JPH01221810A - Oxide superconductive mold and its manufacture - Google Patents

Oxide superconductive mold and its manufacture

Info

Publication number
JPH01221810A
JPH01221810A JP63217979A JP21797988A JPH01221810A JP H01221810 A JPH01221810 A JP H01221810A JP 63217979 A JP63217979 A JP 63217979A JP 21797988 A JP21797988 A JP 21797988A JP H01221810 A JPH01221810 A JP H01221810A
Authority
JP
Japan
Prior art keywords
layer
superconductor
noble metal
metal layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63217979A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Masanao Mimura
三村 正直
Nakahiro Harada
原田 中裕
Masanori Ozaki
正則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63217979A priority Critical patent/JPH01221810A/en
Publication of JPH01221810A publication Critical patent/JPH01221810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductive mold with resistance to mechanical, thermal stress and tension and with excellent flexibility but with no degradation over time by disposing a noble metal layer on an oxide superconductive layer, while the noble metal layer is also in contact with a substrate. CONSTITUTION:A noble metal layer 2 is disposed on superconductor 3, directly or through an inorganic layer, at least at the side in contact with a substrate 1. Thus, the superconductor 3 is oxidized and reduced appropriately at heating process during production and in addition, infiltration of detrimental elements into the superconductor 3 can be prevented. This process yields an oxide superconductive mold with excellent superconductivity, which can be practically used for conductors and components of devices.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、線材、ケーブル、配線回路板又は電気、電子
部品等に使用される酸化物超電導成形体及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide superconducting molded body used for wires, cables, printed circuit boards, electrical and electronic parts, etc., and a method for producing the same.

(従来の技術とその課題〕 酸化物超電導体としては、液体He温度で超電導となる
Ba二Pb−B1系酸化物等が知られていたが、近年、
液体H,、Ne更にはN、温度以上で超電導を示す酸化
物超電導体(以下超電導体と略記)が開発されている。
(Prior art and its problems) As oxide superconductors, Ba2Pb-B1 oxides, etc., which become superconducting at the temperature of liquid He, have been known, but in recent years,
Oxide superconductors (hereinafter abbreviated as superconductors) that exhibit superconductivity at temperatures higher than liquid H, Ne, and even N have been developed.

これらの超電導体としては、例えば(L a zs r
 +−II)*Cu O4やYBa、cu、o、のよう
な第3族す元素、アルカリ土類金属及びCuからなる複
合酸化物があり、その構造はKINi F4構造や08
欠損性の層状ペロプスカイト型構造である。同類のCu
−0面構造を有する層状物質として、B1−5r−Ca
−Cu−0系やTj!−Ba−Ca−Cu−0系物質が
あり、より高い臨界温度(T、)のものが得られている
Examples of these superconductors include (L a zs r
+-II) *Cu There are complex oxides consisting of group 3 elements such as O4, YBa, cu, o, alkaline earth metals, and Cu, and their structures are KINi F4 structure and 08
It has a defective layered peropskite structure. Similar Cu
B1-5r-Ca as a layered material with -0 plane structure
-Cu-0 series and Tj! There are -Ba-Ca-Cu-0 based materials, and those with higher critical temperatures (T) have been obtained.

上記の酸化物超電導体はペースト印刷等により厚膜にし
たり、PVDやCVD法により薄膜にしたり、これを線
材化したりして導体に成形されて各種用途に利用が試み
られている。
The above-mentioned oxide superconductors have been made into thick films by paste printing or the like, thin films by PVD or CVD, or formed into wires to form conductors, and their use in various applications has been attempted.

上記のPVD法等の気相法は、いずれも真空中で成膜が
行われるが、例えば前記のYB、ftcu=0、のよう
な酸化物を形成する場合は分解反応等の副反応により0
2が不足するので、0:を若干添加した真空が利用され
るが、最適な組成に維持する事が困難で、この為形成膜
は無定形状に成り易く、従って超電導特性に劣り又は全
く超電導特性を示さないものであった。
In all vapor phase methods such as the PVD method described above, film formation is performed in a vacuum, but when forming an oxide such as the above-mentioned YB, ftcu = 0, a side reaction such as a decomposition reaction causes 0.
Since 2 is insufficient, a vacuum with a slight addition of 0: is used, but it is difficult to maintain the optimal composition, and the formed film tends to be amorphous, resulting in poor superconducting properties or no superconducting at all. It showed no characteristics.

このような事から従来成膜後、酸素含有雰囲気中で90
0℃前後に加熱して、酸素等の組成及び結晶構造の調整
を行つて超電導体となしている。
For this reason, conventionally, after film formation, 90°C in an oxygen-containing atmosphere
It is heated to around 0°C to adjust the composition of oxygen, etc. and the crystal structure to become a superconductor.

ところで、上記の超電導成形体には、実用上の種々の機
械的並びに熱的な応力や歪みに耐え、且つ目的とする形
状に成形できる可撓性が要求されている0例えば、超電
導成形体は使用時に液体窒素等の冷媒中で冷却されるが
使用を中断する時、常温に戻すので、厳しいヒートサイ
クル条件下で使用される事になる。
By the way, the above-mentioned superconducting molded body is required to have the flexibility to withstand various practical mechanical and thermal stresses and strains, and to be able to be formed into the desired shape.For example, the superconducting molded body is During use, it is cooled in a refrigerant such as liquid nitrogen, but when it is not used, it returns to room temperature, so it is used under severe heat cycle conditions.

このような事から超電導体を金属のような可撓性に優れ
た基体上に成膜して使用する方法が検討されているが、
前記の超電導体に調整する為の加熱処理の際に、基体の
金属が超電導体中に拡散して臨界電流密度(J(2)ば
かりでな(、臨界温度(’rc )や臨界磁場(He)
等の超電導特性が低下するという問題があった。
For this reason, methods are being considered in which superconductors are deposited on highly flexible substrates such as metals.
During the heat treatment to prepare the superconductor mentioned above, the base metal diffuses into the superconductor, increasing not only the critical current density (J(2)), critical temperature ('rc), and critical magnetic field (He )
There was a problem in that the superconducting properties of these materials deteriorated.

又上記の加熱処理の際に、超電導体の構成成分が界面や
表面に偏析したり、甚だしい場合は、揮発して目的とす
る超電導特性が十分に得られな(なるという問題があっ
た。
Further, during the above heat treatment, there is a problem that the constituent components of the superconductor segregate at the interface or surface, or in severe cases, volatilize, making it impossible to obtain the desired superconducting properties.

更には、超電導体膜が外気と接すると湿気や大気中の汚
染ガス成分により超電導特性が急速に劣化するというよ
うな問題もあった。
Furthermore, when the superconductor film comes into contact with the outside air, there is a problem in that the superconducting properties rapidly deteriorate due to moisture and contaminant gas components in the atmosphere.

〔課題を解決するための手段及び作用〕本発明は、かか
る状況に鑑みなされたものでその目的とするところは、
機械的、熱的な応力、歪みに耐え、可撓性に優れ、且つ
経時劣化のない超電導成形体及びその製造方法を提供す
る事にある。
[Means and effects for solving the problem] The present invention has been made in view of the above situation, and its purpose is to:
It is an object of the present invention to provide a superconducting molded body that can withstand mechanical and thermal stress and distortion, has excellent flexibility, and does not deteriorate over time, and a method for manufacturing the same.

即ち、本請求項1の発明は少なくとも片側に貴金属層を
有する酸化物超電導体層を貴金属層を基体側にして基体
上に設けられている事を特徴とする超電導成形体であり
、請求項2の発明は、上記超電導成形体の貴金属層と超
電導体層の間に金属又は/及び非金属からなる無機物層
が設けられていることを特徴とする超電導成形体である
。請求項5の発明は請求項1及び2の発明の超電導成形
体の製造方法に関するものである。
That is, the invention of claim 1 is a superconducting molded body characterized in that an oxide superconductor layer having a noble metal layer on at least one side is provided on a base with the noble metal layer facing the base, and claim 2 The invention is a superconducting molded body characterized in that an inorganic layer made of metal and/or non-metal is provided between the noble metal layer and the superconductor layer of the superconducting molded body. The invention of claim 5 relates to the method for manufacturing the superconducting molded body of the invention of claims 1 and 2.

本請求項1の発明の酸化物超電導成形体は、第1図にそ
の断面図を示したように、基体l上に貴金属層2を介し
て超電導体層3が設けられたもの、第2図にその断面図
を示したように基体l上に貴金属層2、酸化物超電導体
層3及び貴金属層4が順次設けられたものが代表的構造
である。
The oxide superconducting molded body of the invention of claim 1 is one in which a superconductor layer 3 is provided on a base l with a noble metal layer 2 interposed therebetween, as the cross-sectional view thereof is shown in FIG. A typical structure is one in which a noble metal layer 2, an oxide superconductor layer 3, and a noble metal layer 4 are sequentially provided on a substrate 1, as shown in the cross-sectional view in FIG.

本請求項1の発明は上記断面構造に限定されるものでは
なく目的に応じて上記の各層間に例えば第3.4図に示
す如く貴金属層2又は4と超電導体層3との間に金属又
は/及び非金属の無機物層5.6を介在させて用いるこ
とは有用である。
The invention of claim 1 is not limited to the above-mentioned cross-sectional structure, and depending on the purpose, metal may be inserted between each layer, for example, between the noble metal layer 2 or 4 and the superconductor layer 3, as shown in FIG. 3.4. Or/and it is useful to use a nonmetallic inorganic layer 5.6 interposed therebetween.

本発明において、基体はその用途に応じて機能を異にす
るが、多(の場合、機械的強度が第1であり、電磁的安
定化などの安定化作用も重要である。電線ケーブル導体
用の基体には金属が可撓性や強度に優れるばかりでなく
、長尺体を安定して安価に入手できるので最も通してい
る。
In the present invention, the functions of the base body vary depending on its use, but in the case of polygons, mechanical strength is the most important, and stabilizing effects such as electromagnetic stabilization are also important.For electric wire cable conductors Metal is the most commonly used material for the substrate because it not only has excellent flexibility and strength, but also allows long materials to be stably obtained at low cost.

基体として要求される特性としては、冷熱サイクルで熱
的ストレスを極小化できるものが好ましく、熱膨張率が
5〜15 X 10−’/”Cの物質が有利であり、例
えばTi5Zr%Ta%Nb、Fe。
The properties required for the substrate are preferably those that can minimize thermal stress during cooling and heating cycles, and materials with a coefficient of thermal expansion of 5 to 15 x 10-'/''C are advantageous, such as Ti5Zr%Ta%Nb. , Fe.

Ni%Cr、Co%Mo及びこれらの合金、NiN1−
Cr5Ni−Cr−のNi合金、ステンレススチール、
5O3−310、−41O等のFe−N i −Cr系
、Fe−Cr系合金鋼又はCu−Ni合金等がある。も
ちろん、これらと導電性、伝熱性のより高いCu、Aj
!等と複合化した基体も有用である。
Ni%Cr, Co%Mo and alloys thereof, NiN1-
Cr5Ni-Cr-Ni alloy, stainless steel,
Examples include Fe-Ni-Cr alloy steel such as 5O3-310 and -41O, Fe-Cr alloy steel, and Cu-Ni alloy. Of course, in addition to these, Cu, Aj, which has higher electrical conductivity and heat conductivity,
! Substrates composited with etc. are also useful.

基体には、上記金属材料以外にカーボン、又は5rTi
O,、MgO1Z r Ox 、AI!zOa1BeO
SBNSAffiN等のセラミックスの単結晶や多結晶
体、或いはSingや多成分ガラス等の無定形無機物質
が適用される。
The base material is made of carbon or 5rTi in addition to the above metal materials.
O,, MgO1Z r Ox , AI! zOa1BeO
Single crystal or polycrystalline ceramics such as SBNSAffiN, or amorphous inorganic substances such as Sing or multi-component glass are applicable.

又基体の形状は、板状体や長尺のテープ、線等が一般的
である。
The shape of the substrate is generally a plate, a long tape, a wire, or the like.

本発明において、基体の上方又は超電導体層の上方に形
成される貴金属層には、Ag、Au、Pds P t、
I n、Os、Ru、Rh等又はこれらの合金が用いら
れる。
In the present invention, the noble metal layer formed above the substrate or the superconductor layer includes Ag, Au, PdsPt,
In, Os, Ru, Rh, etc. or alloys thereof are used.

本発明において基体の上方に設けられる貴金属層は、加
熱処理の際、基体の構成元素が超電導体中に侵入するの
を防止するバリヤーとしての作用を有し、又超電導体層
の上方に設けられる貴金属層は、加熱処理の際生じる超
電導体構成元素の偏析や揮発を抑えるとともに、使用中
に、超電導体が外気中の湿気やSOW、No8、HIS
、cj!z等の有害ガスと反応して急速に変質するのを
防止するものであり、又超電導体の熱的磁気的安定化に
寄与し、更には外部との電気的接続においても有効に作
用する。
In the present invention, the noble metal layer provided above the substrate acts as a barrier to prevent constituent elements of the substrate from penetrating into the superconductor during heat treatment, and is also provided above the superconductor layer. The noble metal layer suppresses the segregation and volatilization of the superconductor constituent elements that occur during heat treatment, and also prevents the superconductor from being exposed to moisture in the outside air, SOW, No. 8, HIS, etc. during use.
,cj! It prevents rapid deterioration due to reaction with harmful gases such as Z, and also contributes to thermal and magnetic stabilization of the superconductor, and also acts effectively in electrical connection with the outside.

上記において基体上に形成される貴金属層の厚さは、0
.01〜10n、特に好ましくは、0.1〜2μにおい
てバリヤーとしての効果が最もよく発揮される。
In the above, the thickness of the noble metal layer formed on the substrate is 0
.. 01 to 10n, particularly preferably 0.1 to 2μ, the barrier effect is best exhibited.

前記の本発明に用いられる貴金属のうち、特にAgはA
uや白金族の貴金属に比べ、安価であり加工性に富み且
つFe、Cr5Ni、Ti、Zr。
Among the noble metals used in the present invention, Ag is particularly
It is cheaper and easier to work with than precious metals of the platinum group such as Fe, Cr5Ni, Ti, and Zr.

C0lMo等の主要な基体材料と固溶せず高いバリヤー
効果を発揮するものである。更にAgはその一部が超電
導体内に混入して、J、を向上させる効果が確認されて
いる。
It exhibits a high barrier effect without forming a solid solution with major base materials such as C0lMo. Furthermore, it has been confirmed that a part of Ag is mixed into the superconductor and has the effect of improving J.

上記のAgの作用は、Ag合金、例えばAg−Pd、A
g−Au、Ag−Pt、Ag−InSAg−RE (R
E :レアアース)、Ag−3n、Ag−ZnSAg−
Cu%Ag−Ni等の合金においても発現され、上記合
金中のAg含有量は99〜55wt%において特に効果
的である。
The above action of Ag is similar to Ag alloys such as Ag-Pd, A
g-Au, Ag-Pt, Ag-InSAg-RE (R
E: rare earth), Ag-3n, Ag-ZnSAg-
It is also expressed in alloys such as Cu%Ag-Ni, and is particularly effective when the Ag content in the alloy is 99 to 55wt%.

又Agは、高温で0意の拡散速度が大きいため、超電導
体の08を透溝して、超電導体の特性を劣化させ更には
基体を酸化消耗して剥離する等の危険性があるが、前記
の合金は、0.の拡散速度が比較的低いので、上記のよ
うな危険はな(、基体と超電導体層とのバリヤーとして
は、むしろAgより優れており、特にAg−Pd合金は
有効である。
In addition, since Ag has a high zero diffusion rate at high temperatures, there is a risk that it will penetrate the superconductor 08, deteriorating the properties of the superconductor, and further oxidizing and depleting the substrate, causing it to peel off. The said alloy has a 0. Since the diffusion rate of Ag is relatively low, there is no such danger as mentioned above (Although Ag is better than Ag as a barrier between the substrate and the superconductor layer, the Ag-Pd alloy is particularly effective.

本発明において、超電導体層の上方に設けられる貴金属
には、酸化せずに01透過性に優れたAgが最適であり
、加熱処理中の超電導体成分の偏析や揮発を防止し、0
!欠損性超電導体物質に0゜を十分供給することが出来
る。
In the present invention, the most suitable noble metal provided above the superconductor layer is Ag, which does not oxidize and has excellent 01 permeability, and prevents segregation and volatilization of superconductor components during heat treatment.
! It is possible to sufficiently supply 0° to the defective superconductor material.

上記の作用は、貴金属膜の厚さが0.05−以上で超電
導体膜の厚さの2倍を超えない範囲で特に有効で、0.
05#lI未満では上記の作用が十分に発現されず、又
、厚過ぎると0□の透過不良、冷熱サイクルにおける熱
歪みの増大、経済性等の点で好ましくない。
The above effect is particularly effective when the thickness of the noble metal film is 0.05- or more and does not exceed twice the thickness of the superconductor film.
If the thickness is less than 0.05 #lI, the above-mentioned effect will not be sufficiently exhibited, and if it is too thick, it is unfavorable from the viewpoints of poor transmission of 0□, increase in thermal strain during cooling/heating cycles, economic efficiency, etc.

本発明において貴金属層と超電導体層の中間に無機物層
を介在さすることは、Ag等の貴金属を節約できる1f
かりでなく、前記貴金属の酸素透過による基体の酸化が
防止される等の利得をもたらす、更に重要なことは無機
物層は超電導体層の成長を支配して超電導電流を極大化
する結晶方位への配向成長を促進することである。即ち
前記の如く酸化物超電導体の多くは層状物質であり、C
軸に直交するCu−0面に平行に超電導電流が流れるの
で、基板にC軸を垂直にたてた配向成長が多くの場合必
要となる。
In the present invention, by interposing an inorganic layer between the noble metal layer and the superconductor layer, it is possible to save precious metals such as Ag.
In addition, the inorganic layer provides benefits such as prevention of oxidation of the substrate due to oxygen permeation through the noble metal.More importantly, the inorganic layer controls the growth of the superconductor layer and has a crystal orientation that maximizes the superconducting current. The goal is to promote oriented growth. That is, as mentioned above, most oxide superconductors are layered materials, and C
Since a superconducting current flows parallel to the Cu-0 plane perpendicular to the axis, oriented growth with the C axis perpendicular to the substrate is required in many cases.

これらの作用を有する無機物は結晶構造と化学反応性の
両観点から選択されるもので、特に次の条件、■無機物
の生成自由エネルギーΔGoがBaOの一ΔGo以下で
あること、■超電導体と低反応性であること■正方晶、
斜方晶、6方晶、ペロブスカイトからなる結晶構造体で
あること、を満足する必要がある。
Inorganics that have these effects are selected from the viewpoints of both crystal structure and chemical reactivity, and in particular the following conditions are met: ■ The free energy of formation ΔGo of the inorganic is less than one ΔGo of BaO; ■ The combination of superconductors and low Be reactive ■ Tetragonal,
It is necessary to satisfy the requirements that the crystal structure is composed of orthorhombic crystal, hexagonal crystal, or perovskite.

上記無機物のうち非金属としては、An□03、ZrO
,、MgO1T i Oz、5rTiOi、Si0!、
BeO,BaF=、BaZr0i、BaTi01、Ba
O,CaO1SrO等の物質が適用し得るものであり、
その厚さは0.01#1m以上、特に0.05〜2μに
おいて実用上有用である。
Among the above inorganic substances, nonmetals include An□03, ZrO
,,MgO1T i Oz, 5rTiOi, Si0! ,
BeO, BaF=, BaZr0i, BaTi01, Ba
Substances such as O, CaO1SrO, etc. can be applied,
The thickness is 0.01 #1 m or more, particularly 0.05 to 2 μm, which is practically useful.

本発明において、上記無機物には、金属を用いることも
可能で、上記金属には遷移金属又はその合金が適してい
る。
In the present invention, a metal can also be used as the inorganic substance, and transition metals or alloys thereof are suitable for the metal.

前記の無機物層に用いられる遷移金属等の金属は超電導
体層と貴金属との中間に介在して双方の密着性を向上さ
せる作用を有するもので、例えば前述の如く使用中の液
体窒素等の冷媒温度と室温との間のヒートサイクルにお
いて、貴金属層の剥離を抑えて貴金属層の作用を有効に
発揮せしめるものである0本発明に用いられる遷移金属
は、周期率表の第4.5.6族に属する元素で、特に有
用な元素はTt、Zr、Cr、Mo、WSNb、Ta、
Fe、Ni、CoやN1−P系、N1−W−P系、Ni
−Cu系又はオーステナイト系ステンレス鋼のFe−C
r−Ni系等の合金である。
The metals such as transition metals used in the above-mentioned inorganic layer are interposed between the superconductor layer and the noble metal and have the effect of improving the adhesion between them. The transition metal used in the present invention is one that suppresses peeling of the noble metal layer and allows the noble metal layer to effectively exhibit its function during a heat cycle between temperature and room temperature. Particularly useful elements belonging to the group include Tt, Zr, Cr, Mo, WSNb, Ta,
Fe, Ni, Co, N1-P series, N1-W-P series, Ni
-Fe-C of Cu-based or austenitic stainless steel
It is an alloy such as r-Ni type.

本発明において遷移金属又はその合金が超電導体層と貴
金属層との密着性を高める作用を示す理由の1つは超電
導体層とは超電導体の酸素原子を介して共有結合し、又
貴金属層とは金属結合して、双方の層と強固に密着する
ためと考えられる。このように遷移金属又はその合金(
以下遷移金属と略記)は、超電導体層と貴金属層との密
着性に寄与するもので、その厚さは可久的に薄いことが
望ましく0.001〜Q、 5 #Il、特に0.00
1〜0.1−が望ましい厚さで厚過ぎると0.0透過を
妨害するばかりでなく、自身が酸化して超電導特性を害
するようになる0本発明の多層構造は、上記例に限定さ
れるものではなく、例えば最上層にCuやAffiなど
の安定化金属層、AiN%CBNなどの熱伝導層、有機
ポリマーなとの絶縁性保護層などを設けることができる
One of the reasons why the transition metal or its alloy exhibits the effect of increasing the adhesion between the superconductor layer and the noble metal layer in the present invention is that the superconductor layer is covalently bonded through the oxygen atoms of the superconductor, and the noble metal layer This is thought to be due to metal bonding and strong adhesion to both layers. In this way, transition metals or their alloys (
Transition metals (hereinafter abbreviated as transition metals) contribute to the adhesion between the superconductor layer and the noble metal layer, and their thickness is preferably permanently thin, preferably 0.001 to Q, 5 #Il, especially 0.00
The desired thickness is from 1 to 0.1-, and if it is too thick, it not only obstructs 0.0 transmission but also oxidizes itself and impairs superconducting properties.The multilayer structure of the present invention is not limited to the above examples. For example, a stabilizing metal layer such as Cu or Affi, a thermally conductive layer such as AiN%CBN, an insulating protective layer such as an organic polymer, etc. can be provided as the uppermost layer.

上記金属は第4図に示した超電導体層の上方の無機物層
6に適用して特に有効である。
The above metals are particularly effective when applied to the inorganic layer 6 above the superconductor layer shown in FIG.

本発明において、超電導体層の代表的物質は、前記の(
LaSr)、CuO4、YBatCusOxsBiSr
CaCuO1Tj!BaCaCuOの外、これらの置換
物質としてYSr*、sBa+、5CuzOX% Y*
、*SCo、Jazcu、0.、ErBa、Cu、00
、DyBaxCuxOw、M s B a zc us
O*(Ms:ミッシユメタル)、(但しx−7−δ、δ
−0〜0.5)等も含まれ、いずれもペロプスカイト型
構造を呈するものである。父上記数化物において、0の
一部をF等のアニオン、Cuの一部をAg、Ni、Fe
等のカチオンで置換したものも含まれる。
In the present invention, the representative material of the superconductor layer is the above-mentioned (
LaSr), CuO4, YBatCusOxsBiSr
CaCuO1Tj! In addition to BaCaCuO, these substituents include YSr*, sBa+, 5CuzOX% Y*
, *SCo, Jazcu, 0. , ErBa, Cu, 00
, DyBaxCuxOw, M s B a zc us
O* (Ms: missing metal), (x-7-δ, δ
-0 to 0.5), all of which exhibit a perovskite structure. In the above numerals, part of 0 is anion such as F, and part of Cu is Ag, Ni, Fe.
It also includes those substituted with cations such as.

超電導体層の厚さは任意であるが0.1 tna−1髄
、特に0.5〜50−が好ましい。
The thickness of the superconductor layer is arbitrary, but preferably 0.1 to 1 mm, particularly 0.5 to 50 mm.

本発明において、超電導体層、貴金属層、無機物層を膜
状に形成する方法としては、PVD、CVD、MOCV
D、プラズマスプレー、スクリーン印刷、スピンコード
、噴霧熱分解法、機械的圧接法等の種々の方法が目的に
応じて単独又は讃数の方法を組合わせて用いられる。
In the present invention, methods for forming a superconductor layer, a noble metal layer, and an inorganic layer into a film include PVD, CVD, and MOCV.
D. Various methods such as plasma spray, screen printing, spin cord, spray pyrolysis method, and mechanical pressure welding method may be used alone or in combination depending on the purpose.

上記の種々方法のうちPVD、CVD、スピンコード法
は、5ub−μ又は−オーダーの薄膜に適し、他の方法
はより厚い膜の形成に適用されるのが一般的である。特
にPVD法には、スパッタリング法、真空蒸着法、イオ
ンブレーティング法等があり、超電導体層を始め貴金属
層、無機物層の形成に有用である。
Among the various methods mentioned above, PVD, CVD, and spin-coding methods are suitable for forming thin films on the order of 5 ub-μ or -, and other methods are generally applied to forming thicker films. In particular, PVD methods include sputtering methods, vacuum evaporation methods, ion blating methods, etc., and are useful for forming superconductor layers, noble metal layers, and inorganic layers.

上記において、結晶性の超電導体層を形成するには、成
膜時基体温度を500℃以上に加熱しておくことが必要
である。
In the above, in order to form a crystalline superconductor layer, it is necessary to heat the substrate temperature to 500° C. or higher during film formation.

本請求項1.2発明の酸化物超電導成形体は、これを酸
素分圧0.01気圧以上350℃以上の温度にて加熱す
ることによりJc等の特性が一層向上するものである。
The oxide superconducting molded body of the present invention (1.2) is further improved in properties such as Jc by heating it at an oxygen partial pressure of 0.01 atm or higher and a temperature of 350° C. or higher.

上記において酸素分圧を0.01気圧以上、加熱温度を
350℃以上に限定した理由は、酸素分圧、加熱温度が
それぞれ0.01気圧並びに350 ’C未満では、超
電導体中への酸素の補給、結晶核の発生と成長、結晶の
配向や転移が十分になされず、Jc等に高い値が得られ
ない為であり、酸素分圧は0.O1気圧以上、加熱温度
は、350〜980℃の範囲が特に好ましいものであり
、上記において加熱温度が980℃を超えると成分の揮
散が激しくなり超電導特性が低下する。
The reason for limiting the oxygen partial pressure to 0.01 atm or higher and the heating temperature to 350°C or higher in the above is that if the oxygen partial pressure and heating temperature are lower than 0.01 atm and 350'C, respectively, oxygen will not enter the superconductor. This is because supply, generation and growth of crystal nuclei, orientation and transition of crystals are not performed sufficiently, and high values of Jc etc. cannot be obtained, and the oxygen partial pressure is 0. It is particularly preferable that O 1 atm or higher and the heating temperature be in the range of 350 to 980°C. In the above, if the heating temperature exceeds 980°C, the components will volatilize violently and the superconducting properties will deteriorate.

特に、YBazcuiOllの層状ペロプスカイト型構
造のものは、低温安定型の斜方晶系は500〜750℃
で0.を吸収しながら遷移するのでこの条件を含む加熱
処理が不可欠である。
In particular, YBazcuiOll's layered perovskite structure has a low-temperature stable orthorhombic system of 500 to 750℃.
So 0. Since the transition occurs while absorbing , heat treatment that includes this condition is essential.

又PVD法では、低酸素分圧下で成膜するので得られる
膜体の結晶構造は酸素欠損状態のものとなり易く、後に
酸素含有雰囲気中で加熱して酸素を補給することが特に
好ましいものである。
Furthermore, in the PVD method, since the film is formed under a low oxygen partial pressure, the crystal structure of the resulting film tends to be in an oxygen-deficient state, so it is particularly preferable to replenish oxygen by heating in an oxygen-containing atmosphere afterwards. .

酸素を補給する方法としては、プラズマ酸化、プラズマ
陽極酸化等も有用であるが、−船釣には0、やO8の雰
囲気下で加熱する方法がとられている。
Plasma oxidation, plasma anodic oxidation, and the like are useful methods for replenishing oxygen, but for boat fishing, a method of heating in an atmosphere of 0 or 08 is used.

前記の加熱処理において、加熱後の冷却は、50℃/s
in以下のスピードで少な(とも200℃まで徐冷する
のが望ましく、上記において冷却速度が早過ぎると加熱
処理の効果が十分発揮されないばかりか、超電導体膜が
クラックを生じたり、基体から剥離したりする。
In the above heat treatment, cooling after heating is performed at 50°C/s.
It is preferable to slowly cool the superconductor film to 200°C at a speed of less than 200° C. If the cooling speed is too fast, not only will the effect of the heat treatment not be fully demonstrated, but the superconductor film may crack or peel off from the substrate. or

本発明の加熱処理工程において、他の雰囲気中の加熱処
理を目的に応じて一部併用することも可能である。
In the heat treatment step of the present invention, it is also possible to partially use heat treatment in other atmospheres depending on the purpose.

本発明の方法で製造した超電導成形体は、これを多数本
集合して多芯導体や多層導体としてこれに安定化用金属
であるCuやAlを複合し、更に絶縁材として高分子物
質を被覆して用いることができる。
The superconducting molded body produced by the method of the present invention is assembled in large numbers into a multicore conductor or multilayer conductor, composited with stabilizing metals such as Cu and Al, and further coated with a polymeric substance as an insulating material. It can be used as

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 高周波マグネトロンスパッタ装置を用い、厚さ0.1閣
のTiテープ上に、Ar雰囲気(20mT。
Example 1 Using a high frequency magnetron sputtering device, a Ti tape with a thickness of 0.1 mm was coated with an Ar atmosphere (20 mT).

rr)中で、Ag−20wt%Pd合金を0.1711
mスパッタしたのち、これを670℃に加熱して、ター
ゲットにYBag、5Cua、i0□組成の酸化物を用
い、A r +O,雰囲気(50mTorr、 Ox 
25%)中で250wの負荷をかけて、厚さ2μの超電
導体膜を形成し、超電導成形体を製造した。
rr), Ag-20wt%Pd alloy was 0.1711
After m sputtering, this was heated to 670°C, and an oxide of YBag, 5Cua, i0□ composition was used as a target, Ar + O, atmosphere (50 mTorr, Ox
A superconductor film having a thickness of 2 μm was formed by applying a load of 250 W in 25%) to produce a superconducting molded body.

実施例2 実施例1で得た超電導成形体を1気圧の01雰囲気中で
750℃2時間加熱したのち12°C/mtnの冷却速
度で200℃まで冷却した。
Example 2 The superconducting molded body obtained in Example 1 was heated at 750°C for 2 hours in an 01 atmosphere of 1 atmosphere, and then cooled to 200°C at a cooling rate of 12°C/mtn.

実施例3 加熱を880℃15分間行った他は実施例2と同じ方法
により超電導成形体を製造した。
Example 3 A superconducting molded body was produced in the same manner as in Example 2, except that heating was performed at 880° C. for 15 minutes.

実施例4 実施例1で得た超電導成形体上にAr雰囲気(20mT
orr)中でAgを0.8μスパッ−タし、次いでこれ
を880℃15分間加熱したのち、12”(/akin
の冷却速度で200℃まで冷却した。
Example 4 Ar atmosphere (20 mT
After sputtering 0.8μ of Ag in a 12” (/akin
It was cooled to 200°C at a cooling rate of .

実施例5 Agに代えて、Pdを0.2μスパフタした他は実施例
4と同じ方法により超電導成形体を製造した。
Example 5 A superconducting molded body was produced in the same manner as in Example 4, except that 0.2 μm of Pd was sputtered instead of Ag.

実施例6 Ag−20wt%Pd合金に代えて、基体上にPdを0
.2 trmスパッタした他は実施例1と同じ方法で超
電導成形体を製造し、その他は、実施例4と同じ方法に
より超電導成形体を製造した。
Example 6 Instead of Ag-20wt%Pd alloy, 0 Pd was added on the substrate.
.. A superconducting molded body was manufactured in the same manner as in Example 1 except that 2 trm sputtering was performed, and a superconducting molded body was manufactured in the same manner as in Example 4 in other respects.

実施例7 Pdに代えて、基体上にAgを0.2μスパツタし他は
実施例6と同じ方法により超電導成形体を製造した。
Example 7 A superconducting molded body was produced in the same manner as in Example 6, except that 0.2μ of Ag was sputtered onto the substrate instead of Pd.

実施例8 基体上にAg1.5μスパンタした他は実施例7と同じ
方法により超電導成形体を製造した。
Example 8 A superconducting molded body was produced in the same manner as in Example 7, except that a 1.5μ Ag spunter was placed on the substrate.

実施例9 高周波マグネトロンスパッタ装置を用い、厚さ0.1m
のFe  12wt%Cr合金テープ上に、P   ′
tを0.1#1mその上にAgを0.05.nスパッタ
し、次いでこれを多元電子ビーム蒸着機により、Po。
Example 9 Thickness: 0.1 m using high frequency magnetron sputtering equipment
P′ on Fe 12wt%Cr alloy tape
T is 0.1#1m and Ag is 0.05. n sputtering and then using a multiple electron beam evaporator to process Po.

= 3.0 X 10−”Torrの雰囲気中で720
°Cに加熱して、Er、Cu−Ba、、Cuの3個の蒸
発源を用いEr=Ba:Cuの蒸発速度がモル比で1:
2:3になるように電子ビーム及びシャッター速度を調
整してE r B a ICusOxの層を3.III
m蒸着したのち、この上にAgを0.5nスパツタし、
これを3気圧のOf雰囲気中で650℃1時間加熱した
のち35°C/sinの冷却速度で200℃まで冷却し
て超電導成形体を製造した。
= 3.0 x 720 in an atmosphere of 10-” Torr
Heating to °C, using three evaporation sources of Er, Cu-Ba, and Cu, the evaporation rate of Er=Ba:Cu was 1:1 in molar ratio.
Adjusting the electron beam and shutter speed so that the ratio is 2:3, the layer of E r B a ICusOx is 3. III
After m vapor deposition, 0.5n of Ag is sputtered on top of this,
This was heated at 650° C. for 1 hour in an Of atmosphere of 3 atm, and then cooled to 200° C. at a cooling rate of 35° C./sin to produce a superconducting molded body.

実施例10 PL及びAgに代えて、基体上にそれぞれPdを0.0
5u、Ag−10%In合金を0.1#llスパツタし
た他は実施例9と同じ方法により超電導成形体を製造し
た。
Example 10 Instead of PL and Ag, 0.00.0 Pd was added on the substrate, respectively.
A superconducting molded body was manufactured by the same method as in Example 9, except that 0.1 #ll of Ag-10%In alloy was sputtered.

実施例11 Pt及びAgに代えて、基体上にptだけを0゜03μ
スパツタした他は実施例9と同じ方法により超電導成形
体を製造した。
Example 11 Instead of Pt and Ag, only PT was applied on the substrate at 0°03μ
A superconducting molded body was manufactured by the same method as in Example 9 except that sputtering was performed.

比較例1 基体上へのAg−20%Pd合金のスパッタを省略し、
他は実施例、4と同じ方法により超電導成形体を製造し
た。
Comparative Example 1 Sputtering of Ag-20%Pd alloy onto the substrate was omitted,
A superconducting molded body was manufactured by the same method as in Example 4 except for the above.

比較例2 基体上へのAg−20%Pd合金のスパッタ厚さを0.
005In&にした他は実施例4と同じ方法により超電
導成形体を製造した。
Comparative Example 2 The sputtering thickness of Ag-20%Pd alloy onto the substrate was set to 0.
A superconducting molded body was manufactured by the same method as in Example 4 except that 005In& was used.

比較例3 基体に厚さ0.1■のCuテープを用い、又基体上への
Ag−20%Pd合金のスパッタを省略し、他は、実施
例1と同じ方法により超電導成形体を製造した。
Comparative Example 3 A superconducting molded body was manufactured in the same manner as in Example 1, except that a 0.1-inch thick Cu tape was used as the substrate, and the sputtering of the Ag-20% Pd alloy onto the substrate was omitted. .

比較例4 基体にCuを用いた他は実施例4と同じ方法により超電
導成形体を製造した。
Comparative Example 4 A superconducting molded body was manufactured in the same manner as in Example 4 except that Cu was used for the base.

斯くの如くして得た各々の超電導成形体について、その
ままの状態のもの、超電導成形体の厚さの2,500倍
の径の円筒に巻きつけてから液体N2浸漬と室温間での
ヒートサイクルを50回繰り返したもの、更にヒートサ
イクル後湿度70%、温度55℃のチャンバーに100
時間保持したものの3通りのサンプルを調整して、液体
窒素中でJcを測定した。
Each of the superconducting molded bodies obtained in this way was either in its original state or wound around a cylinder with a diameter 2,500 times the thickness of the superconducting molded body, and then subjected to a heat cycle between immersion in liquid N2 and room temperature. was repeated 50 times, and after further heat cycle, it was placed in a chamber with a humidity of 70% and a temperature of 55°C for
Triplicate samples were prepared and Jc was measured in liquid nitrogen.

結果は超電導成形体の構成を併記して第1表に示した。The results are shown in Table 1 along with the structure of the superconducting molded body.

第1表より明らかなように、本発明品(No 1〜11
)は、そのままの状態のもの及びヒートサイクル後のも
のは、いずれもJcが高い値を示している。
As is clear from Table 1, the products of the present invention (Nos. 1 to 11)
) shows a high value of Jc both in the as-is condition and after heat cycle.

加湿後において、超電導体層上に貴金属層のないもの(
No1〜3)は、Jcが低下している。これは外気中の
湿気等により超電導体層が劣化したためと考えられる。
After humidification, there is no noble metal layer on the superconductor layer (
Nos. 1 to 3) have lower Jc. This is thought to be due to deterioration of the superconductor layer due to moisture in the outside air.

基体上に貴金属層がないもの(No12)及びその厚さ
が0.01#Imを下履るもの(No13)は、その厚
さが0、1μのもの(No15)に比べてJcが、その
ままの状態で既に低い値を示している。これは、加熱処
理時に基体の構成元素の侵入により超電導体層が劣化し
たためと考えられる。
The one without a noble metal layer on the base (No. 12) and the one with a thickness of 0.01 #Im (No. 13) have a Jc that is unchanged compared to the one with a thickness of 0.1 μm (No. 15). It is already showing a low value in the state of . This is considered to be because the superconductor layer deteriorated due to invasion of constituent elements of the base during heat treatment.

比較品のうち、基体がCuで基体上に貴金属層がないも
の(No14)は、そのままの状態で低いJ。
Among the comparative products, the one with a Cu base and no noble metal layer on the base (No. 14) has a low J as is.

値を示している。これは、加熱処理時に基体と反応が生
じたためで、ヒートサイクル後更に低下しているのは、
Cuの熱膨張率がt e x t o”’、”cと高い
ので、熱的ストレスが大きく生じたためと考えられる。
It shows the value. This is because a reaction occurred with the substrate during heat treatment, and the reason for the further decrease after the heat cycle is
This is thought to be due to the fact that a large thermal stress was generated because the coefficient of thermal expansion of Cu is as high as text o"',"c.

基体がCuで基体上に貴金属層を設けたもの(No15
)は、比較品No14に比べればかなり高い値を示して
いるが、基体に熱膨張率が8.9X10−’/℃と低い
Tiを用いた本発明品No4に比べると、特にヒートサ
イクル後及び加湿後のJcが著しく低(なっている。
The base is Cu and a noble metal layer is provided on the base (No. 15)
) shows a considerably higher value compared to comparative product No. 14, but compared to inventive product No. 4, which uses Ti as a base material with a low coefficient of thermal expansion of 8.9 x 10-'/°C, especially after heat cycle and Jc after humidification is extremely low.

尚、本発明品No9〜11の基体に用いたFe−12%
Cr合金の熱膨張率は13.1XlO−’/”Cである
In addition, Fe-12% used for the substrate of the present invention products No. 9 to 11
The coefficient of thermal expansion of the Cr alloy is 13.1XlO-'/''C.

実施例12 基体上へのAg−20%Pd合金のスパッタ厚さを種々
変え、他は実施例4と同じ方法により超電導成形体を製
造した。
Example 12 A superconducting molded body was manufactured by the same method as in Example 4, except that the sputtering thickness of the Ag-20% Pd alloy onto the substrate was varied.

上記成形体について、前記と同じサンプル調整を行って
、液体窒素中でJcを測定した。
Regarding the above-mentioned molded article, the same sample preparation as above was performed, and Jc was measured in liquid nitrogen.

結果は、Ag−Pd合金のスパッタ厚さを併記して第2
表に示した。
The results are shown in the second column with the sputtering thickness of Ag-Pd alloy.
Shown in the table.

第2表から明らかなように基体上の貴金属層の厚さが0
.01〜lOnの範囲にあるもの(16〜19)、特に
0.1〜2μの範囲にあるもの(18゜19)はヒート
サイクル後及び加湿後においても高いJc値を示してい
るのに対し、厚さが0.01μ未満の薄いもの(20,
21)はいずれのJc値も低い値を示している。
As is clear from Table 2, the thickness of the noble metal layer on the substrate is 0.
.. Those in the range of 01 to lOn (16 to 19), especially those in the range of 0.1 to 2μ (18°19), show high Jc values even after heat cycling and humidification, whereas Thin ones with a thickness of less than 0.01μ (20,
No. 21) shows low Jc values.

実施例13 ハステロイ基板又は5US304基板上に種々材質の貴
金属層、無機物層、及び超電導体層を順次形成して酸化
物超電導成形体を製造した。
Example 13 A noble metal layer, an inorganic layer, and a superconductor layer made of various materials were sequentially formed on a Hastelloy substrate or a 5US304 substrate to produce an oxide superconducting molded body.

上記において各々の層の形成は、高周波マグネトロンス
パッタ装置を用いて行い、貴金属層及び無機物層は、A
r雰囲気(20mTorr)中で、又超電導体層は基体
を670℃に加熱してA r +O。
In the above, each layer was formed using a high frequency magnetron sputtering device, and the noble metal layer and the inorganic layer were formed using A
r atmosphere (20 mTorr), and the superconductor layer was heated to 670° C. to form an A r +O layer.

雰囲気(50m、Torr、 0125%)中で250
wの負荷をかけて形成した。
250 in atmosphere (50m, Torr, 0125%)
It was formed under a load of w.

上記の酸化物超電導成形体の超電導体層の上方に安定化
金属層としてAgをluf周波マグネトロンスパッタ装
置によりスパッタしたものも製造した。
The above oxide superconducting molded body was also manufactured by sputtering Ag as a stabilizing metal layer above the superconductor layer using a LUF frequency magnetron sputtering device.

更に上記酸化物超電導成形体に適宜種々条件で加熱処理
を施した。加熱処理後200℃迄2°C/winの速度
で冷却した。
Further, the oxide superconducting molded body was subjected to heat treatment under various conditions as appropriate. After the heat treatment, it was cooled to 200°C at a rate of 2°C/win.

斯くの如くして得られた各々の酸化物超電導成形体につ
いて結晶配向性、T、及びJCを測定した。
The crystal orientation, T, and JC of each of the oxide superconducting molded bodies thus obtained were measured.

結果は各々の層の材質及び製造条件を併記して第3表に
示した。
The results are shown in Table 3 together with the material and manufacturing conditions for each layer.

第3表より明らかなように、本発明品(22〜31)は
いずれもTc及びJCが高い値を示している。これは、
主に本発明品の貴金属層又は/及び無機物層が基体金属
元素又は03等の超電導体層への拡散を抑制したことに
よるものである。
As is clear from Table 3, the products of the present invention (22 to 31) all exhibit high values of Tc and JC. this is,
This is mainly due to the noble metal layer and/or inorganic layer of the product of the present invention suppressing the diffusion of the base metal element or 03 etc. into the superconductor layer.

本発明品のうち、No30.31は無機物層が介在して
いない為、超電導体層の結晶がランダム配向となり、そ
の結果磁場中でのJcが低い値となった。
Among the products of the present invention, No. 30.31 had no intervening inorganic layer, so the crystals of the superconductor layer were randomly oriented, resulting in a low Jc in the magnetic field.

比較品のNo32.33は、貴金属層がない為、基体中
の金属元素が超電導体層に拡散してJcが低下したもの
と考えられる。
Comparative product No. 32.33 does not have a noble metal layer, so it is thought that the metal element in the base diffuses into the superconductor layer, resulting in a decrease in Jc.

実施例14 貴金属層にAgのみを用い、無機物層にBeOを用いた
他は実施例13のNo28と同じ方法により酸化物超電
導成形体を製造した。得られた成形体について実施例1
3と同じ方法により結晶配向性及びJ、を測定した。結
果は第4表に示した。
Example 14 An oxide superconducting molded body was manufactured by the same method as No. 28 of Example 13, except that only Ag was used for the noble metal layer and BeO was used for the inorganic layer. Example 1 about the obtained molded body
Crystal orientation and J were measured by the same method as in 3. The results are shown in Table 4.

第4表より明らかなように、本発明品(34〜40)は
、貴金属層のない比較品(41)に較べてJcが高い値
を示している。
As is clear from Table 4, the products of the present invention (34 to 40) have higher Jc values than the comparative product (41) without a noble metal layer.

本発明品のうちNo34.35は、比較的Jcが低く、
特に磁場をかけた状態で低い値となっている。これは無
機物層のBeOがないか、或いは薄い為に、超電導体の
結晶配向がランダムになった為である。又No38.3
9のようにBeOの層が厚くなると、Jeが低下する傾
向がみられるが、これはBe0表面が粗面になった為と
考えられる。
Among the products of the present invention, No. 34.35 has a relatively low Jc,
The value is especially low when a magnetic field is applied. This is because the crystal orientation of the superconductor becomes random because the inorganic layer BeO is absent or thin. Also No.38.3
When the BeO layer becomes thicker as in No. 9, there is a tendency for Je to decrease, but this is thought to be because the BeO surface becomes rough.

貴金属層のないNo41、臨界温度が68に未満の為試
験温度68にではJcは0であり、又貴金属層が0.1
μと薄いもの(40)も、厚いもの(37)に較べてJ
Cが半分以下になっている。この理由は、No40.4
1とともに基体のハステロイからの合金成分が超電導体
に拡散した為と考えられる。
No. 41 without a noble metal layer, the critical temperature is less than 68, so Jc is 0 at the test temperature of 68, and the noble metal layer is 0.1.
The thin one (40) with μ also has a lower J compared to the thick one (37).
C is less than half. The reason for this is No.40.4
This is thought to be due to the alloy components from the Hastelloy substrate being diffused into the superconductor along with 1.

〔効果〕〔effect〕

以上述べたように本発明によれば、酸化物超電導体の少
な(とも基体と接する側に貴金属層が直接又は無機物層
を介して設けられているので、製造中の加熱処理等にお
いて上記超電導体の酸化、還元反応が適切になされると
ともに有害元素の侵入が防止されて、超電導特性に優れ
た酸化物超電導成形体が得られ、これにより酸化物超電
導成形体の導体や機器部品への実用化が可能となり、工
業上顕著な効果を奏する。
As described above, according to the present invention, since the noble metal layer is provided directly or via an inorganic layer on the side in contact with the substrate, the oxide superconductor has a small amount of oxide superconductor. The oxidation and reduction reactions are carried out appropriately, and the intrusion of harmful elements is prevented, resulting in an oxide superconducting molded body with excellent superconducting properties.This allows the practical application of oxide superconducting molded bodies to conductors and equipment parts. This makes it possible to achieve remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は、本発明の酸化物超電導成形体の実施例を
示す断面説明図である。 1・・・基体、 2.4・・・貴金属層、 3・・・超
電導体層、 5.6・・・無機物層。 特許出願人 代理人 弁理士  鉛末 雄−第2図 第3図 第4図
1 to 4 are cross-sectional explanatory views showing examples of the oxide superconducting molded body of the present invention. DESCRIPTION OF SYMBOLS 1...Substrate, 2.4...Precious metal layer, 3...Superconductor layer, 5.6...Inorganic layer. Patent Applicant Agent Patent Attorney Lead Powder - Figure 2 Figure 3 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも片側に貴金属層を有する酸化物超電導
体層が貴金属層を基体側にして基体上に設けられている
事を特徴とする酸化物超電導成形体。
(1) An oxide superconducting molded article characterized in that an oxide superconductor layer having a noble metal layer on at least one side is provided on a substrate with the noble metal layer facing the substrate.
(2)貴金属層と超電導体層の間に金属又は/及び非金
属からなる無機物層が設けられている事を特徴とする請
求項1記載の酸化物超電導成形体。
(2) The oxide superconducting molded article according to claim 1, characterized in that an inorganic layer made of metal and/or non-metal is provided between the noble metal layer and the superconductor layer.
(3)貴金属層が銀又は銀合金からなる事を特徴とする
請求項1、2のいずれかに記載の酸化物超電導成形体。
(3) The oxide superconducting molded article according to claim 1 or 2, wherein the noble metal layer is made of silver or a silver alloy.
(4)銀合金が銀を99〜55wt%含有する合金であ
る事を特徴とする請求項3記載の酸化物超電導成形体。
(4) The oxide superconducting molded article according to claim 3, wherein the silver alloy is an alloy containing 99 to 55 wt% silver.
(5)少なくとも片側に貴金属層を有する酸化物超電導
体層が貴金属層を基体側にして基体上に設けられてなる
酸化物超電導成形体、又は貴金属層と超電導体層の間に
金属又は/及び非金属からなる無機物層が設けられてな
る酸化物超電導成形体を、酸素分圧0.01気圧以上の
酸素含有雰囲気中で350℃以上の温度にて加熱処理す
る事を特徴とする酸化物超電導成形体の製造方法。
(5) An oxide superconducting molded body in which an oxide superconductor layer having a noble metal layer on at least one side is provided on a substrate with the noble metal layer facing the substrate, or a metal or/and An oxide superconductor characterized in that an oxide superconductor molded body provided with an inorganic layer made of a nonmetal is heat-treated at a temperature of 350°C or higher in an oxygen-containing atmosphere with an oxygen partial pressure of 0.01 atm or higher. Method for manufacturing a molded object.
JP63217979A 1987-10-23 1988-08-31 Oxide superconductive mold and its manufacture Pending JPH01221810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217979A JPH01221810A (en) 1987-10-23 1988-08-31 Oxide superconductive mold and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-267853 1987-10-23
JP26785387 1987-10-23
JP63217979A JPH01221810A (en) 1987-10-23 1988-08-31 Oxide superconductive mold and its manufacture

Publications (1)

Publication Number Publication Date
JPH01221810A true JPH01221810A (en) 1989-09-05

Family

ID=26522327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217979A Pending JPH01221810A (en) 1987-10-23 1988-08-31 Oxide superconductive mold and its manufacture

Country Status (1)

Country Link
JP (1) JPH01221810A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215713A (en) * 1988-02-25 1989-08-29 Matsushita Electric Ind Co Ltd Production of superconductor
JPH0244613A (en) * 1987-12-15 1990-02-14 Junko Nakajima Superconductive tape and its manufacture
JPH0562534A (en) * 1991-09-04 1993-03-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconductive member
US5202305A (en) * 1989-04-17 1993-04-13 Ngk Insulators, Ltd. Superconducting structure for magnetic shielding
JPH05213619A (en) * 1991-10-10 1993-08-24 Internatl Business Mach Corp <Ibm> Superconductor and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244613A (en) * 1987-12-15 1990-02-14 Junko Nakajima Superconductive tape and its manufacture
JPH01215713A (en) * 1988-02-25 1989-08-29 Matsushita Electric Ind Co Ltd Production of superconductor
US5202305A (en) * 1989-04-17 1993-04-13 Ngk Insulators, Ltd. Superconducting structure for magnetic shielding
JPH0562534A (en) * 1991-09-04 1993-03-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconductive member
JPH05213619A (en) * 1991-10-10 1993-08-24 Internatl Business Mach Corp <Ibm> Superconductor and manufacture thereof

Similar Documents

Publication Publication Date Title
KR970005157B1 (en) Oxide superconductor shaped body and method of manufacturing
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
US8142881B2 (en) Mesh-type stabilizer for filamentary coated superconductors
JP4602911B2 (en) Rare earth tape oxide superconductor
US6794339B2 (en) Synthesis of YBa2CU3O7 using sub-atmospheric processing
EP0436668A4 (en) Passivation layers for high temperature superconductors
US7445808B2 (en) Method of forming a superconducting article
JPH01221810A (en) Oxide superconductive mold and its manufacture
EP1990810A1 (en) Process for producing superconducting thin-film material, superconducting equipment and superconducting thin-film material
KR930008648B1 (en) Perovskite super conductor readiness process
Belenli et al. Insulation coating of silver tapes using an organometallic solution of Zr and Ca for application to Bi-based superconductors
JP3061634B2 (en) Oxide superconducting tape conductor
JPH02152110A (en) Oxide superconducting compact and manufacture thereof
JP2721322B2 (en) Oxide superconducting compact
JP3623868B2 (en) High durability oxide superconductor and manufacturing method thereof
JPH02183915A (en) Oxide superconducting compact
JP5764421B2 (en) Oxide superconducting conductor
JPH01115009A (en) Oxide superconducting compact and manufacture thereof
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JP2919955B2 (en) Superconducting member manufacturing method
JPH01105412A (en) Manufacture of oxide superconductive compact
JPH01120715A (en) Oxide superconducting molding
JPH0292809A (en) Production of thin film of oxide superconductor
JPH0342883A (en) Manufacture of oxide superconductor