JPH01224202A - Method for recovering iodine from organic iodine compound-containing waste liquor - Google Patents

Method for recovering iodine from organic iodine compound-containing waste liquor

Info

Publication number
JPH01224202A
JPH01224202A JP63048733A JP4873388A JPH01224202A JP H01224202 A JPH01224202 A JP H01224202A JP 63048733 A JP63048733 A JP 63048733A JP 4873388 A JP4873388 A JP 4873388A JP H01224202 A JPH01224202 A JP H01224202A
Authority
JP
Japan
Prior art keywords
iodine
waste liquor
organic
compound
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63048733A
Other languages
Japanese (ja)
Other versions
JP2569110B2 (en
Inventor
Hiroharu Kageyama
景山 弘春
Kazuo Oguri
小栗 一男
Yoshinori Tanaka
良典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63048733A priority Critical patent/JP2569110B2/en
Publication of JPH01224202A publication Critical patent/JPH01224202A/en
Application granted granted Critical
Publication of JP2569110B2 publication Critical patent/JP2569110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To readily recover iodine from an organic iodine compound-containing waste liquor in high yield, by electrolytically reducing the organic iodine compound-containing waste liquor, oxidizing the waste liquor and liberating the iodine. CONSTITUTION:A waste liquor, generated in a process for producing roentgenographic contrast media, industrial germicides, etc., and containing an organic iodine compound (e.g., 5-amino-2-iodoisophthalic acid) is recovered. The obtained waste liquor is then placed in a cathodic compartment of an electrolytic cell partitioned with a diaphragm and dilute sulfuric acid, etc., are placed in an anodic compartment to carry out electrolytic reduction of the organic iodine compound and cause direct iodination reaction. The electrolyte is then oxidized with an oxidizing agent (e.g., hydrogen peroxide or sodium hypochlorite) to liberate iodine, which is subsequently recovered by a method for introducing air, driving off the liberated iodine from the treated liquor and absorbing the iodine in an absorbing solution, such as sodium hydroxide, or adsorbing and fixing the liberated iodine on an adsorbent, such as active carbon.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機沃素化合物を含有する廃液から沃素を回
収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for recovering iodine from waste liquid containing organic iodine compounds.

沃素は、工業的にレントゲン造影剤、工業用殺菌剤、農
園芸用除草剤等の原料として広く用いられているほか、
有機化合物の脱水素、異性化、縮合反応の触媒としてし
ばしば用いられており、工業的に極めて貴重な資源であ
る。
Iodine is widely used industrially as a raw material for X-ray contrast agents, industrial fungicides, agricultural and horticultural herbicides, etc.
It is often used as a catalyst for dehydrogenation, isomerization, and condensation reactions of organic compounds, and is an extremely valuable resource industrially.

[従来の技術] 従来より、沃素の回収に関しては、種々の提案がなされ
ており、例えば、特公昭46−5814号及び特公昭4
6−35244号には、沃化アルキルとして存在する放
射性沃素を除去するための吸着剤に関する記載があり、
特公昭48−42357号には、触媒として沃素を使用
する有機物の気相脱水素反応において、反応系から排出
する反応混合気体を高温下で酸化銅と接触させ、次いで
一部沃素化された酸化銅を酸化側で酸化し、沃素を遊離
させ回収する方法についての記載がある。また、特開昭
51−34896号には、沃素又は沃素化合物を含有す
る廃棄物を燃焼炉にて燃焼させ、この燃焼ガス中の沃素
をアルカリ性のチオ硫酸ナトリウム又は亜硫酸ナトリウ
ムの水溶液に吸収させ、沃素を回収する記載がある。
[Prior Art] Conventionally, various proposals have been made regarding the recovery of iodine.
No. 6-35244 describes an adsorbent for removing radioactive iodine present as alkyl iodide,
Japanese Patent Publication No. 48-42357 discloses that in a gas-phase dehydrogenation reaction of an organic substance using iodine as a catalyst, the reaction mixture discharged from the reaction system is brought into contact with copper oxide at high temperature, and then partially iodized oxide is brought into contact with copper oxide. There is a description of a method of oxidizing copper on the oxidation side to liberate and recover iodine. Furthermore, JP-A-51-34896 discloses that waste containing iodine or iodine compounds is burned in a combustion furnace, and the iodine in the combustion gas is absorbed into an alkaline sodium thiosulfate or sodium sulfite aqueous solution. There is a description of recovering iodine.

また、芳香族有機沃素化合物からの沃素の回収方法とし
ては、EP 106934号に銅系触媒の存在下、強ア
ルカリと加熱処理することにより沃素を回収する記載が
ある。
Further, as a method for recovering iodine from an aromatic organic iodine compound, EP 106934 describes recovering iodine by heat treatment with a strong alkali in the presence of a copper-based catalyst.

[発明が解決しようとする課題] 近年、有機沃素化合物、特にレントゲン造影剤及び工業
用殺菌剤の伸びは著しく、沃素は逼迫した状態となって
いる。一方、これら有機沃素化合物は極めて復雑な構造
を有するため、多数の工程を経て製造されている。
[Problems to be Solved by the Invention] In recent years, the demand for organic iodine compounds, particularly X-ray contrast agents and industrial disinfectants, has increased significantly, and iodine has become scarce. On the other hand, since these organic iodine compounds have extremely complex structures, they are manufactured through a large number of steps.

当然、各工程毎に廃液が発生し、高価な沃素が副生物、
中間体等の種々の有機沃素化合物として廃液中に失われ
る。このような沃素の損失は、目的のレントゲン造影剤
もしくは殺菌剤の構造が複雑なほど多く、化合物によっ
ては、原料として用いる沃素の50〜70%が失われる
ものもある。
Naturally, waste fluid is generated in each process, and expensive iodine is a by-product.
Lost in wastewater as various organic iodine compounds such as intermediates. Such loss of iodine increases as the structure of the target X-ray contrast agent or bactericidal agent becomes more complex, and depending on the compound, 50 to 70% of the iodine used as a raw material may be lost.

本発明は有機沃素化合物の製造において、発生した廃液
から、工業的に沃素を回収し、再利用する方法を提供す
ることを課題とする。
An object of the present invention is to provide a method for industrially recovering and reusing iodine from waste liquid generated in the production of organic iodine compounds.

[課題を解決するための手段及び作用]本発明者らは、
上記した課題を達成するために鋭意検討した結果、有機
沃素化合物を含有する廃液を電解還元したのち、電解処
理液を酸化剤で酸化することにより本発明の課題が達成
されることを見出し、本発明を完成させるに至った。
[Means and effects for solving the problem] The present inventors
As a result of intensive studies to achieve the above-mentioned objects, it was discovered that the objects of the present invention can be achieved by electrolytically reducing the waste liquid containing organic iodine compounds and then oxidizing the electrolytically treated liquid with an oxidizing agent. The invention was completed.

すなわち本発明は、 有機沃素化合物を含有する廃液を電解還元したのち、酸
化し沃素を遊離せしめることを特徴とする沃素の回収方
法である。
That is, the present invention is an iodine recovery method characterized in that a waste solution containing an organic iodine compound is electrolytically reduced and then oxidized to liberate iodine.

一般に、有機沃素化合物が電解還元により脱沃素化反応
を起こすことはよく知られている。
It is generally well known that organic iodine compounds undergo a deiodination reaction by electrolytic reduction.

しかし、本発明のように廃液中の有機沃素化合物を電解
還元により脱灰素化することによる、沃素の回収に応用
する技術は知られていない。
However, as in the present invention, no technology is known that is applied to the recovery of iodine by deashing organic iodine compounds in waste liquid by electrolytic reduction.

本発明で用いる廃液は、ジアドリゾ酸(3,5−ジアセ
チルアミノ−2,4,6−トリヨード安息香酸)、アセ
トリゾ酸(3−アセチルアミノ−2,4,6−トリヨー
ド安息香酸)、イオパミドール等のレントゲン造影剤、
3,5−ジアミノ−2,4,6−トリヨード安息香酸、
5−アミノ−2,4,6−)リョードイソフタル酸等の
レントゲン造影剤の中間体または農園芸用除草剤アイオ
キシニル、工業用殺閉剤トリルショートメチルスルホン
等の製造に際し、発生する反応廃液、洗浄液、再結晶廃
液、酸析廃液等、又はこれらの混合物であるが、必ずし
もこれらに限定されるものではない、これらの廃液は適
宜PH4ll整を行った後使用される。
The waste liquid used in the present invention includes diadorizoic acid (3,5-diacetylamino-2,4,6-triiodobenzoic acid), acetolizoic acid (3-acetylamino-2,4,6-triiodobenzoic acid), iopamidol, etc. X-ray contrast agent,
3,5-diamino-2,4,6-triiodobenzoic acid,
Reaction waste liquid generated during the production of intermediates for X-ray contrast agents such as 5-amino-2,4,6-) rhodoisophthalic acid, the agricultural and horticultural herbicide ioxynil, and the industrial occlusive agent tolyl short methyl sulfone, These waste liquids include, but are not limited to, cleaning liquids, recrystallization waste liquids, acid precipitation waste liquids, etc., and are not necessarily limited to these.These waste liquids are used after appropriately adjusting the pH to 411.

本発明の電解還元は、通常中央に隔膜を設けた陽極室及
び陰極室よりなる電解槽中にて行われる。
The electrolytic reduction of the present invention is usually carried out in an electrolytic cell consisting of an anode chamber and a cathode chamber provided with a diaphragm in the center.

隔膜としては、カチオン交換膜の他アスベスト、セラミ
ックス等も使用可能であるが、カチオン交換膜が好適で
ある。
As the diaphragm, in addition to the cation exchange membrane, asbestos, ceramics, etc. can also be used, but the cation exchange membrane is preferred.

また、陽極室は通常硫酸溶液及び陽極より構成されてお
り、陰極室は目的とする処理液及び陰極より構成されて
いる。
Further, the anode chamber usually consists of a sulfuric acid solution and an anode, and the cathode chamber consists of a target treatment solution and a cathode.

また、陰極室には必要なら、支持電解質として相当量の
塩類、酸または塩基を溶解させ、廃液のit性を上げて
やるのがよいが、一般には廃液それ自体に既に十分な量
の塩類が含まれている場合が多く、支持電解質の添加は
不要な場合が多い。
In addition, if necessary, it is advisable to dissolve a considerable amount of salts, acids, or bases as supporting electrolytes in the cathode chamber to increase the IT properties of the waste solution, but generally the waste solution itself already contains a sufficient amount of salts. In many cases, the addition of a supporting electrolyte is unnecessary.

陽極室における硫酸溶液の濃度としては、特に制限され
ず広い範囲内から適宜選択できるが、通常1〜20重量
%硫酸水溶液又は硫酸アルコール溶液、好ましくは5〜
10重量%硫酸水溶液又は硫酸アルコール溶液を使用す
るのがよい。
The concentration of the sulfuric acid solution in the anode chamber is not particularly limited and can be appropriately selected from a wide range, but it is usually 1 to 20% by weight aqueous sulfuric acid solution or alcoholic sulfuric acid solution, preferably 5 to 20% by weight.
It is preferable to use a 10% by weight aqueous sulfuric acid solution or a sulfuric alcohol solution.

陽極としては、硫酸溶液により溶解されないものである
かぎり、いずれも公知のものを使用でき、例えば鉛、鉛
合金、白金、金、銀、ニッケル、ニンケル合金、亜鉛、
亜鉛合金、カドミウム、黒鉛、炭素等を挙げることがで
きる。これらの内でも、鉛や白金を使用するのが好まし
い、陰極としては鉛、亜鉛、ニッケル、白金、黒鉛、炭
素、酸化鉛、酸化ニッケル、酸化マンガン、酸化鉄、金
、ルテニウムまたはイリジウム、ルビジウム等の貴金属
で被覆された金属等を挙げることができるが、鉛、亜鉛
、ニッケル等が好適である。
As the anode, any known material can be used as long as it is not dissolved by the sulfuric acid solution, such as lead, lead alloy, platinum, gold, silver, nickel, nickel alloy, zinc,
Zinc alloys, cadmium, graphite, carbon, etc. can be mentioned. Among these, it is preferable to use lead or platinum.As the cathode, lead, zinc, nickel, platinum, graphite, carbon, lead oxide, nickel oxide, manganese oxide, iron oxide, gold, ruthenium or iridium, rubidium, etc. Examples include metals coated with noble metals, among which lead, zinc, nickel, etc. are preferable.

本発明の電解還元において、還元方法としては定電圧法
及び定電流法のいずれでも可能であるが、定電流法によ
るのが好ましい。
In the electrolytic reduction of the present invention, either a constant voltage method or a constant current method can be used as the reduction method, but a constant current method is preferable.

定電流法を採用する場合、電流密度は通常0.1〜IO
A/da”、好ましくは0.5〜3A/da”である。
When using the constant current method, the current density is usually 0.1 to IO
A/da", preferably 0.5 to 3 A/da".

電解反応に必要な通電量としては、電解槽の形状、電極
の種類、基質反応性等により一定しないが、通常5〜6
F1モル程度の電気量を通電すればよい。
The amount of current required for the electrolytic reaction varies depending on the shape of the electrolytic cell, type of electrode, substrate reactivity, etc., but is usually 5 to 6 volts.
An amount of electricity of approximately 1 mole of F may be applied.

有機沃素化合物の電解還元による脱沃素化反応の電位は
、他の大多数の官能基の還元電位よりも低く、そのため
、種々の有機化合物の混合物であっても、最も早く還元
反応を受けるのは脱沃素化反応であり、その結果高い電
流効率が得られる結果となる。
The potential of the deiodination reaction by electrolytic reduction of organic iodine compounds is lower than the reduction potential of most other functional groups. Therefore, even in a mixture of various organic compounds, the one that undergoes the reduction reaction fastest is This is a deiodination reaction, resulting in high current efficiency.

該電解温度は、通常0〜80°C3好ましくは30〜6
0°Cの範囲で行う、電解温度が低すぎると反応が進行
せず、逆に高すぎると大量の廃液を高温にする必要があ
り経済的見地から好ましくない。
The electrolysis temperature is usually 0 to 80°C, preferably 30 to 6°C.
If the electrolysis temperature, which is carried out in the range of 0°C, is too low, the reaction will not proceed, and if it is too high, it will be necessary to heat a large amount of waste liquid to a high temperature, which is not preferred from an economical point of view.

反応時間は、電解還元の温度、電極材料、電解電流、廃
液中の有機沃素化合物の濃度により変わるが、通常攪拌
下1〜15時間反応させればよい。
The reaction time varies depending on the temperature of electrolytic reduction, the electrode material, the electrolytic current, and the concentration of the organic iodine compound in the waste liquid, but it is usually sufficient to carry out the reaction for 1 to 15 hours with stirring.

この電解還元は、回分式でも連続式でも行うことが可能
である。
This electrolytic reduction can be performed either batchwise or continuously.

電解還元による脱灰素化反応終了後、処理液を酸化剤で
酸化すると沃素が遊離する。
After the demineralization reaction by electrolytic reduction is completed, the treated solution is oxidized with an oxidizing agent to liberate iodine.

酸化剤としては、過酸化水素、次亜塩素酸ナトリウム、
塩素、亜硝酸ナトリウム等が挙げられる。
Oxidizing agents include hydrogen peroxide, sodium hypochlorite,
Examples include chlorine and sodium nitrite.

かくして得られた遊離の沃素は、空気を導入することに
より処理液から追い出し、水酸化ナトリウム、水酸化カ
リウム等のアルカリ水溶液または、アルカリ性のチオ硫
酸ナトリウム、亜硫酸ナトリウム等の還元性水溶液に吸
収させる(ブローイングアウト法)、又は、遊離した沃
素を活性炭に吸着固定させる(活性炭法)、又は、イオ
ン交換樹脂に吸着固定させる(イオン交換樹脂法)等の
周知の方法により回収し、沃素として再利用することが
可能である。
The free iodine thus obtained is expelled from the treatment solution by introducing air and absorbed into an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, or an alkaline reducing aqueous solution such as sodium thiosulfate or sodium sulfite ( The free iodine is recovered by well-known methods such as blowing out method), adsorption and fixation on activated carbon (activated carbon method), or adsorption and fixation on ion exchange resin (ion exchange resin method), and reused as iodine. Is possible.

沃素は極めて腐食性の大きい元素であり、従って、−C
に沃素回収装置の構成材料の選択及び設計は極めて困難
である。
Iodine is an extremely corrosive element, and therefore -C
The selection and design of constituent materials for iodine recovery equipment is extremely difficult.

ところが、本発明では低温かつ還元性の条件下での回収
であり、沃素の腐食作用は極度に抑えられる。従来技術
のように高温または酸化性の条件下で遊離沃素又は沃化
塩を処理しないため、構成材料の選定及び設計が、他の
公知の沃素回収装置よりも格段に容易になる大きな利点
を有している。
However, in the present invention, recovery is performed under low temperature and reducing conditions, and the corrosive effect of iodine is extremely suppressed. Since free iodine or iodide salts are not processed under high temperature or oxidizing conditions as in the prior art, the selection and design of constituent materials is significantly easier than with other known iodine recovery devices, which is a major advantage. are doing.

〔実施例〕〔Example〕

次に、実施例により本発明の方法を具体的に説明する。 Next, the method of the present invention will be specifically explained using examples.

実施例1 試料廃液として5−アミノ−2,4,6−トリヨードイ
ソフタル酸製造において生じた廃液を用いた。
Example 1 A waste liquid produced in the production of 5-amino-2,4,6-triiodoisophthalic acid was used as a sample waste liquid.

試料廃液の調整は次の通りであった。The sample waste liquid was prepared as follows.

水4800dと5−アミノイソフタル酸182gを反応
器に仕込み、PR拌しなから90°Cに昇温した。
4,800 d of water and 182 g of 5-aminoisophthalic acid were charged into a reactor, and the temperature was raised to 90°C without stirring.

次に、−塩化沃素536gを約1時間で滴下した。Next, 536 g of iodine chloride was added dropwise over about 1 hour.

その後、約5時間同温度で攪拌したのち室温まで冷却し
た。結晶を濾別し、1000dの水で洗浄した。
Thereafter, the mixture was stirred at the same temperature for about 5 hours and then cooled to room temperature. The crystals were filtered off and washed with 1000 d of water.

反応濾液及び洗浄液を合わせ5500dの試料用廃液を
得た。この廃液中には、5−アミノ−2−ヨードイソフ
タル酸、S−アミノ−4−ヨードイソフタル酸、5−ア
ミノ−2,4−ショートイソフタル酸、5−アミノ−4
,6−ショートイソフタル酸、5−アミノ−2,4,6
−ドリヨードイソフタル酸等の各種有機沃素化合物及び
未反応の一塩化沃素、遊離沃素等の無機沃素化合物が含
有されており、廃液100 d中に含まれる沃素量は1
.156gであり、そのうち有機沃素化合物中に含まれ
るものは0.693gであった。
The reaction filtrate and washing liquid were combined to obtain 5500 d of sample waste liquid. This waste liquid contains 5-amino-2-iodoisophthalic acid, S-amino-4-iodoisophthalic acid, 5-amino-2,4-short isophthalic acid, 5-amino-4-iodoisophthalic acid,
, 6-short isophthalic acid, 5-amino-2,4,6
- Contains various organic iodine compounds such as doryiodoisophthalic acid and inorganic iodine compounds such as unreacted iodine monochloride and free iodine, and the amount of iodine contained in 100 d of waste liquid is 1
.. The amount was 156 g, of which 0.693 g was contained in the organic iodine compound.

上記により得た廃W500 dを隔膜(カチオン交換膜
、商品名:セレミオンCMV、旭硝子■製)で隔てられ
た電解槽の陰極室へ入れ、陽極室には10重量%硫酸5
00 dを入れた。陰極材料としてニッケル、陽極材料
として白金を用いて30°Cで定電流電解(0,5A/
da”)を行い、6F1モル通電し、還元膜沃素化を行
った。
The waste W500 d obtained above was put into the cathode chamber of an electrolytic cell separated by a diaphragm (cation exchange membrane, product name: Selemion CMV, manufactured by Asahi Glass), and the anode chamber was filled with 10% by weight sulfuric acid 5.
I put in 00 d. Constant current electrolysis (0.5A/
da"), and a current of 1 mol of 6F was applied to perform reduced film iodination.

電解液を空気導入管及び排気管を付けた12反応器に移
し、有効塩素量5%の次亜塩素酸す) IJウム水溶液
にて酸化し沃素を遊離した。
The electrolytic solution was transferred to a reactor 12 equipped with an air inlet pipe and an exhaust pipe, and oxidized with an aqueous solution of hypochlorous acid containing 5% effective chlorine to liberate iodine.

次いで、空気を導入し、排気管を10重量%水酸化ナト
リウム水溶液へと導くことにより遊離した沃素をアルカ
リ溶液に吸収させた。この吸収液中には、沃素として5
.46g含まれており、廃液中からの沃素回収率は94
.5%であった。
Next, air was introduced and the exhaust pipe was led to a 10% by weight aqueous sodium hydroxide solution to absorb the liberated iodine into the alkaline solution. This absorption liquid contains 5 as iodine.
.. Contains 46g, and the recovery rate of iodine from waste liquid is 94.
.. It was 5%.

実施例2 試料廃液として、ジアドリゾ酸の精製時に生じた廃液を
用いた。
Example 2 A waste liquid generated during purification of diadorizoic acid was used as a sample waste liquid.

粗ジアドリゾ酸のナトリウム塩100gを水:イソプロ
パツール=40 : 60の混合溶媒400−で再結晶
した。
100 g of the crude sodium salt of diadrizoic acid was recrystallized from a mixed solvent of 40:60 water and isopropanol.

得られた濾液及び洗浄液を合わせ、減圧下にイソプロパ
ツールを留去し、残部を水で500 dに希釈し試料廃
液とした。
The obtained filtrate and washing solution were combined, and the isopropanol was distilled off under reduced pressure, and the remainder was diluted with water to a concentration of 500 d to provide a sample waste solution.

この廃液中に含まれる沃素量は、100d当り1.84
0gであった。
The amount of iodine contained in this waste liquid is 1.84 per 100 d.
It was 0g.

上記で得た廃液500 dを硫酸でPHを1に調整した
のち、実施例1と同様に処理を行い、沃素8.74gを
得た。沃素収率は95.0%であった。
The pH of 500 d of the waste liquid obtained above was adjusted to 1 with sulfuric acid, and then treated in the same manner as in Example 1 to obtain 8.74 g of iodine. The iodine yield was 95.0%.

実施例3 10重量%硫酸水?8液の代わりに10重量%硫酸メタ
ノール溶液、ニッケルの代わりに鉛、白金の代わりに鉛
を用い、実施例1と同様の操作を行い、沃素5−28g
を得た。沃素回収率91.3%であった。
Example 3 10% by weight sulfuric acid water? The same operation as in Example 1 was carried out using a 10% by weight sulfuric acid methanol solution instead of the 8 solution, lead instead of nickel, and lead instead of platinum, and 5-28 g of iodine was obtained.
I got it. The iodine recovery rate was 91.3%.

[発明の効果] 本発明の方法によれば、有機沃素化合物を含有する廃液
から極めて高収率で沃素を回収することができる。また
、回収装置の構成材料の選択及び設計が、公知の回収方
法よりも容易であり、有機沃素化合物を含有する廃液か
ら沃素を回収する方法として工業的に極めて有用である
[Effects of the Invention] According to the method of the present invention, iodine can be recovered in extremely high yield from waste liquid containing organic iodine compounds. In addition, selection and design of the constituent materials of the recovery device are easier than in known recovery methods, and the present invention is extremely useful industrially as a method for recovering iodine from waste liquid containing organic iodine compounds.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1 有機沃素化合物を含有する廃液を電解還元したのち
、酸化し沃素を遊離せしめることを特徴とする沃素の回
収方法。
1. A method for recovering iodine, which comprises electrolytically reducing a waste solution containing an organic iodine compound and then oxidizing it to liberate iodine.
JP63048733A 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound Expired - Fee Related JP2569110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048733A JP2569110B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048733A JP2569110B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Publications (2)

Publication Number Publication Date
JPH01224202A true JPH01224202A (en) 1989-09-07
JP2569110B2 JP2569110B2 (en) 1997-01-08

Family

ID=12811489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048733A Expired - Fee Related JP2569110B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Country Status (1)

Country Link
JP (1) JP2569110B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008492A1 (en) * 2000-07-21 2002-01-31 Iodine Technologies Australia Pty Ltd Process and method for recovery of halogens
JP2010236008A (en) * 2009-03-31 2010-10-21 Daikin Ind Ltd Oxidation-precipitation method of iodine
JP2011527937A (en) * 2008-07-15 2011-11-10 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Industrial wastewater treatment
CN112551733A (en) * 2020-11-03 2021-03-26 浙江海拓环境技术有限公司 Device and method for treating hypophosphite in chemical nickel plating waste liquid
CN112778151A (en) * 2021-03-03 2021-05-11 浙江司太立制药股份有限公司 Preparation method of 5-amino-2, 4, 6-triiodo-1, 3-phthalic acid impurity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631448A (en) * 1986-05-19 1988-01-06 デルフアイ リサ−チ インコ−ポレイテイツド Treatment of organic waste and catalyst/promotor compositiontherefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631448A (en) * 1986-05-19 1988-01-06 デルフアイ リサ−チ インコ−ポレイテイツド Treatment of organic waste and catalyst/promotor compositiontherefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008492A1 (en) * 2000-07-21 2002-01-31 Iodine Technologies Australia Pty Ltd Process and method for recovery of halogens
JP2011527937A (en) * 2008-07-15 2011-11-10 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Industrial wastewater treatment
JP2010236008A (en) * 2009-03-31 2010-10-21 Daikin Ind Ltd Oxidation-precipitation method of iodine
CN112551733A (en) * 2020-11-03 2021-03-26 浙江海拓环境技术有限公司 Device and method for treating hypophosphite in chemical nickel plating waste liquid
CN112551733B (en) * 2020-11-03 2022-07-12 浙江海拓环境技术有限公司 Device and method for treating hypophosphite in chemical nickel plating waste liquid
CN112778151A (en) * 2021-03-03 2021-05-11 浙江司太立制药股份有限公司 Preparation method of 5-amino-2, 4, 6-triiodo-1, 3-phthalic acid impurity

Also Published As

Publication number Publication date
JP2569110B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
US4917781A (en) Process for preparing quaternary ammonium hydroxides
DK161979B (en) PROCEDURE FOR ELECTROLYTIC REMOVING AN ANION FROM AN ORGANIC COMPOUND
JPH09286774A (en) 2-alkylmercapto-4-(trifluoromethyl) benzoic acid ester and its production
EP2069304B1 (en) Improved electrochemical reduction of halogenated 4-aminopicolinic acids
JP5818803B2 (en) Improved silver cathode activation
JPH01224202A (en) Method for recovering iodine from organic iodine compound-containing waste liquor
US7666293B2 (en) Electrochemical reduction of halogenated 4-aminopicolinic acids
JP2569111B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JPH0730475B2 (en) Method for producing 1-aminoanthraquinones
JP2569104B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP2569124B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP5661762B2 (en) Method for producing iodinating agent
JPH06158372A (en) Method for recovering iodine from waste liquid containing organic iodine compound
JPS59129790A (en) Manufacture of ketones from secondary alcohol using ruthenium compound
JPH06144802A (en) Recovery of iodine from waste liquid containing organoiodine compound
CA1189821A (en) Electrochemical maintenance of optimum catalytic activity in copper-catalyzed nitrile hydrolysis processes
JP2643128B2 (en) Method for producing quaternary ammonium hydroxide
JPH06144804A (en) Recovery of iodine from waste liquid containing organoiodine compound
JP3424687B2 (en) Method for producing quaternary ammonium hydroxide aqueous solution
JP3277956B2 (en) Method for producing quaternary ammonium hydroxide aqueous solution
US4323708A (en) Method for preparing 2,4-diaminolphenol or 2,4-diamonophenol dihydrochloride
JP2632832B2 (en) Method for producing polyfluorobenzyl alcohol
KR100437483B1 (en) Electrochemical synthesis of p-aminophenol
JPH02107791A (en) Oxidation of secondary alcohol to ketone
JPS6070193A (en) Production of piperonal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees