小さくし、露光面積を大きく
するために、X線源からマスク、ウェハまでの距離を2
00〜500)と大きくとる必要がある。さらに、シン
クロトロン軌道放射光の場合ではX線源とマスク、ウェ
ハの距離は数m以上に及ぶ。この場合、遮断窓からウェ
ハへ至るX線透過経路に大気が存在すると、X線が大気
に吸収され、そのため露光時間が増大し、スループット
の低下を招く。X線露光装置を産業用装置としてみた場
合、スルーブツトの低下は装置にとって致命的な欠点と
なる。これを解決するため、マスク、ウェハおよび両者
の位置合せ機構は、真空気密な試料収納容器内におかれ
、前記容器内の大気を置換してX線の吸収の小さいガス
体(通常ヘリウム(He))を大気圧以下に減圧して満
たす方式が提案されている。また、遮断窓の材料として
X線に対して透過率の高いベリリウム(Be)を用いた
としても、実用的な透過能を得るためには、20μm程
度の薄膜にしなければならない。
[Background of the Invention] X-ray sources for X-ray exposure devices include tube systems that generate X-rays through electron beam excitation, systems that utilize X-rays generated from plasma, systems that utilize synchrotron orbital synchrotron radiation, etc. There is. In each case, these X-ray sources generate X-rays in a vacuum. The degree of vacuum is 10- by tube method.
6 to 1O-7Torr, 10""T for plasma method
orr or less, 10'-9 for synchrotron orbital synchrotron radiation
An ultra-high vacuum of ~10'-10 TOrr is required. Therefore, the X-ray source is placed in a vacuum atmosphere chamber, and when the generated X-rays are to be irradiated onto a mask, wafer, etc., they are irradiated through a blocking window made of a material with high X-ray transmittance. Also, tube type and plasma type radiation sources are 0.
1 to several ff1II+, and since the light is diverging, the distance from the X-ray source to the mask and wafer is set to 2 to reduce penumbra blur and increase the exposure area.
00 to 500). Furthermore, in the case of synchrotron orbital synchrotron radiation, the distance between the X-ray source, mask, and wafer is several meters or more. In this case, if the atmosphere exists in the X-ray transmission path from the blocking window to the wafer, the X-rays will be absorbed by the atmosphere, thereby increasing the exposure time and reducing throughput. When an X-ray exposure device is viewed as an industrial device, a reduction in throughput is a fatal drawback for the device. To solve this problem, the mask, wafer, and alignment mechanism for both are placed in a vacuum-tight sample storage container, and the atmosphere inside the container is replaced with a gas (usually helium) that has low X-ray absorption. )) has been proposed to be filled by reducing the pressure to below atmospheric pressure. Further, even if beryllium (Be), which has high transmittance to X-rays, is used as the material for the blocking window, the film must be made as thin as about 20 μm in order to obtain practical transmittance.

従って耐圧の問題が生ずる。管球方式やプラズマ方式で
は発散光であるため、遮断窓をX線源に近づければ、そ
れだけ小口径の窓にすることが可能となる。
Therefore, the problem of withstand voltage arises. In the tube method and plasma method, since the light is divergent, the closer the blocking window is to the X-ray source, the smaller the diameter of the window can be made.

しかしながら、窓を小さくすれば露光面積が減少する。However, making the window smaller reduces the exposed area.

X線の吸収を効率良く防止し、装置を大型化、複雑化す
ることなくX線による露光転写可能なX線露光装置が望
まれている。
There is a demand for an X-ray exposure device that can efficiently prevent absorption of X-rays and can perform exposure transfer using X-rays without increasing the size or complexity of the device.

[従来の技術] 従来のX線露光装置の構造は例えば特開昭54−242
67号公報に開示されている。この従来構造を第6図に
示す。
[Prior art] The structure of a conventional X-ray exposure apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 54-242.
It is disclosed in Publication No. 67. This conventional structure is shown in FIG.

電子銃1およびターゲット2からなるX線源はX線源収
納室3内に密封収納される。X線源収納室3はバルブ1
4を介して高真空ポンプ19に連結され、内部は10 
”’Torr程度の高真空に保たれる。X線源収納室3
にはX線取出し用の遮断窓37が設けられている。X線
の被照射体であるウェハ11およびマスク12はウェハ
搭載ステージ9とともにステージ収納室8内に収納され
ている。10はウェハチャック、13はマスクチャック
である。ステージ収納室8は鏡筒6を介してX線源収納
室3に連結される。ステージ収納室8はバルブ16を介
して低真空ポンプ20に連結され、またバルブ18を介
してヘリウム(He)源に連結されている。
An X-ray source consisting of an electron gun 1 and a target 2 is hermetically housed in an X-ray source storage chamber 3. X-ray source storage chamber 3 has valve 1
It is connected to the high vacuum pump 19 via 4, and the internal 10
It is maintained at a high vacuum of about Torr. X-ray source storage chamber 3
A blocking window 37 for taking out X-rays is provided. A wafer 11 and a mask 12, which are objects to be irradiated with X-rays, are housed in a stage storage chamber 8 together with a wafer mounting stage 9. 10 is a wafer chuck, and 13 is a mask chuck. The stage storage chamber 8 is connected to the X-ray source storage chamber 3 via the lens barrel 6. The stage storage chamber 8 is connected via a valve 16 to a low vacuum pump 20 and via a valve 18 to a helium (He) source.

上記構成において、低真空ポンプ20によりステージ収
納室8内を101〜I Q−’Torr程度まで減圧し
た後、バルブ18を開いてHeを導入してステージ収納
室8内に大気圧より低い状態でHeを充填する。電子銃
1から出射した電子ビームはターゲット2を衝撃してX
線を発生する。このX線は遮断窓37および鏡筒6を通
してマスク12およびウェハ11を照射する。
In the above configuration, after the pressure in the stage storage chamber 8 is reduced to approximately 101 to IQ-'Torr using the low vacuum pump 20, the valve 18 is opened to introduce He into the stage storage chamber 8 at a pressure lower than atmospheric pressure. Fill with He. The electron beam emitted from the electron gun 1 impacts the target 2 and
Generate a line. This X-ray irradiates the mask 12 and the wafer 11 through the blocking window 37 and the lens barrel 6.

[発明が解決しようとする問題点] 前記従来のX線露光装置においては、遮断窓37からウ
ェハ11までのX線透過経路においてHeによるX線の
吸収が避けられない。したがって、HeによるX線の減
衰だけを考えれば、遮断窓3フはマスク12にできるだ
け近い方が良い。
[Problems to be Solved by the Invention] In the conventional X-ray exposure apparatus, absorption of X-rays by He in the X-ray transmission path from the blocking window 37 to the wafer 11 is unavoidable. Therefore, considering only the attenuation of X-rays due to He, it is better for the blocking window 3 to be as close to the mask 12 as possible.

しかし、たとえ、Heを減圧して充填しても、ウェハ交
換や、ステージのメンテナンスの際などには遮断窓37
は大気圧I Kg/ cm’に耐える必要がある。遮断
窓37をマスク12に近付けると、露光面積と同程度の
広さの窓になる。したがって、露光方式をステップ・ア
ンド・リピート方式としても、実用点な露光面積(例え
ば030mm程度)と同じ広さで、大気圧に耐えるのは
非常に困難である。露光面積を小さくして遮断窓37の
耐圧を充分としても、上記従来例では鏡筒6をX線源収
納室3と同じ真空度まで排気しなければならず、排気時
間が長くなる。あるいは排気系が大規模になる等の問題
が生じていた。
However, even if He is filled with reduced pressure, the blocking window 37 must be closed during wafer exchange or stage maintenance.
must withstand atmospheric pressure I Kg/cm'. When the blocking window 37 is brought closer to the mask 12, the window becomes as wide as the exposed area. Therefore, even if the exposure method is a step-and-repeat method, it is very difficult to withstand atmospheric pressure with the same area as the practical exposure area (for example, about 0.3 mm). Even if the exposure area is made small and the pressure resistance of the blocking window 37 is sufficient, in the conventional example described above, the lens barrel 6 must be evacuated to the same degree of vacuum as the X-ray source storage chamber 3, which increases the evacuation time. Alternatively, problems such as the exhaust system becoming large-scale have arisen.

[発明の目的] 本発明は上記従来技術の欠点に鑑みなされたものであっ
て、真空排気系を大型化することなくX線の減衰を充分
抑えかつ遮断窓の破損のおそれを減少させたX線露光装
置の提供を目的とする。
[Object of the Invention] The present invention has been made in view of the above-mentioned drawbacks of the prior art. The purpose is to provide line exposure equipment.

[実施例] 第1図は本発明の実施例で管球方式のX線露光装置を示
す。第1図において、X線源である電子銃1とターゲッ
ト2はX線源収納室3に収納されている。X線源収納室
3には第1の遮断窓4が設けられ、これを通して発生し
たX線を取出す。X線源収納室3には鏡筒6が接続され
、さらにステージ収納室8が接続されている。
[Embodiment] FIG. 1 shows a tube type X-ray exposure apparatus according to an embodiment of the present invention. In FIG. 1, an electron gun 1 and a target 2, which are X-ray sources, are housed in an X-ray source storage chamber 3. The X-ray source storage chamber 3 is provided with a first blocking window 4 through which the generated X-rays are taken out. A lens barrel 6 is connected to the X-ray source storage chamber 3, and a stage storage chamber 8 is further connected thereto.

ステージ収納室8にはマスク12、マスクチャック13
、ウェハ11、ウェハチャック10、ウェハステージ9
が収納されている。ステージ収納室8の上部のX線取入
部には、第2の遮断窓7が設置されている。鏡筒6には
仕切弁5が設けられている。この仕切弁は、真空用ゲー
トバルブ等が考えられ、空気圧シリンダー等で駆動され
る。X線源収納室3と鏡筒6は、バイパス管21を通し
て相互に連通され、このバイパス管21にはターボ分子
ポンプあるいは拡散ポンプ等の高真空ポンプ19が接続
される。ステージ収納室8と鏡筒6は、バイパス管22
を通して、相互に連通され、このバイパス管22には油
回転ポンプ等の低真空ポンプ20が接続される。
The stage storage chamber 8 has a mask 12 and a mask chuck 13.
, wafer 11, wafer chuck 10, wafer stage 9
is stored. A second blocking window 7 is installed in the X-ray intake section in the upper part of the stage storage chamber 8. A gate valve 5 is provided in the lens barrel 6. This gate valve may be a vacuum gate valve or the like, and is driven by a pneumatic cylinder or the like. The X-ray source storage chamber 3 and the lens barrel 6 are communicated with each other through a bypass pipe 21, and a high vacuum pump 19 such as a turbo molecular pump or a diffusion pump is connected to the bypass pipe 21. The stage storage chamber 8 and the lens barrel 6 are connected to a bypass pipe 22.
The bypass pipe 22 is connected to a low vacuum pump 20 such as an oil rotary pump.

各バイパス管21.22には遮断弁15.17が設けら
れ、また、各配管には、装置を大気開放するためのリー
ク弁23,24が設けられている。ステージ収納室8に
はHe導入用バルブ18が設けられている。
Each bypass pipe 21, 22 is provided with a shutoff valve 15, 17, and each pipe is provided with a leak valve 23, 24 for opening the device to the atmosphere. The stage storage chamber 8 is provided with a He introduction valve 18 .

上記構成のX線露光装置の操作順序を第4図に示す制御
シーケンス図と第2図(1)〜(4)を参照して以下に
説明する0図において、白抜き表示のバルブ記号(例え
ば第2図(1)のバルブ15)はバルブ閉状態を示し、
黒塗り表示のバルブ記号(例えば第2図(1)のバルブ
14)はバルブ閉状態を示す。
The operation order of the X-ray exposure apparatus having the above configuration is explained below with reference to the control sequence diagram shown in FIG. 4 and FIGS. 2 (1) to (4). In FIG. The valve 15) in FIG. 2 (1) shows the valve closed state,
A black valve symbol (for example, valve 14 in FIG. 2(1)) indicates a closed valve state.

まず、第2図(1)に示すように、リーク弁23.24
を閉じ装置全体を大気から遮断する。
First, as shown in FIG. 2 (1), the leak valves 23 and 24
Close the entire device to isolate it from the atmosphere.

また、遮断弁15を開いて第1の遮断窓4の両側のX線
源収納室3と鏡筒6とをバイパス管21を介して連通さ
せ、同様に遮断弁17を開いて第2の遮断弁7の両側の
ステージ収納室8と鏡筒6とをバイパス管22を介して
連通させる。また、仕切弁5を閉じて鏡筒6を上下に仕
切る。
Also, the shutoff valve 15 is opened to communicate the X-ray source storage chamber 3 on both sides of the first shutoff window 4 with the lens barrel 6 via the bypass pipe 21, and the shutoff valve 17 is similarly opened to establish the second shutoff. The stage storage chamber 8 on both sides of the valve 7 and the lens barrel 6 are communicated via a bypass pipe 22. Furthermore, the gate valve 5 is closed to partition the lens barrel 6 into upper and lower parts.

次に第2図(2) に示すように、バルブ14゜16を
開き高真空ポンプ19および低真空ポンプ20を駆動し
て排気動作を行なう。このとぎ、高真空ポンプ19を動
作させる場合、大気圧から10−’Torr程度までは
油回転ポンプ等の補助ポンプ(図示しない)により粗排
気を行なう、この排気動作において、仕切弁5が閉じら
れ、第1、第2の遮断窓4.7の両側は各々バイパス管
21゜22で連通しているため、遮断窓4.7の各々に
対して差圧は作用しない。
Next, as shown in FIG. 2(2), the valves 14 and 16 are opened and the high vacuum pump 19 and low vacuum pump 20 are driven to perform an evacuation operation. After this, when operating the high vacuum pump 19, rough evacuation is performed by an auxiliary pump (not shown) such as an oil rotary pump from atmospheric pressure to about 10-'Torr.During this evacuation operation, the gate valve 5 is closed. Since both sides of the first and second blocking windows 4.7 are connected through bypass pipes 21 and 22, no differential pressure acts on each of the blocking windows 4.7.

X線源収納室3、鏡筒6、およびステージ収納室8の圧
力が10−’Torr以下になると、第2図(3)に示
すように、バイパス管21上の遮断弁15を閉じ、鏡筒
6の仕切弁5を開く。この状態でX線源収納室3を高真
空ポンプ19により10 ””Torrの高真空まで排
気する。このとき、遮断弁15が閉じているため、鏡筒
6の長さ、容積にかかわらず高真空ポンプ19はX線源
収納室3のみを排気すればよい、一方、鏡筒6とステー
ジ収納室8は低真空ポンプ20により10−’Torr
まで排気される。
When the pressure in the X-ray source storage chamber 3, lens barrel 6, and stage storage chamber 8 becomes 10-'Torr or less, the shutoff valve 15 on the bypass pipe 21 is closed and the mirror is closed, as shown in FIG. 2(3). Open the gate valve 5 of the tube 6. In this state, the X-ray source storage chamber 3 is evacuated to a high vacuum of 10'' Torr by the high vacuum pump 19. At this time, since the shutoff valve 15 is closed, the high vacuum pump 19 only needs to evacuate the X-ray source storage chamber 3 regardless of the length and volume of the lens barrel 6. 8 is 10-' Torr by the low vacuum pump 20.
until it is exhausted.

次に第2図(4) に示すように、遮断弁17を閉じ、
He導入用バルブ18を開いてHeをステージ収納室8
に導入する。1(eが所定の圧力(例えば100 To
rr)に達するとHe導入用バルブ18が閉じられる。
Next, as shown in Fig. 2 (4), close the shutoff valve 17,
Open the He introduction valve 18 and transfer He to the stage storage chamber 8.
to be introduced. 1 (e is a predetermined pressure (e.g. 100 To
rr), the He introduction valve 18 is closed.

以上で、露光可能な状態となる。この状態ではX線源収
納室3は高真空ポンプ19で10−’Torrに排気さ
れ、鏡筒6は、低真空ポンプ2oで10−’Torrに
排気されている。そして、ステージ収納室8は例えば1
00 Torrといった減圧されたHe雰囲気となって
いる。上述したように第1の遮断窓4は立上げから露光
まで、窓の両側に差圧はほとんどかからず、単に低真空
側から高真空側への拡散を防止しているにすぎない。つ
まり、本発明は各遮断窓の両側の室を同じ具合に減圧し
、。
With the above steps, the state becomes ready for exposure. In this state, the X-ray source storage chamber 3 is evacuated to 10-' Torr by the high vacuum pump 19, and the lens barrel 6 is evacuated to 10-' Torr by the low vacuum pump 2o. The stage storage chamber 8 is, for example, 1
The atmosphere is a He atmosphere with a reduced pressure of 0.00 Torr. As described above, the first blocking window 4 has almost no differential pressure applied to both sides of the window from startup to exposure, and merely prevents diffusion from the low vacuum side to the high vacuum side. That is, the present invention depressurizes the chambers on both sides of each blocking window in the same manner.

両側の室の圧力差による遮断窓への影響を防いでいる。This prevents the pressure difference between the chambers on both sides from affecting the blocking window.

したがって、窓の厚さは、取付は時、交換時の取扱いを
考えて、さらに製作時や使用中の汚染等によりピンホー
ルを生じない範囲で可能な限り薄い膜としてよく、材質
も、有機材料や無機材料等広い範囲から選択できる。そ
のため、第1の遮断窓4によるX線の吸収はほとんど無
視できる。また第2の遮断窓7は、窓の両側にかかる差
圧が最大になるのは、露光時のHeの圧力と、鏡筒の圧
力10−3Torrの差によるものである。したがって
、材質をBeとすれば例えばHeの圧力100 Tor
rの時20um程度の厚さで030mm程度の露光面積
は充分可能で、露光方式をステップ・アンド・リピート
方式として考えれば実用的な装置になり得る。X線透過
経路におけるガス体の吸収を考えると、X線源から第2
の遮断窓7までは10−3Torr以下の真空であり、
また、第2の遮断7からウェハ11までは非常に短い距
離でかつ減圧したHeの雰囲気なので、ガス体による吸
収は非常に小さい。
Therefore, the thickness of the window should be as thin as possible without creating pinholes due to contamination during manufacture or use, taking into account handling during installation and replacement, and the material should also be made of organic materials. You can choose from a wide range of materials such as carbon fibers and inorganic materials. Therefore, absorption of X-rays by the first blocking window 4 can be almost ignored. Further, in the second blocking window 7, the differential pressure applied to both sides of the window becomes maximum due to the difference between the pressure of He during exposure and the pressure of the lens barrel of 10-3 Torr. Therefore, if the material is Be, for example, the pressure of He is 100 Torr.
When the thickness is about 20 um, an exposure area of about 0.30 mm can be achieved, and if the exposure method is considered as a step-and-repeat method, it can become a practical device. Considering the absorption of gas in the X-ray transmission path, the second
The vacuum up to the blocking window 7 is 10-3 Torr or less,
Furthermore, since the distance from the second shield 7 to the wafer 11 is very short and the atmosphere is He in a reduced pressure, absorption by the gas is very small.

次に、第3図を参照して、露光終了後ウェハを取出す場
合等、ステージ収納室8を大気に解放する場合の操作順
序を以下に説明する。
Next, with reference to FIG. 3, the sequence of operations when opening the stage storage chamber 8 to the atmosphere, such as when removing a wafer after exposure, will be described.

まず、第3図(1)に示すように、仕切弁5を閉じる。First, as shown in FIG. 3(1), the gate valve 5 is closed.

次に第3図(2) に示すように、遮断弁17を開いて
第2の遮断窓7の両側をバイパス管22を介して連通さ
せた後、低真空ポンプ20を停止させ、リーク弁24を
開く。そうすることにより、ステージ収納室8は、大気
に開放され、その後マスクおよびウェハを交換する。こ
の時、第2遮断窓の両側は、同時に大気に開放されるた
め窓自身は差圧の影響を受けない。
Next, as shown in FIG. 3(2), after opening the cutoff valve 17 to connect both sides of the second cutoff window 7 via the bypass pipe 22, the low vacuum pump 20 is stopped, and the leak valve 24 is opened. open. By doing so, the stage storage chamber 8 is opened to the atmosphere, and then the mask and wafer are replaced. At this time, since both sides of the second blocking window are simultaneously exposed to the atmosphere, the window itself is not affected by the differential pressure.

X線源収納室3を大気開放する場合は、仕切弁5を閉じ
た後遮断弁15を開き、その後リーク弁23を開く。
When the X-ray source storage chamber 3 is opened to the atmosphere, the gate valve 5 is closed, the cutoff valve 15 is opened, and then the leak valve 23 is opened.

上記操作順序によれば、第2の遮断窓7には100 T
orr以上の差圧がかからず、また第1の遮断窓4には
ほとんど差圧がかからない状態で、大気開放することが
できる。
According to the above operation order, the second blocking window 7 has a load of 100 T.
The first blocking window 4 can be opened to the atmosphere without being subjected to a differential pressure greater than orr, and with almost no differential pressure being applied to the first blocking window 4.

上記実施例においては、ステージ収納室のHeの圧力は
100 Torrとしたが、この圧力は100Torr
に限定されるものではなく、窓の強度、露光面積、X線
の減衰等を考えて決定すればよい、遮断窓の枚数も要求
される真空度、鏡筒の長さ等を考慮して決定すればよい
。また、上記実施例においては、X線源が管球方式の例
を述べたが、プラズマ方式やシンクロトロン軌道放射光
利用の場合も、同様の効果が得られる。特にシンクロト
ロン軌道放射光利用の場合、X線源は10−g〜10−
”Torrの超高真空を保つ必要があり、上記実施例の
鏡筒に相当するミラーポートが数m以上と長いので、本
発明の効果はさらに大きいものとなる。
In the above embodiment, the He pressure in the stage storage chamber was 100 Torr;
The number of blocking windows can be determined by considering the strength of the window, the exposure area, the attenuation of X-rays, etc. The number of blocking windows is also determined by considering the required degree of vacuum, length of the lens barrel, etc. do it. Further, in the above embodiments, an example is described in which the X-ray source is a tube type, but similar effects can be obtained when a plasma type or a synchrotron orbit synchrotron radiation is used. Especially when using synchrotron orbital synchrotron radiation, the X-ray source is 10-g to 10-
``It is necessary to maintain an ultra-high vacuum of Torr, and the mirror port corresponding to the lens barrel of the above embodiment is long, several meters or more, so the effects of the present invention are even greater.

第5図はX線源にシンクロトロン軌道放射光を利用した
場合であり、図中、41は第1図8に相当するステージ
収納室、42はミラー室、43はシンクロトロンX線源
、44は第1図の第2遮断窓7に相当するBe窓、45
は第1図の第1遮断窓4に相当する遮断窓、47.48
は第1図の遮断弁15.17に相当するゲートバルブ、
49゜50は第1図のバルブ14.16に相当するゲー
トバルブ、51は高真空用のターボ分子ポンプあるいは
低真空用の油回転ポンプといった真空ポンプ、53.5
4は、第1図のバイパス管21.22に相当するバイパ
ス管、55は第1図の鏡筒6に相当するミラーポート、
56は第1図18に相当するHe導入用バルブ、57.
58は第1図のリーク弁23,24に相当するリーク弁
である。
FIG. 5 shows a case where synchrotron orbital synchrotron radiation is used as an X-ray source. In the figure, 41 is a stage storage room corresponding to FIG. 18, 42 is a mirror room, 43 is a synchrotron X-ray source, and 44 is a Be window 45 corresponding to the second blocking window 7 in FIG.
is a blocking window corresponding to the first blocking window 4 in FIG. 1, 47.48
is a gate valve corresponding to the shutoff valve 15.17 in Fig. 1,
49.50 is a gate valve corresponding to valve 14.16 in Figure 1, 51 is a vacuum pump such as a turbo molecular pump for high vacuum or an oil rotary pump for low vacuum, 53.5
4 is a bypass pipe corresponding to the bypass pipes 21 and 22 in FIG. 1; 55 is a mirror port corresponding to the lens barrel 6 in FIG. 1;
56 is a He introduction valve corresponding to FIG. 18; 57.
58 is a leak valve corresponding to the leak valves 23 and 24 in FIG.

上記構成における制御動作については、前記第4図制御
フローチャートと、同様のシーケンスで行  ′なうこ
とができる。真空条件はX線源内(遮断窓45まで)が
10−9〜10−10Torr 、遮断室45からBe
窓44までが10−1′〜10−’T orr 。
The control operation in the above configuration can be performed in the same sequence as the control flowchart in FIG. 4. The vacuum conditions are 10-9 to 10-10 Torr inside the X-ray source (up to the blocking window 45), and Be from the blocking chamber 45.
The distance up to window 44 is 10-1' to 10-' Torr.

ステージ収納室内(Be窓44まで)がHe雰囲気15
0Torrである。
The stage storage room (up to Be window 44) has a He atmosphere 15
It is 0 Torr.

[発明の効果] 以上説明したように、本発明では、真空手段(高真空ポ
ンプ19)に連結されたX線源収納室3と、該X線源収
納室3に設けたX線取出し用の第1の遮断窓4と、X線
被照射体(マスク12゜ウェハ11)の搭載ステージ9
を収納しかつ減圧手段(低真空ポンプ20)に連結され
たステージ収納室8と、前記第1の遮断窓4から取出さ
れたX線の気密照射通路(鏡筒6を通りステージ収納室
8内の被照射体に達するまでのX線経路)上に設けた少
なくとも1枚の第2の遮断窓7を具備している。従って
、第1、第2の遮断窓4.7間に仕切弁5を設けるとと
もに各遮断窓の両側をバイパス管21.22で連通させ
て真空排気を行なうことにより、排気系を大規模にする
ことなくかつ各遮断窓を充分薄くして真空排気が可能と
なり、遮断窓によるX線の吸収を小さくしさらにHeガ
ス等によるX線の吸収を小さくして効率良くX線を照射
してX線露光装置のスルーブツトを向上させることがで
きる。
[Effects of the Invention] As explained above, in the present invention, the X-ray source storage chamber 3 connected to the vacuum means (high vacuum pump 19) and the A first blocking window 4 and a mounting stage 9 for the X-ray irradiated object (mask 12° wafer 11)
and a stage storage chamber 8 which stores the At least one second blocking window 7 is provided on the X-ray path (up to the object to be irradiated). Therefore, by providing a gate valve 5 between the first and second blocking windows 4, 7 and communicating both sides of each blocking window with bypass pipes 21, 22 to perform vacuum evacuation, the exhaust system can be made large-scale. This makes it possible to perform vacuum evacuation by making each blocking window sufficiently thin, reducing the absorption of X-rays by the blocking windows, and further reducing the absorption of X-rays by He gas, etc., and efficiently irradiating X-rays. The throughput of the exposure apparatus can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るX線露光装置の構成図、第2図(
1)〜(4) は本発明に係るX線露光装置の露光開始
時の操作手順の説明図、第3図(1)。 (2) は本発明に係るX線露光装置の大気開放操作の
説明図、第4図は本発明実施例における制御シーケンス
、第5図は本発明における応用実施例、第6図は従来の
X線露光装置の構成図である。 1:電子銃、 2:ターゲット、 3:X線源収納室、 4:第1の遮断窓、 5:仕切弁、 6:鏡筒、 7:第2の遮断窓、 8:ステージ収納室、 9:ステージ、 11:ウェハ、 12:マスク、 13:高真空ポンプ、 20:低真空ポンプ、 21.22:バイパス管。 第1図
Figure 1 is a configuration diagram of an X-ray exposure apparatus according to the present invention, and Figure 2 (
1) to (4) are explanatory diagrams of the operating procedure at the start of exposure of the X-ray exposure apparatus according to the present invention, and FIG. 3 (1). (2) is an explanatory diagram of the atmosphere opening operation of the X-ray exposure apparatus according to the present invention, FIG. 4 is a control sequence in an embodiment of the present invention, FIG. 5 is an applied example of the present invention, and FIG. FIG. 2 is a configuration diagram of a line exposure device. 1: Electron gun, 2: Target, 3: X-ray source storage chamber, 4: First blocking window, 5: Gate valve, 6: Lens barrel, 7: Second blocking window, 8: Stage storage chamber, 9 : stage, 11: wafer, 12: mask, 13: high vacuum pump, 20: low vacuum pump, 21.22: bypass pipe. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)X線源を収納しかつ真空排気手段に連結されたX
線源収納室と、該X線源収納室に設けたX線取出し用の
第1の遮断窓と、X線被照射体の搭載ステージを収納し
かつ減圧手段に連結されたステージ収納室と、前記第1
の遮断窓から取出されたX線の気密照射通路上に設けた
少なくとも1枚の第2の遮断窓とを具備したことを特徴
とするX線露光装置。
(1) An X containing an X-ray source and connected to vacuum evacuation means
a radiation source storage chamber, a first blocking window for taking out X-rays provided in the X-ray source storage chamber, a stage storage chamber that stores a stage on which an X-ray irradiated object is mounted and is connected to a decompression means; Said first
An X-ray exposure apparatus comprising at least one second blocking window provided on an airtight irradiation path for X-rays taken out from the blocking window.
(2)前記第2の遮断窓は前記ステージ収納室のX線取
入部に設けられたことを特徴とする特許請求の範囲第1
項記載のX線露光装置。
(2) Claim 1, characterized in that the second blocking window is provided in the X-ray intake section of the stage storage chamber.
The X-ray exposure apparatus described in .
(3)前記第1および第2の遮断窓間のX線気密照射通
路を仕切る開閉可能な仕切弁を具備し、さらに前記第1
および第2の各遮断窓の両側を各々バイパス管が連結し
て各遮断窓の両側を連通可能としたことを特徴とする特
許請求の範囲第1項または第2項記載のX線露光装置。
(3) An openable and closable gate valve is provided for partitioning off the X-ray airtight irradiation passage between the first and second blocking windows, and the first
3. The X-ray exposure apparatus according to claim 1, wherein a bypass pipe connects both sides of each of the second blocking windows to enable communication between both sides of each blocking window.
(4)前記各バイパス管上に各バイパス管を開閉するた
めの弁手段を設けたことを特徴とする特許請求の範囲第
3項記載のX線露光装置。
(4) The X-ray exposure apparatus according to claim 3, characterized in that valve means for opening and closing each bypass pipe is provided on each bypass pipe.
(5)前記第2の遮断窓は2枚以上設けられたことを特
徴とする特許請求の範囲第1項から第4項までのいずれ
か1項記載のX線露光装置。
(5) The X-ray exposure apparatus according to any one of claims 1 to 4, characterized in that two or more second blocking windows are provided.
JP63049849A 1988-03-04 1988-03-04 X-ray exposure device Pending JPH01225118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049849A JPH01225118A (en) 1988-03-04 1988-03-04 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049849A JPH01225118A (en) 1988-03-04 1988-03-04 X-ray exposure device

Publications (1)

Publication Number Publication Date
JPH01225118A true JPH01225118A (en) 1989-09-08

Family

ID=12842507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049849A Pending JPH01225118A (en) 1988-03-04 1988-03-04 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPH01225118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424181A2 (en) * 1989-10-20 1991-04-24 Canon Kabushiki Kaisha X-ray exposure apparatus
EP0441646A1 (en) * 1990-02-09 1991-08-14 Canon Kabushiki Kaisha Gate valve device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424181A2 (en) * 1989-10-20 1991-04-24 Canon Kabushiki Kaisha X-ray exposure apparatus
US5172403A (en) * 1989-10-20 1992-12-15 Canon Kabushiki Kaisha X-ray exposure apparatus
EP0424181B1 (en) * 1989-10-20 2001-09-05 Canon Kabushiki Kaisha X-ray exposure apparatus
EP0441646A1 (en) * 1990-02-09 1991-08-14 Canon Kabushiki Kaisha Gate valve device
US5566922A (en) * 1990-02-09 1996-10-22 Canon Kabushiki Kaisha Gate valve device

Similar Documents

Publication Publication Date Title
JPH03234979A (en) Sluice valve
JP2766935B2 (en) X-ray exposure equipment
JPH01225118A (en) X-ray exposure device
US8604445B2 (en) Method of evacuating sample holder, pumping system, and electron microscope
JPH0335774B2 (en)
JPH07272997A (en) Substrate holding system
JP2867389B2 (en) Ion beam device and method of using the same
US5170418A (en) X-ray exposure apparatus
JP2868542B2 (en) Vacuum piping
JPH0426206B2 (en)
JP5530917B2 (en) Sample holder exhaust method and apparatus
US3700950A (en) X-ray tube
JPH0281457A (en) Holding system
JPH04121699A (en) X-ray output device
JPS5913336A (en) X-ray exposure device
JPH05258701A (en) Electron beam device
JPH03108311A (en) X-ray exposure device
JPS59188123A (en) X-ray exposure device
JPS5912597Y2 (en) electron spectrometer
JPH0324773B2 (en)
JP2596636B2 (en) X-ray extraction window with valve
Hughey et al. Instrumentation for XUV lithography at SURF-II
JPS60225426A (en) Plasmic x-ray exposure equipment
JPH03254054A (en) X-ray analyzing device of energy dispersed type and its operating method
JP2801281B2 (en) Mask cassette loading method