JPH01224225A - Production of raw material powder of high temperature superconducting ceramic - Google Patents

Production of raw material powder of high temperature superconducting ceramic

Info

Publication number
JPH01224225A
JPH01224225A JP63049484A JP4948488A JPH01224225A JP H01224225 A JPH01224225 A JP H01224225A JP 63049484 A JP63049484 A JP 63049484A JP 4948488 A JP4948488 A JP 4948488A JP H01224225 A JPH01224225 A JP H01224225A
Authority
JP
Japan
Prior art keywords
solution
precipitate
raw material
compound
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63049484A
Other languages
Japanese (ja)
Inventor
Shigeru Igai
滋 猪飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63049484A priority Critical patent/JPH01224225A/en
Publication of JPH01224225A publication Critical patent/JPH01224225A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive improved fineness and uniformity of particle diameter of raw material powder, by contacting a solution of each compound of Bi, alkaline earth element and copper with a precipitant while irradiating a supersonic vibration and calcining the resultant co-precipitate. CONSTITUTION:A solution of Bi compound, alkaline earth element compound and copper compound is mixed with a precipitant while irradiating a supersonic vibration and a co-precipitate is formed. In another case, a solution of said compound is mixed with a precipitant and a co-precipitate is formed, thus a supersonic vibration is applied to the co-precipitate solution. The methods have no special restriction and many method are adoptable. Next, the solution containing a co-precipitate irradiated of supersonic vibration is separated by filtration and the co-precipitate is washed, dried and calcined. Fine raw material powder having particle diameters smaller than 1mu, a uniform particle diameter distribution and a uniform composition of the component is obtained by this method. The raw material powder is sintered to a superconducting ceramic having high density and high critical electric current density.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Bi−アルカリ土類元素−Cu酸化物系高温
超電導セラミックス原料粉末の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a Bi-alkaline earth element-Cu oxide-based high temperature superconducting ceramic raw material powder.

(従来技術及びその問題点) Bi−アルカリ土類元素−Cu酸化物系セラミックスは
、100に以上の高い臨界温度を持つ超を導物買である
ことが知られるようになり、稀土類元素−アルカリ土類
元素−Cu酸化物系高温超電導セラミックスのような高
価な稀土類元素を使用しないので、経済的で多方面への
応用が期待されている。
(Prior art and its problems) It has come to be known that Bi-alkaline earth element-Cu oxide ceramics are super conductive materials with a high critical temperature of 100 or more, and rare earth element- Since it does not use expensive rare earth elements like alkaline earth element-Cu oxide-based high temperature superconducting ceramics, it is expected to be economical and to be applied in many fields.

これらのBi−アルカリ土類元素−Cufi化物系高温
超電導セラミックスは、液体窒素のような安価な冷媒で
冷却することによっても超電導状態になるため、液体ヘ
リウム中でしか超電導状態を示さないNb−Ti系超電
導合金などの代わりに、超電導マグネットなどに使えれ
ば、経済的に大きなメリットがある。
These Bi-alkaline earth element-Cufi compound-based high-temperature superconducting ceramics become superconducting even when cooled with an inexpensive coolant such as liquid nitrogen, so Nb-Ti, which only exhibits a superconducting state in liquid helium, If it can be used in superconducting magnets instead of superconducting alloys, it would have great economic benefits.

しかし、これまで作られてきた超電導セラミックスは臨
界電流密度が低く、常電導〜超電導の転移の温度幅が広
く急峻さに欠けているという点も問題であった。また、
稀土類元素−アルカリ土類元素−Cu酸化物系高温超電
導セラミックスは、空気中の水分、炭酸ガスによって超
電導性が損なわれるという欠点があった。
However, the superconducting ceramics that have been produced so far have had problems in that their critical current density is low, and the temperature range of the transition from normal conductivity to superconductivity is wide and lacks steepness. Also,
Rare earth element-alkaline earth element-Cu oxide-based high-temperature superconducting ceramics have the disadvantage that superconductivity is impaired by moisture and carbon dioxide gas in the air.

これらの問題点の原因として、超電導セラミックスが多
孔質で密度が低いこと、超電導セラミックスが水等と反
応して内部構造及び/あるいは化学組成が若干変化する
ことが指摘されている。
It has been pointed out that the causes of these problems are that superconducting ceramics are porous and have a low density, and that superconducting ceramics react with water and the like, causing slight changes in their internal structure and/or chemical composition.

これまでBi−アルカリ土類元素−Cu酸化物系高温超
電導セラミックスは乾式あるいは湿式で混合することに
よって調製した原料粉末を、加圧・焼結して作られてき
た。
Hitherto, Bi-alkaline earth element-Cu oxide-based high-temperature superconducting ceramics have been made by pressurizing and sintering raw material powders prepared by dry or wet mixing.

乾式混合法は、超電導セラミックスの構成成分の酸化物
あるいは炭酸塩の粉末、例えばBizO−1CaCO=
、SrCO3,CuOの粉末を出発原料として、ボール
ミル、襠潰機あるいは乳棒・乳鉢などで粉砕、混合した
後に焼結して、超電導セラミックスの原料粉末を調製す
る方法である。
In the dry mixing method, powders of oxides or carbonates of superconducting ceramic components, such as BizO-1CaCO=
, SrCO3, and CuO as starting materials, which are ground and mixed in a ball mill, grinder, pestle, and mortar, and then sintered to prepare raw material powder for superconducting ceramics.

一方、湿式混合法は、乾式−混合法と同様の出発原料に
、出発原料と反応せずかつこれを実質的に溶解しない溶
媒を加えて、機械的に混合する方法である。
On the other hand, the wet mixing method is a method in which a solvent that does not react with and does not substantially dissolve the starting materials is added to the same starting materials as in the dry mixing method, and the mixture is mechanically mixed.

上記両温合法は技術的に容易で安全性の高い方法である
が、得られた原料粉末は、粒径が1〜5μm以上と太き
(、粒径分布も均一ではなく、さらに成分のぼろつきも
大きい。
The above-mentioned heating method is technically easy and highly safe, but the obtained raw material powder has a large particle size of 1 to 5 μm or more (the particle size distribution is not uniform, and the ingredients are rag-like). It also has a large impact.

従って、この原料粉末を焼結して作られた高温超電導セ
ラミックスは密度が低く臨界電流密度も低いという開題
がある。
Therefore, the problem is that high-temperature superconducting ceramics made by sintering this raw material powder have a low density and a low critical current density.

(問題点解決のための技術的手段) 本発明は、従来の混合法の欠点を解決した、易焼結性の
超電導セラミックス原料粉末の製法である。
(Technical Means for Solving Problems) The present invention is a method for producing easily sinterable superconducting ceramic raw material powder, which solves the drawbacks of conventional mixing methods.

本発明は、(1)ビスマス化合物、アルカリ土類元素化
合物及び銅化合物の溶液を、超音波振動を付与させなが
ら沈澱形成剤と接触させて共沈澱物を形成させ、ついで
共沈澱物を仮焼結することを特徴とするBi−アルカリ
土類元素−Cu酸化物系高温超電導セラミックス原料粉
末の製法、及び(2)ビスマス化合物、アルカリ土類元
素化合物及び銅化合物の溶液を、沈澱形成剤と接触させ
て共沈澱物を形成させ、この共沈澱物溶液に超音波振動
を付与し、つ、いで共沈澱物を仮焼結することを特徴と
するBi−アルカリ土類元素−Cu酸化物系高温超電導
セラミックス原料粉末の製法である。
The present invention involves (1) bringing a solution of a bismuth compound, an alkaline earth element compound, and a copper compound into contact with a precipitate forming agent while applying ultrasonic vibration to form a coprecipitate, and then calcining the coprecipitate. (2) A method for producing a Bi-alkaline earth element-Cu oxide-based high-temperature superconducting ceramic raw material powder, which is characterized in that the powder forms a bismuth compound, an alkaline earth element compound, and a copper compound in contact with a precipitate-forming agent. A high-temperature Bi-alkaline earth element-Cu oxide system characterized by forming a coprecipitate by applying ultrasonic vibration to the coprecipitate solution and temporarily sintering the coprecipitate. This is a method for producing raw material powder for superconducting ceramics.

本発明におけるBi−アルカリ土類元素−Cu酸化物系
高温超を導セラミックスは、次の一瓜式、B 1rAx
cu、O,で表され、式中AはMg、Ca、Ba及びS
rから選択される少な(とも一種類のアルカリ土類元素
を示している。Aとしては上記アルカリ土類元素の二種
を組み合わせて使用することが好ましく、特に好ましい
のは、CaとSrの組み合わせである。
The Bi-alkaline earth element-Cu oxide-based high-temperature ultra-conducting ceramic in the present invention has the following formula: B 1rAx
cu, O, in which A is Mg, Ca, Ba and S
(Both represent one kind of alkaline earth element. As A, it is preferable to use a combination of two kinds of the above alkaline earth elements. Particularly preferable is a combination of Ca and Sr. It is.

上記式において、1<x<4、o、s<y<2.5.4
<z<7の範囲が好ましい。Aとしてアルカリ土類元素
の二種を組み合わせて使用する場合、その二種の元素の
組成比は、0.5より大きく、1.5より小さいことが
好ましいが、1付近が特に好ましい。
In the above formula, 1<x<4, o, s<y<2.5.4
The range <z<7 is preferable. When two types of alkaline earth elements are used in combination as A, the composition ratio of the two types of elements is preferably larger than 0.5 and smaller than 1.5, and particularly preferably around 1.

本発明で用いられるビスマス化合物、アルカリ土類元素
化合物、及び銅化合物としては、水酸化物、塩酸塩、硝
酸塩、有機酸塩、アルコキシドなどが挙げられる。
The bismuth compound, alkaline earth element compound, and copper compound used in the present invention include hydroxides, hydrochlorides, nitrates, organic acid salts, alkoxides, and the like.

上記の化合物の溶媒としては、水、アルコール類、エー
テル類、ケトン類、エステル類、ハロゲン化炭化水素類
、N−メチル−2−ピロリドン、ジメチルフォルムアミ
ド、ジメチルアセトアミド、ジメチルスルフオキシドな
どが好ましく用いられる。
Preferred solvents for the above compounds include water, alcohols, ethers, ketones, esters, halogenated hydrocarbons, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, and dimethylsulfoxide. used.

本発明において沈澱形成剤としては、苛性アルカリ水溶
液、アンモニア水、炭酸アンモニウム、アミン類、シュ
ウ酸、水などを用いることができる。これらの沈澱形成
剤は、単独で用いてもよいし、2種以上を組み合わせて
もよい。
In the present invention, as the precipitant, an aqueous caustic alkali solution, aqueous ammonia, ammonium carbonate, amines, oxalic acid, water, etc. can be used. These precipitants may be used alone or in combination of two or more.

ビスマス化合物の溶液(以下溶液Aという)、アルカリ
土類元素化合物の溶液(以下溶液Bという)、銅化合物
の溶液(以下溶液Cという)に超音波振動を付与させな
がら沈澱形成剤を混合して、共沈澱物を形成させる、あ
るいは上記化合物の溶液に沈澱形成剤を混合して共沈澱
物を形成させ、この共沈澱物溶液に超音波振動を付与さ
せる方法については特に制限はなく、例えば以下に示す
ような各種の方法を採用することができる。
A precipitant is mixed with a solution of a bismuth compound (hereinafter referred to as solution A), a solution of an alkaline earth element compound (hereinafter referred to as solution B), and a solution of a copper compound (hereinafter referred to as solution C) while applying ultrasonic vibration. There are no particular restrictions on the method of forming a coprecipitate, or forming a coprecipitate by mixing a precipitate with a solution of the above compound, and applying ultrasonic vibration to this coprecipitate solution. Various methods as shown in can be adopted.

■溶!A、B及びCをあらかじめ混合し、これに超音波
振動を付与させながら沈澱形成剤を混合する方法。■溶
iA、B及びCをあらかじめ混合し、これに沈澱形成剤
を混合して共沈澱物を形成させ、この共沈澱物溶液に超
音波振動を付与する方法。
■Melting! A method in which A, B, and C are mixed in advance, and a precipitate forming agent is mixed therein while applying ultrasonic vibration. (2) A method in which solutions iA, B, and C are mixed in advance, a precipitate is mixed therein to form a coprecipitate, and ultrasonic vibrations are applied to the coprecipitate solution.

■溶液A、B及びCのそれぞれに超音波振動を付与させ
ながら沈澱形成剤を混合し、ついでそれぞれの共沈澱物
溶液を混合する方法。■溶液A、 B及びCのそれぞれ
に沈澱形成剤を混合し、ついでそれぞれの共沈澱物溶液
の混合溶液に超音波振動を付与する方法。■溶液A及び
已に超音波振動を付与させながら沈澱形成剤を混合して
共沈?A物を形成させ、この共沈澱物に超音波振動を付
与させながら、溶液C及び沈澱形成剤を加える方法。■
溶液A及び已に沈澱形成剤を混合して共沈澱物を形成さ
せ、この共沈澱物に溶液C及び沈澱形成剤を加え、つい
で共沈澱物溶液に超音波振動を付与する方法。
(2) A method in which a precipitant is mixed with each of solutions A, B, and C while applying ultrasonic vibration, and then each coprecipitate solution is mixed. (2) A method in which a precipitant is mixed in each of solutions A, B, and C, and then ultrasonic vibration is applied to the mixed solution of each coprecipitate solution. ■Co-precipitate by mixing the precipitate forming agent while applying ultrasonic vibration to solution A and A? A method in which product A is formed, and solution C and a precipitate forming agent are added while applying ultrasonic vibration to this coprecipitate. ■
A method of mixing solution A and a precipitate-forming agent to form a coprecipitate, adding solution C and a precipitate-forming agent to the coprecipitate, and then applying ultrasonic vibration to the coprecipitate solution.

上記の工程で得られた共沈澱物のビスマス、アルカリ土
類元素、及び泪の原子比は、Bi:アルカリ土類元素:
 Cu=1 : 1〜4 : 0.8〜2.5の範囲で
あることが好ましく、特にBi:アルカリ土類元素: 
Cu”i : 1.6〜2.6 : 1.6〜2.3の
範囲であることが好適である。
The atomic ratio of bismuth, alkaline earth element, and yam in the coprecipitate obtained in the above step is Bi: alkaline earth element:
It is preferable that Cu=1:1-4:0.8-2.5, especially Bi:alkaline earth element:
Cu”i: 1.6 to 2.6: Preferably, the range is 1.6 to 2.3.

次に前記の各工程で付与された超音波振動:よ、各種の
市販された超音波発生装置を使用して行うことができる
。溶液A、B及びC1あるいは共沈澱物を含有する溶液
を超音波発生装置に装着し、好ましくは出力iow〜I
KW、1〜100分闇発振器を作動させ、形成された沈
澱凝集物を超音波振動で破砕、分散する。
Next, the ultrasonic vibrations applied in each of the above steps can be carried out using various commercially available ultrasonic generators. The solutions A, B, and C1 or the solution containing the coprecipitate are attached to an ultrasonic generator, preferably with an output of iow to I.
KW, operate the dark oscillator for 1 to 100 minutes to crush and disperse the formed precipitated aggregates by ultrasonic vibration.

前記の超音波振動を付与された共沈澱物を含有する溶液
を濾別し、共沈澱物は洗浄、乾燥の後、仮焼結する。
The solution containing the coprecipitate subjected to the ultrasonic vibration is filtered, and the coprecipitate is washed, dried, and then pre-sintered.

仮焼結温度は500〜950°Cであることが好ましい
。仮焼結温度が500°Cより低いと、共沈澱物の反応
が十分に起こらず、良好な高温超電導セラミックスの原
料粉末が得られない。また仮焼結温度が950 ”Cよ
りも高い場合は、共沈澱物が仮焼結中に融解したり粒子
の粗大化が起こったりするため好ましくない。
Preferably, the temporary sintering temperature is 500 to 950°C. If the preliminary sintering temperature is lower than 500°C, the reaction of the coprecipitate will not occur sufficiently, and a good raw material powder for high-temperature superconducting ceramics will not be obtained. Further, if the pre-sintering temperature is higher than 950''C, it is not preferable because the coprecipitate may melt during the pre-sintering or the particles may become coarse.

本発明の方法により得られた原料粉末を加圧下で成形し
700〜950°Cで焼結することにより、裔温超電導
セラミックスとすることができる。
By molding the raw material powder obtained by the method of the present invention under pressure and sintering it at 700 to 950°C, a hot superconducting ceramic can be obtained.

(本発明の効果) 本発明の方法により得られた、Bi−アルカリ土類元素
−Cu酸化物系高温超電導セラミックス原料粉末は、粒
子径が1μmより小さい、微細で粒子径分布及び成分元
素化合物の駆成の均一な粉末である。この原料粉末を焼
結して得られた超電導セラミックスは、密度が5.1g
/cd以上と緻密であり、臨界電流密度も、従来に比べ
て大きくなる。
(Effects of the present invention) The Bi-alkaline earth element-Cu oxide-based high temperature superconducting ceramic raw material powder obtained by the method of the present invention has a fine particle diameter of less than 1 μm, and has a fine particle size distribution and a high concentration of component element compounds. It is a uniform powder. The superconducting ceramic obtained by sintering this raw material powder has a density of 5.1 g.
/cd or more, and the critical current density is also larger than that of the conventional method.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

実施例1 3Nアンモニア水300戚に、ジエチルアミン0.4モ
ルを300dの水に溶解したものを加え、性徴形成剤と
した。
Example 1 0.4 mol of diethylamine dissolved in 300 d of water was added to 300 d of 3N aqueous ammonia to prepare a sexual characteristic forming agent.

硝酸ビスマス0.1モルの水溶液500d、硝酸カルシ
ウム0.1モルの水溶液500戚、硝酸ストロンチウム
0.1モルの水溶液500m、及び塩化銅0.2モルの
水溶液500iの各々に、出力80Wで10分間超音波
振動を付与しながら、上記沈澱側を滴下してそれぞれ沈
澱物を形成させ上記4種類の沈澱溶液を混合攪拌し、そ
の後濾過、沈澱物の水洗、乾燥を行った。この粉末を7
50℃で2時間仮焼結し、ボールミルで粉砕して、原料
粉末を得た。
500 d of an aqueous solution of 0.1 mol of bismuth nitrate, 500 m of an aqueous solution of 0.1 mol of calcium nitrate, 500 m of an aqueous solution of 0.1 mol of strontium nitrate, and 500 i of an aqueous solution of 0.2 mol of copper chloride were heated at an output of 80 W for 10 minutes. While applying ultrasonic vibration, the precipitation side was added dropwise to form a precipitate, and the four types of precipitate solutions were mixed and stirred, followed by filtration, washing of the precipitate with water, and drying. 7 of this powder
It was pre-sintered at 50° C. for 2 hours and ground in a ball mill to obtain a raw material powder.

この原料粉末をit/cdで成形し、900°Cで2時
間焼成したところ、密度5.43g/cnl、臨界温度
107 K、臨界電流密度420 A/cdの超を導セ
ラミックス焼結体が得られた。
When this raw material powder was molded using IT/CD and fired at 900°C for 2 hours, a superconducting ceramic sintered body with a density of 5.43 g/cnl, a critical temperature of 107 K, and a critical current density of 420 A/cd was obtained. It was done.

実施例2 実施例1の沈澱形成剤を硝酸ビスマス0.1モルの水溶
液500d、硝酸カルシウム0.1モルの水溶液500
−1硝酸ストロンチウム0.1モルの水溶液500ば、
及び塩化LM 0 、2モルの水溶液500−の各々に
滴下してそれぞれ沈澱物を形成させた。
Example 2 The precipitate forming agent of Example 1 was mixed with 500 d of an aqueous solution of 0.1 mol of bismuth nitrate and 500 d of an aqueous solution of 0.1 mol of calcium nitrate.
-1 strontium nitrate 0.1 mol aqueous solution 500 bar,
and LM 0 chloride, respectively, were added dropwise to a 2 molar aqueous solution 500 to form a precipitate.

上記4種類の沈澱溶液を混合攪拌し、出力80Wで40
分間超音波振動を付与し、その後濾過、沈澱物の水洗、
乾燥を行った。この粉末を750°Cで2時間仮焼結し
、ボールミルで粉砕して、原料粉末を得た。
The above four types of precipitation solutions were mixed and stirred, and the
Apply ultrasonic vibration for a minute, then filter, wash the precipitate with water,
It was dried. This powder was pre-sintered at 750°C for 2 hours and ground in a ball mill to obtain a raw material powder.

この原′A粉末をit/aiで成形し、900°Cで2
時間焼成したところ、密度5.20 g /cry、 
P異温度104 K、臨界電流音度410 A/c−j
の超電導セラミックス焼結体が得られた。
This raw 'A powder was molded using IT/AI and heated to 900°C for 2 hours.
When baked for hours, the density was 5.20 g/cry.
P different temperature 104 K, critical current sound intensity 410 A/c-j
A superconducting ceramic sintered body was obtained.

実施例3 Biエトキシド(B i (OCzHs) z〕0.1
モル、Caエトキシド(Ca (OCzHs) Z30
.1モル、Srエトキシド(S r (QC2Hs) 
z) 0.1モル、Cuエトキシド(Cu (OCzH
s)z))0.2モルをエタノール1000dに溶解し
た。
Example 3 Bi ethoxide (B i (OCzHs) z) 0.1
Mol, Ca ethoxide (Ca (OCzHs) Z30
.. 1 mol, Sr ethoxide (S r (QC2Hs)
z) 0.1 mol, Cu ethoxide (Cu (OCzH
s)z)) 0.2 mol was dissolved in 1000d of ethanol.

このエタノール溶液に出力100Wで10分間超音波振
動を付与しながら水を徐々に滴下し、共沈澱物を生成さ
せた。
Water was gradually added dropwise to this ethanol solution while applying ultrasonic vibration at an output of 100 W for 10 minutes to generate a coprecipitate.

得られた共沈澱物を含有する溶液を、濾過し、沈W’S
の水洗、乾燥を行った。この粉末を750°Cで2時間
仮焼結し、ボールミルで粉砕して、原料粉末を得た。
The resulting coprecipitate-containing solution was filtered and precipitated W'S
Washed with water and dried. This powder was pre-sintered at 750°C for 2 hours and ground in a ball mill to obtain a raw material powder.

この原料粉末をit/c−jで成形し、900℃で2時
間焼成したところ、密度5.40 g /aA、 R昇
温度109に、X界電流百度465A/cfflの超電
導セラミックス焼結体が得られた。
When this raw material powder was molded in IT/c-j and fired at 900°C for 2 hours, a superconducting ceramic sintered body with a density of 5.40 g/aA, an R temperature increase of 109, and an X field current of 465 A/cffl was obtained. Obtained.

比較例 酸化イツトリウム(Y、03) 0.05モル、炭酸バ
リウム(B a COz) 0.2モル、酸化銅(Cu
b)0.3モルを水50fに加え、ボールミルにて混合
した後、濾過し、更に乾燥器に入れ水分を除去した。
Comparative Example Yttrium oxide (Y, 03) 0.05 mol, barium carbonate (B a COz) 0.2 mol, copper oxide (Cu
b) 0.3 mol was added to 50 f of water, mixed in a ball mill, filtered, and further placed in a dryer to remove moisture.

この混合粉末を850℃空気中で3時間仮焼結した。仮
焼結された混合粉末をボールミルで粉砕し再び仮焼結し
た。この撮作を4回操り返して、原料粉末とした。
This mixed powder was pre-sintered at 850°C in air for 3 hours. The pre-sintered mixed powder was ground in a ball mill and pre-sintered again. This imaging process was repeated four times to obtain a raw material powder.

この原料粉末を1t、/cutで成形し、900°Cで
2時間焼成したところ、密度4.1g/cnl、臨界温
度90に、臨界電流密度35A/c1i1の超電導セラ
ミックスが得られたに過ぎなかった。
When this raw material powder was molded at 1 t/cut and fired at 900°C for 2 hours, a superconducting ceramic with a density of 4.1 g/cnl, a critical temperature of 90, and a critical current density of 35 A/c1i1 was obtained. Ta.

Claims (2)

【特許請求の範囲】[Claims] (1)ビスマス化合物、アルカリ土類元素化合物及び銅
化合物の溶液を、超音波振動を付与させながら沈澱形成
剤と接触させて共沈澱物を形成させ、ついで共沈澱物を
仮焼結することを特徴とするBi−アルカリ土類元素−
Cu酸化物系高温超電導セラミックス原料粉末の製法。
(1) A solution of a bismuth compound, an alkaline earth element compound, and a copper compound is brought into contact with a precipitate forming agent while applying ultrasonic vibration to form a coprecipitate, and then the coprecipitate is pre-sintered. Features of Bi - alkaline earth element -
A method for producing raw material powder for Cu oxide-based high-temperature superconducting ceramics.
(2)ビスマス化合物、アルカリ土類元素化合物及び銅
化合物の溶液を、沈澱形成剤と接触させて共沈澱物を形
成させ、この共沈澱物溶液に超音波振動を付与し、つい
で共沈澱物を仮焼結することを特徴とするBi−アルカ
リ土類元素−Cu酸化物系高温超電導セラミックス原料
粉末の製法。
(2) A solution of a bismuth compound, an alkaline earth element compound, and a copper compound is brought into contact with a precipitate forming agent to form a coprecipitate, and this coprecipitate solution is subjected to ultrasonic vibration, and then the coprecipitate is A method for producing a Bi-alkaline earth element-Cu oxide-based high-temperature superconducting ceramic raw material powder, which comprises pre-sintering.
JP63049484A 1988-03-04 1988-03-04 Production of raw material powder of high temperature superconducting ceramic Pending JPH01224225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049484A JPH01224225A (en) 1988-03-04 1988-03-04 Production of raw material powder of high temperature superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049484A JPH01224225A (en) 1988-03-04 1988-03-04 Production of raw material powder of high temperature superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01224225A true JPH01224225A (en) 1989-09-07

Family

ID=12832433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049484A Pending JPH01224225A (en) 1988-03-04 1988-03-04 Production of raw material powder of high temperature superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01224225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124802A (en) * 1991-10-30 1993-05-21 Mitsubishi Materials Corp Production of composite ceramic powder
US5863867A (en) * 1996-10-28 1999-01-26 Superconductive Components, Inc. Fine-particle bi-sr-ca-cu-o having high phase purity made by chemical precipitation and low-pressure calcination method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124802A (en) * 1991-10-30 1993-05-21 Mitsubishi Materials Corp Production of composite ceramic powder
US5863867A (en) * 1996-10-28 1999-01-26 Superconductive Components, Inc. Fine-particle bi-sr-ca-cu-o having high phase purity made by chemical precipitation and low-pressure calcination method

Similar Documents

Publication Publication Date Title
US4336242A (en) Hard ferrite powder and process for the preparation thereof
JPH01224225A (en) Production of raw material powder of high temperature superconducting ceramic
JPH01179721A (en) Production of raw material powder for high temperature superconducting ceramic
JP2002012427A (en) Solid solution type electroconductive niobate containing transition metal and method of producing the same
JPH01122964A (en) Zirconia stabilized by yttrium and its production
WO1988010515A1 (en) Improved process for making 90 k superconductors
JPH0222124A (en) Preparation of raw material powder for readily sinterable high-temperature superconducting ceramic
JPH01224226A (en) Production of bi-alkaline earth element-cu oxide based raw material powder of superconducting ceramic
JPH07196304A (en) Method of obtaining superconductive ceramic precursor having high critical temperature
JPH01224228A (en) Preparation of easy sinterable raw material powder for superconducting oxide type ceramic by wet method
JPH01224224A (en) Production of oxide based raw material powder of readily sintering superconducting ceramic
JPH01133937A (en) Production of raw material powder for high temperature superconducting ceramic
JPH01100019A (en) Preparation of high-temperature superconducting ceramic raw powder for sintering
JPH01133936A (en) Production of raw material powder for easily sinterable high temperature superconducting ceramic
JP3946798B2 (en) Method for producing highly crystalline platinum powder
JPH013050A (en) Manufacturing method of superconducting ceramics
JPH01224223A (en) Preparation of raw material powder of readily sintering high temperature superconducting ceramic
JPH0328109A (en) Production of compound oxide powder
JPH0222104A (en) Production of raw material powder for producing high-temperature superconducting form
JP3444930B2 (en) Manufacturing method of oxide superconductor
JPH0258230B2 (en)
JPH01145364A (en) Production of high-temperature superconducting ceramics
JPH01100017A (en) Production of readily sinterable high-temperature superconducting ceramic raw powder
JPH01224222A (en) Preparation of raw material powder of high temperature superconducting ceramic
JPH01317125A (en) Preparation of raw material powder of high-temperature superconducting ceramic