JPH01224264A - Production of zirconia-reinforced alumina ceramics - Google Patents

Production of zirconia-reinforced alumina ceramics

Info

Publication number
JPH01224264A
JPH01224264A JP63049271A JP4927188A JPH01224264A JP H01224264 A JPH01224264 A JP H01224264A JP 63049271 A JP63049271 A JP 63049271A JP 4927188 A JP4927188 A JP 4927188A JP H01224264 A JPH01224264 A JP H01224264A
Authority
JP
Japan
Prior art keywords
zirconia
crystal
oxide
crystals
reinforced alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63049271A
Other languages
Japanese (ja)
Inventor
Akihito Iwai
明仁 岩井
Shuichiro Shimoda
下田 修一郎
Takao Nakada
中田 孝夫
Kiyoshi Kawai
潔 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63049271A priority Critical patent/JPH01224264A/en
Publication of JPH01224264A publication Critical patent/JPH01224264A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the characteristics of sintered material such as mechanical strength, suppress the scattering of the characteristics and prevent the discoloration and color mottling of sintered material, by mixing a zirconia component stabilized with a rare-earth metal oxide with aluminum oxide and magnesium oxide at specific ratios, pulverizing and forming the mixture and calcining the formed article. CONSTITUTION:A zirconia component is produced by mixing 1.5-15mol.% of a rare-earth metal oxide with 85-98.5mol.% of zirconium oxide and heat- treating the mixture at 1,100-1,500 deg.C. 10-40wt.% of the zirconia component is mixed with 55-89.8wt.% of aluminum oxide and 0.2-5wt.% of magnesium oxide and the mixture is crushed, formed and calcined at 1,500-1,700 deg.C. The crystal phase of the zirconia-reinforced alumina ceramic mainly contains alpha-alumina crystal and tetragonal zirconia crystal and, in some cases, contains small amount of monoclinic zirconia crystal and/or cubic zirconia crystal. Preferably, tetragonal zirconia crystal accounts for >=80mol.% of the total zirconia crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機械的強度、破壊靭性等に優れたジルコニア強
化アルミナセラミックスの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing zirconia-reinforced alumina ceramics having excellent mechanical strength, fracture toughness, and the like.

(従来の技術) アルミナセラミックスは一般的なセラミックスより機械
的強度、耐薬品性、耐摩耗性に優れ、比較的安価なため
9機械部材として広く使用されている。しかし近年用途
が拡大するとともに、より過酷な条件で使用されるよう
になり、よし高性能のアルミナセラミックスが必l!に
なってきた。アルミナセラミックスの高性能化法の一つ
にアルミナセラミックス中にジルコニアを分散して機械
的強度、破壊靭性等を向上させる方法がある(ジルコニ
ア強化アルミナセラミックス)。。
(Prior Art) Alumina ceramics have better mechanical strength, chemical resistance, and wear resistance than general ceramics, and are relatively inexpensive, so they are widely used as mechanical parts. However, as its applications have expanded in recent years, it has come to be used under harsher conditions, making high-performance alumina ceramics a must! It has become. One method for improving the performance of alumina ceramics is to disperse zirconia in alumina ceramics to improve mechanical strength, fracture toughness, etc. (zirconia-reinforced alumina ceramics). .

このようなジルコニア強化アルミナセラミックスはよく
知られており、以下の2種類に大別できる。
Such zirconia-reinforced alumina ceramics are well known and can be broadly classified into the following two types.

(1)特公昭59−25748号公報に示されるように
焼結温度域から室温に冷却する過程でジルコニアを正方
晶から単斜晶に相転移させ、その際発生するマイクロク
ラックにより靭性を向上させたもの。
(1) As shown in Japanese Patent Publication No. 59-25748, zirconia undergoes a phase transition from tetragonal to monoclinic in the process of cooling from the sintering temperature range to room temperature, and the toughness is improved by the microcracks generated at this time. Something.

(2)米国特許第4316964号明細書に示されるよ
うに室温においては準安定相である正方晶ジルコニアを
、結晶粒径を約0.5μm以下KL&す、安定化剤を用
いるなどの方法で焼結体中に安定して存在させることに
より靭性を向上させたもの。
(2) As shown in U.S. Pat. No. 4,316,964, tetragonal zirconia, which is a metastable phase at room temperature, is sintered by reducing the crystal grain size to about 0.5 μm or less, using a stabilizer, etc. Improved toughness by stably existing in the structure.

このうち(1)のものは、靭性は向上するが9強度はさ
ほど改善されず、ジルコニアの添加量が多すぎると逆に
靭性及び強度が低下するという欠点が生じる。
Among these, (1) improves toughness but does not significantly improve strength, and has the disadvantage that if too much zirconia is added, toughness and strength decrease.

これに対しく2)のものは、靭性が向上すると共に強度
も向上するという優れたものである。(2)の方法にお
いて、ジルコニアの結晶粒径を0.5μm以下に制御し
て正方晶ジルコニアを安定に存在させることの困難さか
ら、安定化剤を添加して正方晶ジルコニアを安定化させ
ることが多く行なわれている。この安定化剤としてはM
gO,Cab、 YxOs。
On the other hand, the material 2) is superior in that both toughness and strength are improved. In method (2), it is difficult to control the crystal grain size of zirconia to 0.5 μm or less and make tetragonal zirconia stably exist, so a stabilizer is added to stabilize the tetragonal zirconia. is being done a lot. As this stabilizer, M
gO, Cab, YxOs.

Cents La5hs * Era’sなどが公知で
ある。
Cents La5hs*Era's and the like are known.

Centを安定化剤として用いた正方晶ジルコニアセラ
ミックスは、特開昭60−108367号公報などに示
され、化学的耐食性、高温耐久性に優れることが知られ
ており、iた正方晶ジルコニアセラミックスを用いたジ
ルコニア強化アルミナセラミックスは、米国特許第43
1694号明細書に示される。
Tetragonal zirconia ceramics using Cent as a stabilizer are disclosed in JP-A-60-108367, etc., and are known to have excellent chemical corrosion resistance and high-temperature durability. The zirconia-reinforced alumina ceramics used are disclosed in U.S. Patent No. 43.
No. 1694.

(発明が解決しようとする課題) CeO2を安定化剤とした正方晶ジルコニアセラミック
スを用いて得られたジルコニア強化アルミナセラミック
スは、 YxOsを安定化剤としたジルコニア強化アル
ミナセラミックスに比較して、化学的耐食性、高温耐久
性に優れるが9反面機械的強度などの特性はばらつきが
大きく、平均値も低いという欠点があった。
(Problems to be Solved by the Invention) Zirconia-reinforced alumina ceramics obtained using tetragonal zirconia ceramics using CeO2 as a stabilizer have a chemically Although it has excellent corrosion resistance and high-temperature durability, it has the disadvantage that properties such as mechanical strength vary widely and the average value is low.

また、焼成して得られた焼結体は1表面と内部とでは色
調が異なり、研削加工等によって焼結体内部が露出する
場合には、著しく外観を害し、商品価値を大きく低下さ
せるものであった。この傾向tf、 安定化剤トL テ
Y*Os 、 Gd5Os 、 YbzOsの一種以上
とCentに用い九ジルコニア強化アルミナセラミック
スにおいても同様であっ九。
In addition, the sintered body obtained by firing has a different color tone between the surface and the inside, and if the inside of the sintered body is exposed due to grinding, etc., the appearance will be significantly damaged and the product value will be greatly reduced. there were. This tendency is also the same in zirconia-reinforced alumina ceramics when one or more of Y*Os, Gd5Os, and YbzOs is used as a stabilizer.

本発明は焼結体の機械的強度などの特性を高め。The present invention improves the mechanical strength and other properties of the sintered body.

ばらつきを小さくシ、さらに焼結体の着色や色むらをな
くしたジルコニア強化アルミナセラミックスの製造法を
提供することを目的とするものである。
It is an object of the present invention to provide a method for manufacturing zirconia-reinforced alumina ceramics that reduces variations and eliminates coloring and color unevenness of sintered bodies.

(課題を解決するための手段) 本発明者らは、上記の欠点について添加物等を変え走り
して焼結体の性能について調査研究を進め&M来、 C
ab冨を安定化剤とし九正方晶ジルコニアを用いたジル
コニア強化アルミナセラミックスが着色する原因は、焼
成温度域ではCe’十がある程度Ce3+とじて存在す
るが、冷却過程でCe3+が室温で安定なCe’+に変
わるとき、焼結体の内部まで酸素が十分に拡散せず、C
e′が残存するためと考え、またこの正方晶ジルコニア
を用いたジルコニア強化アルミナセラミックスにおける
色むらの原因も同様であるものと考えた。ここでCe’
+とCe3+はz「0.を安定化させる能力が異なり、
その結果強度などの焼結体特性も異なったものとなるた
め色むらが発生した場合、焼結体特性がばらつき易くな
るということをつきとめた。
(Means for Solving the Problems) The present inventors have conducted research and research on the performance of sintered bodies by changing additives, etc. to address the above-mentioned drawbacks.
The reason why zirconia-reinforced alumina ceramics using nine-tetragonal zirconia with ab-rich as a stabilizer is colored is that in the firing temperature range, Ce'+ exists to some extent as Ce3+, but during the cooling process, Ce3+ is converted into Ce3+, which is stable at room temperature. ' When it changes to +, oxygen does not diffuse sufficiently into the inside of the sintered body, and C
It was thought that this was because e' remained, and that the same was the cause of color unevenness in zirconia-reinforced alumina ceramics using this tetragonal zirconia. Here Ce'
+ and Ce3+ differ in their ability to stabilize z'0.
As a result, the properties of the sintered bodies, such as strength, differed, so it was found that when color unevenness occurs, the properties of the sintered bodies tend to vary.

そこで本発明者らは、さらに研究を進めた結果主として
Ce0zなどの希土類酸化物を安定化剤とする正方晶ジ
ルコニアを用いたジルコニア強化アルミナにマグネシア
を適量添加し、混合、粉砕。
Therefore, the present inventors conducted further research and, as a result, added an appropriate amount of magnesia to zirconia-reinforced alumina using tetragonal zirconia using a rare earth oxide such as CeOz as a stabilizer, mixed it, and pulverized it.

成形、焼成すると色むらをなくすことができ、その結果
機械的強度などの特性に優れ、焼結体特性のばらつきを
小さくすることができることを確認した。
It was confirmed that when molded and fired, color unevenness can be eliminated, resulting in excellent properties such as mechanical strength, and variations in the properties of the sintered body can be reduced.

本発明は希土類酸化物1.5〜15モル慢及び酸化ジル
コニウム85〜98.5モルチを混合後1100〜15
00℃で熱処理してジルコニア成分とし、ついでジルコ
ニア成分10〜40重量%。
In the present invention, after mixing 1.5 to 15 mol of rare earth oxide and 85 to 98.5 mol of zirconium oxide, 1100 to 15
Heat treated at 00°C to obtain a zirconia component, and then 10 to 40% by weight of the zirconia component.

酸化アルミニウム55〜89.8重量%及び酸化マグネ
シウムα2〜51量慢を混合、粉砕、成形後1500〜
1700℃の温度で焼成するジルコニア強化アルミナセ
ラミックスの製造法に関する。
After mixing 55 to 89.8% by weight of aluminum oxide and 2 to 51% of magnesium oxide, pulverizing and molding, the
This invention relates to a method for producing zirconia-reinforced alumina ceramics that is fired at a temperature of 1700°C.

本発明における希土類酸化物とは正方晶ジルコニアを安
定化する効果をもつ希土類酸化物を示す。
The rare earth oxide in the present invention refers to a rare earth oxide that has the effect of stabilizing tetragonal zirconia.

特に少なくともCeOxを含み、必要に応じて他にY2
os、GdzOss YbtOs* NdtOmt S
mtOsの1種以上を含むことが好ましい。
In particular, it contains at least CeOx, and if necessary, Y2
os, GdzOss YbtOs* NdtOmt S
It is preferable that one or more types of mtOs are included.

本発明においてジルコニア成分中の希土類酸化物の含有
量は1.5〜15モルチ、好ましくはCeOsのみ添加
する場合は5〜15モルs、 CeOsとYz Os。
In the present invention, the content of the rare earth oxide in the zirconia component is 1.5 to 15 mols, preferably 5 to 15 mols when only CeOs is added, and CeOs and YzOs.

Gdx Os 、 Ybz Os、 Nds Os 、
 8m* Osの1種以上を添加する場合はCeO□が
1〜1〇七ルチ、  Y、0.。
Gdx Os, Ybz Os, Nds Os,
8m* When one or more types of Os are added, CeO□ is 1 to 107 ruti, Y, 0. .

Gdx Os 、Yx Os 、 N40s 、 8m
s Osの1種以上が0、5〜5モルチの範囲とされ、
この範囲から外れると焼結体の機械的強度か低くなる。
Gdx Os, Yx Os, N40s, 8m
One or more types of sOs is in the range of 0.5 to 5 molti,
Outside this range, the mechanical strength of the sintered body decreases.

熱処理温度は1100〜1500℃の範囲とされ、11
00℃未満であると処理の効果が小さく成形体の嵩密度
の低下、焼結しにくくなる等の欠点が生じ、また150
0℃を越えるとその後の工程における粉砕が困難となる
The heat treatment temperature is in the range of 1100 to 1500°C, and 11
If the temperature is less than 150°C, the effect of the treatment will be small, resulting in disadvantages such as a decrease in the bulk density of the molded product and difficulty in sintering.
If the temperature exceeds 0°C, pulverization in subsequent steps becomes difficult.

ジルコニア成分は、平均粒径を2μm以下、望ましくは
0.8μm以下に粉砕した後酸化アルミニウム及び酸化
マグネシウムと混合すれば、焼結体の機械的強度が向上
し、かつ安定するので好ましい。
The zirconia component is preferably pulverized to an average particle size of 2 μm or less, preferably 0.8 μm or less, and then mixed with aluminum oxide and magnesium oxide, since the mechanical strength of the sintered body is improved and stabilized.

本発明における希土類酸化物を含有するジルコニア成分
の量は10〜40重量係の範囲、アルミナの量は55〜
89.8重量%の範囲とされ、ジルコニア成分の量が1
01[’j*%未満で、アルミナの量が89.8重量%
を越えるとジルコニア添加による強度、靭性の改善効果
は小さくジルコニア成分が40重量%を越えアルミナの
量が50重量%未満であると9価格が高くなり、アルミ
ナセラミックスの長所が失われる。
In the present invention, the amount of zirconia component containing rare earth oxide is in the range of 10 to 40% by weight, and the amount of alumina is in the range of 55 to 40% by weight.
The range is 89.8% by weight, and the amount of zirconia component is 1
01['j*%, the amount of alumina is 89.8% by weight
If the amount exceeds 40% by weight, the strength and toughness improvement effect due to the addition of zirconia will be small, and if the zirconia component exceeds 40% by weight and the amount of alumina is less than 50% by weight, the price will become high and the advantages of alumina ceramics will be lost.

またマグネシアの量は0.2〜5重量%の範囲とされ、
0.2重量%未満であると色むらの発生及び特性のばら
つきを抑制する効果が劣り、5重量%を越えると機械的
強度及び破壊靭性が低下する。
In addition, the amount of magnesia is in the range of 0.2 to 5% by weight,
If it is less than 0.2% by weight, the effect of suppressing the occurrence of color unevenness and variations in properties will be poor, and if it exceeds 5% by weight, mechanical strength and fracture toughness will decrease.

本発明において酸化マグネシウムとは加熱して酸化マグ
ネシウムとなるマグネシウム化合物を示し、酸化マグネ
シウム、酢酸マグネシウム、硫酸マグネシウム、はう酸
マグネシウム、炭酸マグネシウム、塩基性炭酸マグネシ
ウム、くえん酸マグネシウム、水酸化マグネシウム、硝
酸マグネシウム、しゆう酸マグネシウム等及びこれらの
水和物が用いられる。
In the present invention, magnesium oxide refers to a magnesium compound that becomes magnesium oxide when heated, including magnesium oxide, magnesium acetate, magnesium sulfate, magnesium oxalate, magnesium carbonate, basic magnesium carbonate, magnesium citrate, magnesium hydroxide, and nitric acid. Magnesium, magnesium oxalate, etc. and hydrates thereof are used.

本発明においてジルコニア成分粉、酸化アルミニウム粉
及び酸化マグネシウムを所定量混合、粉砕するが、これ
は例えばボールミル、アトライター等を用いて平均粒径
を2μm以下、好ましくは0.8μm以下に粉砕する。
In the present invention, a predetermined amount of zirconia component powder, aluminum oxide powder, and magnesium oxide are mixed and pulverized using, for example, a ball mill, an attritor, etc., to an average particle size of 2 μm or less, preferably 0.8 μm or less.

焼成温度は1500〜1700℃の範囲とされ。The firing temperature is in the range of 1500 to 1700°C.

1500℃未満であるとセラミックスが焼結せず。If the temperature is less than 1500°C, the ceramic will not sinter.

また1700℃を越えると成形物に変形等が生じる。Moreover, if the temperature exceeds 1700°C, deformation etc. will occur in the molded product.

本発明におけるジルコニア強化アルミナセラミックス(
焼結体)の結晶相は、主としてα−アルミナ結晶及び正
方晶ジルコニア結晶を含み、この他に必要に応じ単斜晶
ジルコニア結晶及び/又は立方晶ジルコニア結晶が少量
含まれる場合があり。
Zirconia-reinforced alumina ceramics in the present invention (
The crystal phase of the sintered body mainly contains α-alumina crystals and tetragonal zirconia crystals, and may also contain a small amount of monoclinic zirconia crystals and/or cubic zirconia crystals as required.

もし単斜晶ジルコニア結晶及び/又は立方晶ジルコニア
結晶が含まれる場合、全ジルコニア結晶中の80モルチ
以上が正方晶ジルコニア結晶であることが好ましい。さ
らに上記の他に少量であればスピネルなどのマグネシア
化合物が含まれていても差し支えない。
If monoclinic zirconia crystals and/or cubic zirconia crystals are included, it is preferred that 80 moles or more of all zirconia crystals be tetragonal zirconia crystals. Furthermore, in addition to the above, a small amount of magnesia compounds such as spinel may be included.

なお、正方晶ジルコニア結晶中にはジルコニウムと性質
が類似で分離が困難なハフニウムを含有してもよい。
Note that the tetragonal zirconia crystal may contain hafnium, which has similar properties to zirconium and is difficult to separate.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例l Zr0z粉(第−希元素製、EPグレード、純度99.
5慢)、 Y冨Os粉(信越化学展、純度99.9−)
及びCe 02粉(信越化学制、99.9%)を第1表
に示す配合割合に秤量し、ボールミルで平均粒径1.0
μm以下になるまで湿式粉砕、混合し九。次に乾燥した
後大気中1400℃で1時間熱処理した。これをボール
ミルで平均粒径0.7μm以下になるまで湿式粉砕し、
乾燥してジルコニア成分(中間原料粉)を得た。
Example 1 Zr0z powder (manufactured by Dai-Kisen, EP grade, purity 99.
5), Y Tomi Os powder (Shin-Etsu Chemical Exhibition, purity 99.9-)
and Ce 02 powder (Shin-Etsu Chemical, 99.9%) were weighed in the proportions shown in Table 1, and the average particle size was 1.0 using a ball mill.
Wet grind and mix until it becomes less than μm.9. Next, after drying, it was heat-treated at 1400° C. for 1 hour in the air. This was wet-pulverized in a ball mill until the average particle size was 0.7 μm or less.
It was dried to obtain a zirconia component (intermediate raw material powder).

この中間原料粉に酸化アルミニウム粉(住友化学裂、商
品名AES−12.純度99.9%)、及び塩基性炭酸
マグネシウム(和光純薬工業製、試薬特級)を酸化物換
算で第1表に示す配合割合に秤量し、ボールミルで平均
粒径0.6μm以下になるまで湿式粉砕、混合した。得
られた泥漿にポリビニルアルコール(PVA)及びワッ
クス(中京油脂製、商品名マクセロンM)を添加し、噴
霧乾燥法で造粒して成形粉を得た。さらにこの成形粉を
1.2トン/an”の圧力で加圧成形後、電気炉を用い
大気中で第1表に示す温度で2時間焼成して焼結体を得
た。
To this intermediate raw material powder, aluminum oxide powder (Sumitomo Chemical Co., Ltd., trade name AES-12, purity 99.9%) and basic magnesium carbonate (Wako Pure Chemical Industries, Ltd., reagent special grade) were added as shown in Table 1 in terms of oxides. The mixtures were weighed in the indicated proportions, wet-pulverized and mixed in a ball mill until the average particle size was 0.6 μm or less. Polyvinyl alcohol (PVA) and wax (manufactured by Chukyo Yushi Co., Ltd., trade name: Maxelon M) were added to the obtained slurry, and the mixture was granulated by a spray drying method to obtain a molded powder. Further, this molded powder was press-molded at a pressure of 1.2 tons/an'' and then fired in the air at the temperature shown in Table 1 for 2 hours using an electric furnace to obtain a sintered body.

次に得られた焼結体を切断し、ついで表面を研磨(φS
OOダイヤモンド砥石)して3X4X40−寸法の試料
を得た。得られた各試料を用いて。
Next, the obtained sintered body is cut and the surface is polished (φS
OO diamond grinding wheel) to obtain a sample with dimensions of 3X4X40-. Using each sample obtained.

JIS R1601−1981に基き0曲げ強度を測定
し、切断面の色を観察し念。その結果を第1表に示す。
Measure the zero bending strength based on JIS R1601-1981 and observe the color of the cut surface. The results are shown in Table 1.

なお曲げ強度の値は試料数10本の値である。The bending strength values are based on 10 samples.

一方曲げ強度測定用試料に幅0.1 am及び深さ0.
7−のノツチ金入れ、ノツチドビーム法(8ENB法)
Kより破壊靭性(KIO)を測定した。その結−果を第
1表に示す。
On the other hand, the sample for bending strength measurement had a width of 0.1 am and a depth of 0.1 am.
7- Notch insert, notched beam method (8ENB method)
Fracture toughness (KIO) was measured from K. The results are shown in Table 1.

第1表から明らかなように1本発明になるジルコニア強
化アルミナセラミックスは9曲げ強度。
As is clear from Table 1, the zirconia-reinforced alumina ceramic according to the present invention has a bending strength of 9.

破壊靭性に優れ、かつこれらの特性のばらつきが小さく
9色むらのないことがわかる。
It can be seen that the fracture toughness is excellent, and the variations in these properties are small and there is no unevenness in the nine colors.

実施例2 ZrO2粉(第−希元素製、spzグレード)。Example 2 ZrO2 powder (manufactured by Dai-ki Elements, spz grade).

Ce0z粉(信越化学展、純度99.9 To ) 、
 YzOa(信越化学展、純度99.9チ) 、 Gd
30s粉(信越化学友、純度99.91)及びYb20
s粉(信越化学友、純度99.9 % )を第2表に示
す配合割合に秤量し、以下実施例1と同様の工程を経て
中間原料粉を得た。
Ce0z powder (Shin-Etsu Chemical Exhibition, purity 99.9 To),
YzOa (Shin-Etsu Chemical Exhibition, purity 99.9%), Gd
30s powder (Shin-Etsu Kagakuyu, purity 99.91) and Yb20
S powder (manufactured by Shin-Etsu Kagakuyu Co., Ltd., purity 99.9%) was weighed in the proportion shown in Table 2, and the same steps as in Example 1 were carried out to obtain an intermediate raw material powder.

この中間原料粉に酸化アルミニウム粉(住友化字型、商
品名AES−12.純度99.9チ)及び塩基性炭酸マ
グネシウム(和光純薬工業製、試薬特級)を酸化物換算
で第2表に示す配合割合に秤量し。
To this intermediate raw material powder, aluminum oxide powder (Sumitomo type, trade name AES-12, purity 99.9%) and basic magnesium carbonate (manufactured by Wako Pure Chemical Industries, reagent special grade) are added as shown in Table 2 in terms of oxides. Weigh the mixture according to the proportion shown.

以下実施例1と同様の工程を経て焼結体を得た。Thereafter, a sintered body was obtained through the same steps as in Example 1.

得られた焼結体について実施例1と同様の方法で曲げ強
度、破壊靭性及び切断面の色を観察した。
The bending strength, fracture toughness, and color of the cut surface of the obtained sintered body were observed in the same manner as in Example 1.

その結果を合わせてwc2表に示す。The results are shown in table wc2.

第2表から明らかなように9本発明になるジルコニア強
化アルミナセラミックスは1曲げ強度。
As is clear from Table 2, the zirconia-reinforced alumina ceramic according to the present invention has a bending strength of 1.

破壊靭性に優れ、かつこれらの特性のばらつきが小さく
1色むらのないことがわかる。
It can be seen that the fracture toughness is excellent, and the variation in these properties is small and there is no uniform color.

次に本発明になるジルコニア強化アルミナセラミックス
をX線マイクロアナライザー(XMA)で調べたところ
、マグネシアはジルコニアとは独立に存在することが判
明した。
Next, when the zirconia-reinforced alumina ceramic of the present invention was examined using an X-ray microanalyzer (XMA), it was found that magnesia exists independently of zirconia.

また本発明になるジルコニア強化アルミナセラミックス
の組織を走査型電子顕微鏡で任意の10ケ所で観察し、
その中から粒径の大きな粒子を10個選び、その平均粒
径を粗大粒子径として。
In addition, the structure of the zirconia-reinforced alumina ceramic according to the present invention was observed at 10 arbitrary locations using a scanning electron microscope.
Select 10 particles with large particle sizes from among them, and use their average particle size as the coarse particle size.

これとマグネシア添加量との関係を求めた。この関係を
第1図に示す。第1図から、マグネシアの添加により粗
大粒子径はさほど変化しないことが明らかである。
The relationship between this and the amount of magnesia added was determined. This relationship is shown in FIG. From FIG. 1, it is clear that the addition of magnesia does not significantly change the coarse particle size.

(発明の効果) 本発明の製造法によって得られるジルコニア強化アルミ
ナセラミックスは1機械的強度、靭程に優れ、ばらつき
が小さく2色むらがないことから。
(Effects of the Invention) The zirconia-reinforced alumina ceramics obtained by the production method of the present invention have excellent mechanical strength and toughness, and have small variations and no color unevenness.

一般機械部品、耐摩耗部品、大型構造体など幅広い用途
があり、これまでアルミナセラミックスでは使用できな
かった過酷な条件下でも使用に耐える効果を持つジルコ
ニア強化アルミナセラミックスである。
It is a zirconia-reinforced alumina ceramic that can be used in a wide range of applications, including general mechanical parts, wear-resistant parts, and large structures, and can withstand use under harsh conditions where alumina ceramics could not previously be used.

Claims (3)

【特許請求の範囲】[Claims] 1.希土類酸化物1.5〜15モル%及び酸化ジルコニ
ウム85〜98.5モルーを混合後1100〜1500
℃で熱処理してジルコニア成分とし,ついでジルコニア
成分10〜40重量%,酸化アルミニウム55〜89.
8重量%及び酸化マグネシウム0.2〜5重量%を混合
,粉砕,成形後1500〜1700℃の温度で焼成する
ことを特徴とするジルコニア強化アルミナセラミックス
の製造法。
1. 1100-1500 after mixing 1.5-15 mol% of rare earth oxide and 85-98.5 mol% of zirconium oxide
The zirconia component is heat-treated at 10°C, and then the zirconia component is 10 to 40% by weight, and the aluminum oxide is 55 to 89% by weight.
A method for producing zirconia-reinforced alumina ceramics, which comprises mixing 8% by weight of magnesium oxide and 0.2 to 5% by weight of magnesium oxide, pulverizing, molding, and then firing at a temperature of 1500 to 1700°C.
2.ジルコニア強化アルミナセラミックスの結晶相が主
としてα−アルミナ結晶及び正方晶ジルコニア結晶を含
む結晶相である請求項1記載のジルコニア強化アルミナ
セラミックスの製造法。
2. 2. The method for producing zirconia-reinforced alumina ceramics according to claim 1, wherein the crystalline phase of the zirconia-reinforced alumina ceramics is a crystal phase mainly containing α-alumina crystals and tetragonal zirconia crystals.
3.ジルコニア強化アルミナセラミックスの結晶相が主
としてα−アルミナ結晶及び正方晶ジルコニア結晶であ
り、他に単斜晶ジルコニア結晶及び/又は立方晶ジルコ
ニア結晶を含み,かつ全ジルコニア結晶中の80モル%
以上が正方晶ジルコニア結晶である請求項1記載のジル
コニア強化アルミナセラミックスの製造法。
3. The crystal phase of zirconia-reinforced alumina ceramics is mainly α-alumina crystals and tetragonal zirconia crystals, and also contains monoclinic zirconia crystals and/or cubic zirconia crystals, and accounts for 80 mol% of the total zirconia crystals.
The method for producing a zirconia-reinforced alumina ceramic according to claim 1, wherein the above is a tetragonal zirconia crystal.
JP63049271A 1988-03-02 1988-03-02 Production of zirconia-reinforced alumina ceramics Pending JPH01224264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049271A JPH01224264A (en) 1988-03-02 1988-03-02 Production of zirconia-reinforced alumina ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049271A JPH01224264A (en) 1988-03-02 1988-03-02 Production of zirconia-reinforced alumina ceramics

Publications (1)

Publication Number Publication Date
JPH01224264A true JPH01224264A (en) 1989-09-07

Family

ID=12826177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049271A Pending JPH01224264A (en) 1988-03-02 1988-03-02 Production of zirconia-reinforced alumina ceramics

Country Status (1)

Country Link
JP (1) JPH01224264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132577A (en) * 2015-01-16 2016-07-25 三井金属鉱業株式会社 Alumina-zirconia sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132577A (en) * 2015-01-16 2016-07-25 三井金属鉱業株式会社 Alumina-zirconia sintered body

Similar Documents

Publication Publication Date Title
US20070179041A1 (en) Zirconia Ceramic
JPS6140621B2 (en)
JPH0288423A (en) Stabilized zirconia
JPH0352425B2 (en)
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
US4690910A (en) Sintered product of zirconia and method of producing the same
US8669198B2 (en) Basic refractories composition containing magnesium orthotitanate and calcium titanate, process for its production and uses thereof
Ganesh et al. Synthesis and characterization of MgAl2O4–ZrO2 composites
JPH0553751B2 (en)
JPS6126562A (en) Zirconia sintered body
JPH027910B2 (en)
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
KR102263516B1 (en) Ceramic bead producing method
JPH01224264A (en) Production of zirconia-reinforced alumina ceramics
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JPH09188562A (en) Zirconia-based sintered compact, production of the same and material for crushing part
JP6134561B2 (en) Zirconia sintered body, grinding / dispersion media consisting of zirconia sintered body
JPH01212273A (en) Alumina ceramic reinforced with zirconia
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JP4048017B2 (en) Crushing / dispersing media made of zirconia sintered body with excellent durability and wear resistance
KR20200133119A (en) Zirconium Based Ceramic Material and Method of Producing the same
JPS647030B2 (en)
JPS6212662A (en) High toughness zirconia base sintered body
KR960006247B1 (en) Process for the preparation of aluminium titanate ceramics