JPH0122215B2 - - Google Patents

Info

Publication number
JPH0122215B2
JPH0122215B2 JP2860783A JP2860783A JPH0122215B2 JP H0122215 B2 JPH0122215 B2 JP H0122215B2 JP 2860783 A JP2860783 A JP 2860783A JP 2860783 A JP2860783 A JP 2860783A JP H0122215 B2 JPH0122215 B2 JP H0122215B2
Authority
JP
Japan
Prior art keywords
polymer
cement mortar
aggregate
polymer cement
mortar composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2860783A
Other languages
Japanese (ja)
Other versions
JPS59156949A (en
Inventor
Naoitsu Kanayama
Naoki Furuno
Yoshitaka Sasaoka
Tatsue Saito
Yoshiaki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP58028607A priority Critical patent/JPS59156949A/en
Priority to GB8403808A priority patent/GB2135665B/en
Priority to AU24655/84A priority patent/AU558299B2/en
Priority to DE19843405917 priority patent/DE3405917A1/en
Priority to ZA841208A priority patent/ZA841208B/en
Priority to CA000447975A priority patent/CA1213619A/en
Priority to FR8402668A priority patent/FR2541672B1/en
Priority to KR1019840000892A priority patent/KR910002573B1/en
Publication of JPS59156949A publication Critical patent/JPS59156949A/en
Publication of JPH0122215B2 publication Critical patent/JPH0122215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋼構造物、金属屋根、外壁および土
木関係構造物等に被覆して用いるポリマーセメン
トモルタル組成物に関するものである。 鋼構造物に対する被覆処理のうちで代表的なも
のに防食塗料があり、これは単に鋼構造物の表面
に適当な防食塗料を塗布ないし吹きつけるもので
あつたが、防食塗料によつて被覆処理を受けた鋼
構造物の防食効果はその塗膜厚さが一般的に薄い
ことから耐久性、特に摩耗に基づく耐久性が低い
ものであり、また温度、湿度などの天候ないし人
工的な各種環境のもとで長期間に亘つて所期の効
果を発揮しつづけることを期待するのは難かし
い。 このような状況から、恒久性を期してセメント
モルタルを鋼構造物に施し防食被覆層を形成させ
ることが一部で実施されている。しかしながら、
このセメントモルタルの最大の欠点はクラツクが
入り易いということである。 硬化したのちの塗膜にクラツクが入り易いとい
うことに対しては、例えばアスフアルトなどをセ
メント組成物中に配合して使用することも行われ
ているが、この場合使用する可塑性付与剤中から
溶出する各種成分によつて例えば伝壌などの周囲
の環境を汚染するのみならず、アスフアルトから
発生する臭気が作業者や近隣住民に与える影響が
大きいものであつた。 このような周囲の状況から、アスフアルトに代
つて合成樹脂成分を配合したことからなるいわゆ
るポリマーセメントモルタル組成物が使用されて
いる。 このポリマーセメントモルタル組成物は、これ
に配合されているポリマーがセメントの硬化体の
結合力を高めると共に、鋼構断物に対する接着性
をも向上させ、構造材としての特性上及び防食上
有効であるとされるために、舗装材、防水材、耐
薬品被覆材、船舶のデツキカバリング、車輌の内
張下等に用いられている。 これらの用途に対する特性としては、下地に対
する接着性、耐摩耗性、防水効果、耐候性、亀裂
発生防止、耐衝撃性、耐膜品性、伸縮性及び被塗
装物に対する防食性が要求されており、現在使用
されているポリマーセメントモルタル組成物はそ
の多くを概ね満足させるものであると考えられて
いた。 しかしながら多岐に亘つて拡大する各種の用途
から要求されるそれぞれの特性を完全にかつ充分
に満足させるためには更に改良の余地を有するも
のであつた。その一例として具体的に述べると (1) ポリマーセメントの多くは、使用されるポリ
マーがラテツクス状或いはエマルジヨン状の水
分散型のポリマーであつて、これらと水硬性セ
メント、骨材等を混和したものであるが、コー
テイング後数分間経過すると急激な発錆現象を
起す。このような急速な発錆現象は、フラツシ
ユ・ラストと呼ばれるものであるが、殆んどの
ポリマーセメントに程度の差はあるが発生する
ことが実験の結果確認された。 そしてこのようなフラツシユ・ラストがある
場合、特にその際ないしはその後に腐食環境に
おかれると鋼面の錆の体積膨張と相まつて、ポ
リマーセメント被覆が鋼面より剥離脱落するお
それがある。 これは、従来のポリマーセメントに混和され
るポリマーエマルジヨンに防食性が考慮されて
いなかつたためである。 一般には、セメントのアルカリの作用によつ
てこれを被覆したとき鋼を安定化させると考え
られているが、そのためには鋼面でPH12以上の
状態を持続させる必要があり、従つて単にアル
カリ性であるからと言つてポリマーセメントの
防食効果を過大評価することは危険である。即
ち、第1図はW.Whiteman及びR.Russelの研
究になる鋼におけるPHと腐食の関係を示すもの
で、PHが12未満の場合は腐食が急速に増大する
ことがわかる。又、表に示したような試料No.1
〜7の骨材、セメント類を夫々100gとり900c.c.
の水道水に撹拌混合した後静止させた液中に磨
き軟鋼板を懸垂し、液のPH値の変化をPHメータ
ーにて測定し、且つ発錆状態を観察した結果
は、表及び第2図に示す通りであり、
The present invention relates to a polymer cement mortar composition used to coat steel structures, metal roofs, exterior walls, civil engineering related structures, and the like. A typical coating treatment for steel structures is anti-corrosion paint, which is simply applying or spraying an appropriate anti-corrosion paint onto the surface of the steel structure. The anti-corrosion effect of steel structures affected by this coating is generally thin, resulting in low durability, especially durability due to abrasion, and also due to weather conditions such as temperature and humidity, and various artificial environments. It is difficult to expect that the desired effect will continue to be exerted over a long period of time. Under these circumstances, in order to ensure durability, cement mortar is applied to steel structures to form an anti-corrosion coating layer in some cases. however,
The biggest drawback of this cement mortar is that it is susceptible to cracks. To deal with the tendency for cracks to appear in the coating film after hardening, for example, asphalt is sometimes mixed into the cement composition, but in this case, it may be leached from the plasticizer used. Not only did the various components contained in asphalt pollute the surrounding environment, for example, asphalt, but the odor emitted from asphalt had a large impact on workers and nearby residents. Under these circumstances, so-called polymer cement mortar compositions containing synthetic resin components instead of asphalt have been used. The polymer blended into this polymer cement mortar composition not only increases the bonding strength of the hardened cement, but also improves its adhesion to steel structures, making it effective as a structural material and in terms of corrosion protection. Because of this, it is used in paving materials, waterproofing materials, chemical-resistant coatings, ship deck coverings, vehicle interior linings, etc. The properties required for these applications include adhesion to the substrate, abrasion resistance, waterproof effect, weather resistance, crack prevention, impact resistance, film resistance, elasticity, and corrosion resistance to the coated object. It was believed that currently used polymer cement mortar compositions generally satisfy most of these requirements. However, there is still room for further improvement in order to fully and fully satisfy the respective characteristics required by the increasingly wide variety of uses. As a specific example, (1) Most polymer cements are water-dispersed polymers in the form of latex or emulsion, which are mixed with hydraulic cement, aggregate, etc. However, a few minutes after coating, rapid rusting occurs. This rapid rusting phenomenon is called flash rust, and it has been confirmed through experiments that it occurs to varying degrees in most polymer cements. If such flash rust is present, there is a risk that the polymer cement coating will peel off from the steel surface, especially if the steel surface is exposed to a corrosive environment during or after this, together with the volumetric expansion of the rust on the steel surface. This is because corrosion resistance has not been considered in the polymer emulsion mixed with conventional polymer cement. It is generally believed that steel is stabilized when coated with cement due to its alkaline action, but in order to do so, it is necessary to maintain a pH of 12 or higher on the steel surface, and therefore it is not possible to simply It is dangerous to overestimate the anticorrosive effect of polymer cement just because it exists. That is, Figure 1 shows the relationship between PH and corrosion in steel researched by W. Whiteman and R. Russel, and it can be seen that when PH is less than 12, corrosion increases rapidly. Also, sample No. 1 as shown in the table
Take 100g each of the aggregate and cement from ~7 and make 900c.c.
After stirring and mixing with tap water, a polished mild steel plate was suspended in the solution, and changes in the pH value of the solution were measured with a PH meter. The rusting state was also observed. The results are shown in the table and Figure 2. As shown in

【表】 水道水(ブランク)、スラグ、砂の場合ではPH
値が低く発錆が大きいが、ポルトランドセメン
ト、高炉セメントの場合は平均的にPH値が高く
(12以上)て発錆がなく、セメント+スラグ、
セメント+硅砂の場合はPHが若干低くなり試験
片にわずかながら発錆をともなうことが判明し
ている。 (2) 防食材料と言いながら、下地処理及び防食処
理工程を十分に考慮していないために、腐食環
境(例えば海浜地区の暴露或いは乾湿交番をう
ける場所等)においては、極めて短期間に鋼面
と被覆材の界面で発錆し、付着力の低下を来す
原因となつている。 このような観点から各種の広範囲に亘る検討
の結果、セメントと特定粒度の高炉水滓および
ポリマーエマルジヨンを特定の量的関係の範囲
で配合したことからなる防食被覆組成物を提供
し(特公昭57−39661号)、また水分散型ポリマ
ーが組成物の一成分とした水硬性セメントとの
混和物に防錆剤を別途配合したポリマーセメン
トモルタルをも開発した(特開昭57−34065号)
が、更に歪追随性、熱変化に対する抵抗性、耐
摩耗性などの諸特性も必要となり従来のポリマ
ーセメントモルタル組成物ではこのような厳し
い要求を充分に満すことができず、用途によつ
ては対応しきれない場面がしばしば生ずるよう
になつてきている。 本発明者らは、このように拡大する用途に対
応し得るような、より優れた特性を具備するポ
リマーセメントモルタル組成物を開発するため
に鋭意研究を続けた結果、ポリマーセメントモ
ルタル組成物を構成するポリマー、セメントお
よび骨材の主要必須成分のうち骨材について特
定のものを選択することにより前述した要求さ
れている各種特然を充分に満足させることので
きる新しいポリマーセメントモルタル組成物を
見出し本発明に至つた。 すなわち、本発明は、セメント(C)、骨材(S)
およびポリマー(P)からなるポリマーセメント
モルタル組成物において、ガラス含有率が95重量
%以上の骨材とスチレン−ブタジエン系ポリマー
を用いかつ重量比によるC/S比を0.4〜0.65、
P/C比を0.2〜0.5としたことを特徴とするポリ
マーセメントモルタル組成物に関するものであ
る。 本発明で使用するセメント成分は、ポルトラン
ドセメント、高炉セメントなどであつて、この成
分に期待する主たる機能は強度と耐久性の向上お
よび維持である。 またポリマーとしては、スチレン−ブタジエン
ポリマーまたはアクリル変性スチレン−ブタジエ
ンポリマーなどのスチレン−ブタジエン系ポリマ
ーを使用する。この系統以外のポリマーを使用し
たときは、例えば後述する予備的検討の結果が示
すように施工対象物との間の密着力および(また
は)フラツシユ・ラスト抑制効果の面で所期の効
果を得ることが難かしい。 本発明ではまた、ガラス含有率が95重量%以上
の骨材を使用することを要件としている。 通常の場合ポリマーセメントモルタル組成物を
形成するときには、骨材として川砂、山砂などの
硅砂や高炉水砕スラグなどを用いているが、これ
らを骨材として使用したポリマーセメントモルタ
ル組成物を土木用として例えば舗装材が外壁材と
して施工したとき亀裂が入り易いという欠点があ
つた。 本発明を完成させるにあたり、ポリマー(P)
の種類、骨材(S)の種類およびセメント(C)との
間におけるP/C重量比、C/S重量比その他の
概略傾向を知るための予備的検討を行い以下に述
べる結果を得た。 セメント成分として高炉セメントを用いこれに
ポリマー成分として表示するものおよび各種の防
錆剤の添加効果をみるために組成物全体に対し
0.5重量%の防錆剤を加えて得たポリマーセメン
トモルタルを鋼板上に塗装しその後の経過を観察
したところ表示の結果を得た。なおP/C比およ
びC/S比は暫定的にそれぞれ0.4および0.5とし
た。
[Table] PH for tap water (blank), slag, and sand
However, in the case of Portland cement and blast furnace cement, the PH value is high on average (12 or more) and there is no rust, and cement + slag,
It has been found that in the case of cement + silica sand, the PH is slightly lower and the test piece is slightly rusted. (2) Although it is called an anti-corrosion material, the surface treatment and anti-corrosion treatment processes are not sufficiently considered, so in a corrosive environment (for example, exposed on the beach or in places subject to dry and wet alternation), the steel surface will deteriorate in a very short period of time. Rust occurs at the interface between the coating material and the coating material, causing a decrease in adhesion. As a result of various extensive studies from this point of view, we have provided an anti-corrosion coating composition consisting of cement, blast furnace water slag with a specific particle size, and polymer emulsion in a specific quantitative relationship. 57-39661), and also developed a polymer cement mortar in which a rust preventive agent was separately added to a mixture of water-dispersible polymer and hydraulic cement as one of the components (Japanese Patent Application Laid-Open No. 57-34065).
However, various properties such as strain followability, resistance to thermal changes, and abrasion resistance are also required, and conventional polymer cement mortar compositions cannot fully meet these strict requirements, and depending on the application. Increasingly, situations are occurring that cannot be fully handled. The present inventors have continued intensive research to develop a polymer cement mortar composition with superior properties that can be used for such expanding applications, and as a result, have developed a polymer cement mortar composition. The present invention aims to develop a new polymer-cement mortar composition that can fully satisfy the various required characteristics described above by selecting a specific aggregate for the polymer, cement, and main essential components of the aggregate. This led to an invention. That is, the present invention provides cement (C), aggregate (S)
and a polymer cement mortar composition consisting of polymer (P), using aggregate with a glass content of 95% by weight or more and a styrene-butadiene-based polymer, and having a C/S ratio by weight of 0.4 to 0.65,
The present invention relates to a polymer cement mortar composition characterized by having a P/C ratio of 0.2 to 0.5. The cement component used in the present invention is Portland cement, blast furnace cement, etc., and the main functions expected of this component are improvement and maintenance of strength and durability. As the polymer, a styrene-butadiene polymer such as a styrene-butadiene polymer or an acrylic modified styrene-butadiene polymer is used. When using polymers other than this type, for example, the desired effect can be obtained in terms of adhesion to the workpiece and/or flash rust suppression effect, as shown by the results of the preliminary study described below. It's difficult. The present invention also requires the use of aggregate with a glass content of 95% by weight or more. Normally, when forming a polymer cement mortar composition, silica sand such as river sand or mountain sand or granulated blast furnace slag are used as aggregates, but polymer cement mortar compositions using these as aggregates are used for civil engineering. For example, when paving materials are used as exterior wall materials, they have the disadvantage of being prone to cracking. In completing the present invention, polymer (P)
We conducted a preliminary study to find out the general trends of the P/C weight ratio, C/S weight ratio, and other factors between the type of aggregate (S), the type of aggregate (S), and cement (C), and obtained the results described below. . Blast furnace cement was used as the cement component, and in order to see the effects of adding what is indicated as a polymer component and various rust preventives to the entire composition.
When a polymer cement mortar prepared by adding 0.5% by weight of a rust preventive agent was applied onto a steel plate and the subsequent progress was observed, the results shown were obtained. Note that the P/C ratio and C/S ratio were provisionally set to 0.4 and 0.5, respectively.

【表】 表の結果から明らかなように、ポリマーセメン
トモルタルに要求されている諸特性のうちで根本
的は塗覆維持効果についてはスチレン・ブタジエ
ン系ポリマーが防錆効果との兼ね合いからみて最
も好ましいものであることが認められる。 フラツシユ・ラストを抑制するためには、ポリ
マーセメントモルタル組成物中に防錆剤を配合す
るか、あるいはまた塗装対象物表面にプライマー
処理を行えば良い。防錆剤を使用するときには、
0.1〜3重量%好ましくは0.3〜1.0重量%程度の量
を配合する。また防錆剤を使用しなときは、例え
ばエポキシ樹脂やシリケート系化合物に亜鉛末を
分散させたものを用いて、スケール除去を行つた
被塗装物表面にプライマー処理を行うことにより
防錆剤使用時と同等かもしくはそれ以上のフラツ
シユ・ラスト抑制効果を得ることができる。 なお、当然のことであるが、必要に応じてプラ
イマー処理と防錆剤の使用の両者を採用してもよ
いことはいうまでもない。 また次いで、ポリマーセメントモルタル組成物
中における骨材につき検討を加えたところ、成形
品の曲げ抵抗性(f)および圧縮抵抗性(C)の傾向を最
大歪(Smax)とガラス含有率については、第3
図に示した如き挙動を得た。 この結果からポリマーセメントモルタル組成物
中における骨材のガラス含有率は、fおよびCの
値に重大な影響を与えることが認められ、究極的
にはガラス含有率が概ね95重量%以上のものを使
用したときには最も亀裂の起り難いものが得られ
ることが明らかとなつた。 このようにして条件の定められた骨材は、その
粒径が概ね0.6mm以下であるときポリマーセメン
トモルタル組成物としての作業性からみて好まし
い結果が得られる。 ガラス含有率95重量%以上の骨材としては、前
述の条件に適合している限り特に限定されるもの
ではないが、具体的には高炉から排出される溶融
状態のスラブを急冷して得た高炉水砕スラグなど
が使用できる。 以上の如きポリマー(P)、骨材(S)が選定
されたのちは、それぞれの量的関係が重要項目と
なるが、そのうちのC/S比については、前まで
に述べた根拠によつて確認された好ましい範囲内
に他の要件を固定しC/S比を変えて圧縮強度(C)
曲げ強度(f)および引張強度(TS)の挙動をプロ
ツトしたものが第4図である。現われた挙動から
C/S比が0.40〜0.65の範囲内にあるとき釣り合
いのとれた強度を備えた塗膜が得られることがわ
かる。 また同様の手法によつてP/C比による耐剥離
強度のデータを求めこれをプロツトしたものが第
5図である。この場合は、P/C比が0.20〜0.50
の範囲内であるとき、ある一定範囲の剥離強度を
維持している。図中の挙動から明らかなように
P/C比の値が小さくなれば強度は減少し、一方
大きくなりすぎたときはポリマーの添加に見合つ
た効果は発現し得ないことが理解できよう。 ポリマーセメントモルタルを実際に施工するに
あたつては、施工対象物の位置、状態などに応じ
て公知の塗装手段の中おら選択して行うが、例え
ば塗装対象物が広範囲な平面であるとかまた逆に
起伏など凹凸が激しい対象の場合などにはスプレ
ーガンを使用した吹付塗装を行うのが便利であ
る。 以上詳述した構成からなる本発明のポリマーセ
メントモルタル組成物は、下地に対する接着性、
耐摩耗性、防水効果、耐候性、耐衝撃性、耐薬品
性、防食性、歪追随性、制振性および冷熱繰返し
などの面で優れた性能を示し、各種の用途面で要
求される機能を充分にカバーすることのできるポ
リマーセメント組成物である。 以下実施例によつて更に本発明のポリマーセメ
ントモルタル組成物に備わつている各種の特性な
いし効果を説明する。 なお、実施例で使用するポリマーセメントモル
タル組成物の共通配合として次の如き配合を使用
した。 アクリル変性SBRラテツクス(固形分48%)
20重量部 高炉セメント 25〃 ガラス化率99%の高炉水砕スラグ(0.5mm以下)
55〃 水 0〜3〃 実施例 1 試験片としてプラスト処理を行つた鋼板に亜鉛
末入りエポキシ樹脂分散液を15〜20μmの厚さに
塗装したのち、前記共通配合のポリマーセメント
モルタル組成物を5mmの厚さとなるように吹付塗
装を行つた。 このようにして得た試験片を室温下で28日間養
生したのち、1ケ年間の乾湿交番試験、スラリ浸
漬試験、天然海水浸漬試験及び1000時間の耐候性
強制試験を行つたが次表の通り基本である鋼板表
面の状態は変化が認められなかつた。
[Table] As is clear from the results in the table, among the various properties required for polymer cement mortar, styrene-butadiene-based polymers are fundamentally the most preferable in terms of coating maintenance effect in terms of their anti-corrosion effect. It is recognized that it is a thing. In order to suppress flash rust, a rust preventive agent may be added to the polymer cement mortar composition, or the surface of the object to be painted may be treated with a primer. When using rust inhibitors,
It is blended in an amount of about 0.1 to 3% by weight, preferably about 0.3 to 1.0% by weight. In addition, when a rust preventive agent is not used, it is possible to use a rust preventive agent by applying a primer treatment to the surface of the workpiece that has been descaled using, for example, an epoxy resin or silicate compound with zinc dust dispersed therein. It is possible to obtain a flash and last suppression effect that is equal to or greater than that of time. Incidentally, it goes without saying that both the primer treatment and the use of a rust preventive agent may be employed as necessary. Next, we investigated the aggregate in the polymer cement mortar composition, and found that the trends in the bending resistance (f) and compression resistance (C) of the molded product were determined by the maximum strain (Smax) and the glass content. Third
The behavior shown in the figure was obtained. From this result, it is recognized that the glass content of the aggregate in the polymer cement mortar composition has a significant effect on the values of f and C, and ultimately, the glass content of the aggregate is approximately 95% by weight or more. It has become clear that when used, a product that is least prone to cracking can be obtained. When the particle size of the aggregate whose conditions are determined in this way is approximately 0.6 mm or less, favorable results can be obtained from the viewpoint of workability as a polymer cement mortar composition. The aggregate with a glass content of 95% by weight or more is not particularly limited as long as it meets the above conditions, but concretely, it is obtained by rapidly cooling a molten slab discharged from a blast furnace. Granulated blast furnace slag can be used. After the polymer (P) and aggregate (S) have been selected as described above, the quantitative relationship between them becomes an important item, and among these, the C/S ratio is determined based on the grounds mentioned above. Compressive strength (C) is determined by changing the C/S ratio while fixing other requirements within the identified preferred range.
Figure 4 shows a plot of the behavior of bending strength (f) and tensile strength (TS). The behavior shown shows that coatings with balanced strength are obtained when the C/S ratio is in the range of 0.40 to 0.65. Further, data on peel resistance strength according to the P/C ratio was obtained using a similar method and is plotted in FIG. 5. In this case, the P/C ratio is 0.20 to 0.50
When the peel strength is within a certain range, the peel strength is maintained within a certain range. As is clear from the behavior in the figure, as the value of the P/C ratio decreases, the strength decreases, and on the other hand, when it becomes too large, it can be understood that no effect commensurate with the addition of the polymer can be expressed. When actually applying polymer cement mortar, one of the known painting methods is selected depending on the location and condition of the object to be painted. On the other hand, in the case of objects with severe unevenness such as ups and downs, it is convenient to perform spray painting using a spray gun. The polymer cement mortar composition of the present invention having the structure detailed above has excellent adhesion to the base,
It exhibits excellent performance in terms of wear resistance, waterproof effect, weather resistance, impact resistance, chemical resistance, corrosion resistance, strain following ability, vibration damping ability, and cold/heat cycling, and has functions required in various applications. This is a polymer cement composition that can sufficiently cover. The various characteristics and effects of the polymer cement mortar composition of the present invention will be further explained below with reference to Examples. The following formulation was used as a common formulation for the polymer cement mortar compositions used in the Examples. Acrylic modified SBR latex (48% solids)
20 parts by weight blast furnace cement 25〃 Granulated blast furnace slag with a vitrification rate of 99% (0.5 mm or less)
55〃Water 0-3〃Example 1 A steel plate that had been subjected to a blast treatment as a test piece was coated with an epoxy resin dispersion containing zinc powder to a thickness of 15 to 20 μm, and then a polymer cement mortar composition of the above common composition was applied to a thickness of 5 mm. The spray coating was applied to a thickness of . After curing the test pieces thus obtained at room temperature for 28 days, they were subjected to a one-year dry-wet alternation test, a slurry immersion test, a natural seawater immersion test, and a 1000-hour weather resistance test, as shown in the table below. No change was observed in the basic condition of the steel plate surface.

【表】 実施例 2 共通配合によつて得たポリマーセメントモルタ
ル組成物を鋼板、ガラス板、アクリル板、木製合
板およびコンクリートに吹きつけ、28日間養生後
の剥離強度を測定し第6図にその結果を示した。 なお、この剥離強度の測定法は第7図に示した
如く、基体1上に塗布し形成した塗膜2に対して
治具3をシアノアクリレート系接着剤で接着し治
具が当接している部分の塗膜2に切り込みを入れ
治具3を引き上げて塗膜2の剥離を調べたもので
ある。 第6図から、本発明のポリマーセメントモルタ
ル組成物には、優れた密着力を有していることが
認められる。 実施例 3 ポリマーセメントモルタル組成物の耐摩耗性の
傾向について次の要領に従つて材料の比較試験を
行つた。 −10℃の雰囲気で12本のチエンを巻きつけてい
るタイヤを回転させチエンの接触による摩耗を調
べた。供試体は、400×150×40mmの成形品を使用
しこれを200rpmで回転しているタイヤに対し66
往復/分の割合で往復させた。第8図にその概略
を示したが、供試体4は、チエンの当接によつて
すり減りを起して溝5を形成する。この摩耗試験
の判定は溝5の断面Sの広さ(cm2)を一方の尺度
とし試験時間(min)による挙動を第9図に示し
た。 図中、黒三角で示された挙動は、ガラス含有率
0%の骨材、白丸で示されたものはガラス含有率
50%、黒丸はガラス含有率99%の骨材を使用した
ポリマーセメントモルタル組成物を示している。 この図から本発明のポリマーセメントモルタル
組成物は耐摩耗性において格段に優れていること
が認められる。 実施例 4 ポリマーセメントモルタル組成物を厚さ2mmの
鋼板に厚さを変えて吹付塗装した。 基体鋼板の板厚に対する被覆膜厚の比をnで表
し、n=1〜4の試料につき500Hzの振動を与え
てその振動減衰能を調べたところ第10図の挙動
を得た。 一般的に使用温度範囲における損失係数が0.1
以上であるものを土木ないし建材分野において使
用することが良好と云われているが、図から明ら
かなようにn≧2では0〜50℃の領域において損
失係数が0.1より大きくなり、とくに20〜30℃の
近傍ではその係数の値が0.2前後の高い値を示し
ている。 実施例 5 ポリマーセメントモルタル組成物によつて160
×40×40mmの成形物を作成し28日養生後の試料に
つき圧縮および曲げ時の応力(Ss)と歪(Sn)
の関係を求めた。その結果は第11図の通りであ
る。応力が110Kgf/cm2程度まではひずみの追随
性が認められ、特に応力が50Kgf/cm2程度まであ
るときは歪との関係が略直線となり極めて制御し
やすい材料となるものであることが判る。 なお図中の○、△、▽のうち白抜きのデータは
圧縮について、また黒塗りのデータは曲げについ
て求めたものである。そして、それぞれの記号は
繰返し実験を行つたときのデータを重ねてプロツ
トしたものであるが、再現性の高いデータである
ことが認められる。 実施例 6 ガラス含有率99%および0%の骨材を使用した
ポリマーセメントモルタル組成物によつて160×
40×40mmの成形物を作り、28日間の養生を行つた
のち80℃6時間、5℃14時間を1サイクルとする
冷熱繰返し試験を行いその寸法変化量δを測定
し、冷熱サイクルのプログラムとその変化量δを
プロツトしたのが第12図である。 ガラス含有率0%(一点鎖線)のものに比較し
て、99%のガラス含有率のものの方が変化量が小
さいこと、すなわち寸法安定性が高いことがわか
る。
[Table] Example 2 A polymer cement mortar composition obtained using a common formulation was sprayed onto steel plates, glass plates, acrylic plates, wooden plywood, and concrete, and the peel strength was measured after curing for 28 days. The results were shown. In addition, as shown in FIG. 7, this peel strength measurement method involves bonding a jig 3 with a cyanoacrylate adhesive to a coating film 2 formed on a substrate 1, and the jig is brought into contact with the coating film 2. Peeling of the coating film 2 was examined by making an incision in the coating film 2 at a portion and pulling up the jig 3. From FIG. 6, it is recognized that the polymer cement mortar composition of the present invention has excellent adhesion. Example 3 A comparative test of materials was conducted in accordance with the following procedure regarding the tendency of wear resistance of polymer cement mortar compositions. A tire with 12 chains wrapped around it was rotated in an atmosphere of -10°C to examine wear caused by contact between the chains. The test specimen used was a molded product measuring 400 x 150 x 40 mm, which was rotated at 66 rpm for a tire rotating at 200 rpm.
The round trip was made at a rate of round trip/minute. As shown schematically in FIG. 8, the specimen 4 wears down due to contact with the chain, forming a groove 5. For the judgment of this wear test, the width (cm 2 ) of the cross section S of the groove 5 was used as one measure, and the behavior according to the test time (min) is shown in FIG. 9. In the figure, the behavior shown by black triangles is aggregate with 0% glass content, and the behavior shown by white circles is glass content.
50%, the black circle indicates a polymer cement mortar composition using aggregate with a glass content of 99%. From this figure, it is recognized that the polymer cement mortar composition of the present invention is extremely excellent in wear resistance. Example 4 Polymer cement mortar compositions were spray coated onto 2 mm thick steel plates in varying thicknesses. The ratio of the thickness of the coating film to the thickness of the base steel plate is expressed as n, and the vibration damping ability was investigated by applying vibration at 500 Hz to samples with n = 1 to 4, and the behavior shown in Fig. 10 was obtained. Generally, the loss coefficient is 0.1 in the operating temperature range.
It is said that it is good to use the above in the civil engineering or building materials field, but as is clear from the figure, when n≧2, the loss coefficient becomes larger than 0.1 in the range of 0 to 50℃, especially in the range of 20 to 50℃. In the vicinity of 30°C, the coefficient shows a high value of around 0.2. Example 5 160 by polymer cement mortar composition
Stress (Ss) and strain (Sn) during compression and bending of the sample after making a molded product of ×40 × 40 mm and curing for 28 days
I sought the relationship between The results are shown in FIG. Strain followability is observed up to a stress of about 110 Kgf/cm 2 , and especially when the stress is up to about 50 Kgf/cm 2 , the relationship with strain is almost linear, indicating that the material is extremely easy to control. . It should be noted that among the ○, △, and ▽ in the figure, the white data is obtained for compression, and the black data is obtained for bending. Each symbol is an overlapping plot of data from repeated experiments, and it is recognized that the data is highly reproducible. Example 6 160× by polymer cement mortar composition using 99% glass content and 0% aggregate
After making a 40 x 40 mm molded product and curing it for 28 days, we conducted a cold/heat cycle test with one cycle of 80°C for 6 hours and 5°C for 14 hours, measured the dimensional change δ, and determined the cooling/heating cycle program. FIG. 12 plots the amount of change δ. It can be seen that compared to the glass content of 0% (dotted chain line), the glass content of 99% has a smaller amount of change, that is, the dimensional stability is higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPHと腐食速度との関係グラフ、第2図
は液のPH値変化グラフ、第3図は最大歪とガラス
含有率との関係グラフ、第4図は引張強度等と
C/Sとの関係グラフ、第5図は剥離強度とP/
Cとの関係グラフ、第6図は実施例2における剥
離強度のグラフ、第7図は剥離試方法の概念図、
第8図はすり減り試験後の試料説明図、第9図は
実施例3における摩耗試験時間と溝断面Sとの関
係グラフ、第10図は実施例4における使用温度
毎の損失係数グラフ、第11図は実施例5におけ
る圧縮および曲げ時の応力と歪との関係グラフ、
第12図は実施例6における寸法変化量の測定グ
ラフである。 1……基体、2……塗膜、3……治具、4……
供試体、5……溝。
Figure 1 is a graph of the relationship between PH and corrosion rate, Figure 2 is a graph of changes in the pH value of the liquid, Figure 3 is a graph of the relationship between maximum strain and glass content, and Figure 4 is a graph of the relationship between tensile strength, etc. and C/S. Figure 5 shows the relationship between peel strength and P/
Figure 6 is a graph of the peel strength in Example 2, Figure 7 is a conceptual diagram of the peel test method,
FIG. 8 is an explanatory diagram of the sample after the abrasion test, FIG. 9 is a graph of the relationship between the wear test time and the groove cross section S in Example 3, FIG. 10 is a loss coefficient graph for each operating temperature in Example 4, and FIG. The figure is a graph of the relationship between stress and strain during compression and bending in Example 5,
FIG. 12 is a measurement graph of the amount of dimensional change in Example 6. 1...Substrate, 2...Coating film, 3...Jig, 4...
Specimen, 5...groove.

Claims (1)

【特許請求の範囲】 1 セメント(C)、骨材(S)およびポリマー
(P)からなるポリマーセメントモルタル組成物
において、ガラス含有率が95重量%以上の骨材と
スチレン−ブタジエン系ポリマーを用いかつ重量
によるC/S比を0.4〜0.65、P/C比を0.2〜0.5
としたことを特徴とするポリマーセメントモルタ
ル組成物。 2 骨材として高炉水砕スラグを使用した特許請
求の範囲第1項記載のポリマーセメントモルタル
組成物。 3 スチレン−ブタジエン系ポリマーとしてスチ
レン・ブタジエンポリマーまたはアクリル変性ス
チレン−ブタジエンポリマーから選ばれたポリマ
ーを使用した特許請求の範囲第1項記載のポリマ
ーセメントモルタル組成物。
[Claims] 1. In a polymer cement mortar composition consisting of cement (C), aggregate (S) and polymer (P), an aggregate with a glass content of 95% by weight or more and a styrene-butadiene polymer are used. And the C/S ratio by weight is 0.4 to 0.65, and the P/C ratio is 0.2 to 0.5.
A polymer cement mortar composition characterized by: 2. The polymer cement mortar composition according to claim 1, which uses granulated blast furnace slag as an aggregate. 3. The polymer cement mortar composition according to claim 1, wherein the styrene-butadiene polymer is selected from styrene-butadiene polymers and acrylic modified styrene-butadiene polymers.
JP58028607A 1983-02-24 1983-02-24 Polymer cement mortar composition Granted JPS59156949A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58028607A JPS59156949A (en) 1983-02-24 1983-02-24 Polymer cement mortar composition
GB8403808A GB2135665B (en) 1983-02-24 1984-02-14 Polymer cement mortar composition
AU24655/84A AU558299B2 (en) 1983-02-24 1984-02-16 Polymer cement mortar
DE19843405917 DE3405917A1 (en) 1983-02-24 1984-02-18 POLYMER-CEMENT-MORTAR MIXTURE
ZA841208A ZA841208B (en) 1983-02-24 1984-02-20 Polymer cement mortar composition
CA000447975A CA1213619A (en) 1983-02-24 1984-02-21 Polymer cement mortar composition
FR8402668A FR2541672B1 (en) 1983-02-24 1984-02-22 CEMENT-POLYMER MORTAR COMPOSITION
KR1019840000892A KR910002573B1 (en) 1983-02-24 1984-02-23 Polymer cement mortar composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028607A JPS59156949A (en) 1983-02-24 1983-02-24 Polymer cement mortar composition

Publications (2)

Publication Number Publication Date
JPS59156949A JPS59156949A (en) 1984-09-06
JPH0122215B2 true JPH0122215B2 (en) 1989-04-25

Family

ID=12253258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028607A Granted JPS59156949A (en) 1983-02-24 1983-02-24 Polymer cement mortar composition

Country Status (8)

Country Link
JP (1) JPS59156949A (en)
KR (1) KR910002573B1 (en)
AU (1) AU558299B2 (en)
CA (1) CA1213619A (en)
DE (1) DE3405917A1 (en)
FR (1) FR2541672B1 (en)
GB (1) GB2135665B (en)
ZA (1) ZA841208B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032544A4 (en) * 1996-10-16 2001-08-22 Leed Natalie Lynette Tira Compositions for use in concrete and concrete products obtained therefrom
KR100259574B1 (en) * 1997-08-12 2000-06-15 김헌출 Method for repairing crack of concrete constructions
US5922124A (en) 1997-09-12 1999-07-13 Supplee; William W. Additive for, method of adding thereof and resulting cured cement-type concreations for improved heat and freeze-thaw durability
KR100796209B1 (en) * 2007-08-23 2008-01-21 (주)두영티앤에스 The polymer cement mortal compound for a color flooring material and the paving process
KR101964007B1 (en) * 2018-08-02 2019-03-29 노재호 Ultra high damping lightweight concrete composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1172007A (en) * 1967-06-09 1969-11-26 Koppers Co Inc Synthetic Resin Emulsion Hydraulic Cement Composition
BE761863A (en) * 1970-04-16 1971-07-01 Huels Chemische Werke Ag MIXING OF A RESINOUS DISPERSION AND A MORTAR OR AGGREGATE AS A BINDER OR COATING FOR EXPANDED SHEETS OR TABLECLOTH
GB1543562A (en) * 1975-02-07 1979-04-04 Laing & Son Ltd John Water-hardenable compositions and their manufacture
AT362711B (en) * 1976-02-27 1981-06-10 Perlmooser Zementwerke Ag BINDING AGENT OR MORTAR OR CONCRETE PRODUCED FROM THIS BINDING AGENT AND METHOD FOR THE PRODUCTION THEREOF
US4317575A (en) * 1980-06-16 1982-03-02 Gaf Corporation High temperature gasket

Also Published As

Publication number Publication date
FR2541672A1 (en) 1984-08-31
KR910002573B1 (en) 1991-04-27
DE3405917A1 (en) 1984-09-06
FR2541672B1 (en) 1988-05-06
GB8403808D0 (en) 1984-03-21
ZA841208B (en) 1985-04-24
CA1213619A (en) 1986-11-04
KR840007549A (en) 1984-12-08
GB2135665B (en) 1986-04-30
AU558299B2 (en) 1987-01-22
GB2135665A (en) 1984-09-05
AU2465584A (en) 1984-08-30
JPS59156949A (en) 1984-09-06
DE3405917C2 (en) 1990-08-09

Similar Documents

Publication Publication Date Title
US8062699B2 (en) Method for repairing aged reinforced concrete structure using surface-penetration reinforcing agent
JPH0761852A (en) Cement composition
KR100503561B1 (en) Paint composition for preventing corrosion and improving long-term duability of iron structure and process for forming an aluminum oxide coating layer using the same
US4869752A (en) Method for preventing the corrosion of steel structures or steel reinforcements of buildings
KR102193762B1 (en) Composite Repair Method for Concrete Structures Using Fast Drying Filling Repair Materials
KR20120120350A (en) Corrosion-proofing coating composition and process for production thereof, and method for prevention of corrosion in steel material
Heckroodt Guide to the deterioration and failure of building materials
CN111334190A (en) Antirust lasting-viscosity waterproof coating
JPH0468272B2 (en)
CN101250903A (en) Surface coating anticorrosion concrete and construction method
JPH0122215B2 (en)
KR102051586B1 (en) Paint composition for waterproof, anticorrosion and reinforcement including ceramic, fiber and polymer resin, and method for surface protection, repair and reinforcement using the same
KR0153086B1 (en) An anticorrosion cement slurry containing cement and synthetic polymers
JP4034894B2 (en) Emulsion seizure type rust preventive
Varalakshmi et al. Effect of Anti Corrosive Coatings To Steel-A State of Art Report
JPS5975957A (en) Surface coating agent
WO2010056147A1 (en) “basalite stone resin” anticorrosion protective coating
JPS581698B2 (en) Rust and corrosion protection coating composition
JPH0159031B2 (en)
JP3779391B2 (en) Surface coating agent and surface reinforcement method for concrete structure using the coating agent
Nastiti et al. Corrosion Rate and Weight Loss of Geopolymer Mortar Coated Concrete Specimens with Different Thicknesses
KR20090108357A (en) A rust inhibitor for iron and steel
WO2023242700A1 (en) Composition and method of making nano-coat formulation forcorrosion resistance in rebars
JP4519480B2 (en) Acid resistant cement composition
JP2001233941A (en) Composite resin composition