JPH01220776A - Magnetic fluid sealing device - Google Patents

Magnetic fluid sealing device

Info

Publication number
JPH01220776A
JPH01220776A JP63042874A JP4287488A JPH01220776A JP H01220776 A JPH01220776 A JP H01220776A JP 63042874 A JP63042874 A JP 63042874A JP 4287488 A JP4287488 A JP 4287488A JP H01220776 A JPH01220776 A JP H01220776A
Authority
JP
Japan
Prior art keywords
magnetic fluid
shaft
metal
annular
pole piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042874A
Other languages
Japanese (ja)
Inventor
Akihiko Koba
昭彦 木場
Naoki Hori
直樹 堀
Takao Sugano
隆夫 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP63042874A priority Critical patent/JPH01220776A/en
Publication of JPH01220776A publication Critical patent/JPH01220776A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high pressure resistance and low torque by providing an iron oxide magnetic fluid between the outermost pole piece and a shaft, and providing a metallic magnetic fluid between the innermost pole piece and the shaft. CONSTITUTION:A magnetic fluid sealing device 1 is provided with each ring- shaped permanent magnet 2 which is magnetized in axial direction, and a pair of pole pieces 3 which are positioned on the both sides of the ring-shaped permanent magnet 2 and opposite to the sealed shaft 5 with a little clearance. An iron oxide fluid magnet 6 is provided between the outermost pole piece 3 and the shaft 5, and a metallic magnetic fluid 7 is provided between the innermost pole piece 3 and the shaft 5. A space sealed by the iron oxide magnetic fluid 6 is filled with inactive gas 8. Thus, sealing pressure resistance is improved and the oxidation of the metallic magnetic fluid 7 is prevented because it is not directly exposed to the air.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁性流体(強磁性体またはフェリ磁性体の微
粒子を油類等の溶媒中に分散させたコロイド)を用いて
、各種流体(主として気体)をシールする磁性流体シー
ル装置に関し、特に、真空・ガス等の比較的高い圧力を
有する流体をシールする高耐圧な磁性流体シール装置に
関する。
Detailed Description of the Invention (Industrial Application Field) The present invention uses a magnetic fluid (a colloid in which fine particles of ferromagnetic material or ferrimagnetic material are dispersed in a solvent such as oil) to produce various fluids ( The present invention relates to a magnetic fluid sealing device that seals gas (mainly gas), and particularly relates to a high-pressure magnetic fluid sealing device that seals fluids with relatively high pressure such as vacuum and gas.

(従来の技術) 従来、上記磁性流体シール装置としては、例えば、第1
0図に示すような磁性流体シール装置100があった。
(Prior Art) Conventionally, the above-mentioned magnetic fluid seal device has, for example, a first
There was a magnetic fluid sealing device 100 as shown in FIG.

磁性流体シール装置】00は、ハウジング101の内側
に配置され、環状の1対の磁極片102がハウジング1
01内に固定されている。環状の1対、の磁極片102
の内端部は可動軸103と微小間隙を有して隣接してい
る。−対の磁極片102の間には、103及び磁極片1
02との間に磁気回路を形成する磁石104が配置され
ている。このような配置によって磁石104により、磁
極片102及び可動軸103との間に磁気回路が形成さ
れ、磁極片102と可動軸103との間に磁気吸引力が
生じる。磁極片102と可動軸103との間の磁気吸収
力によって酸化物磁性流体105が微少隙間部107に
配置される。酸化物磁性流体105の注入作業は、磁極
片102と磁石104とをハウジング101に組み付け
た後に行なわれるようになっている。
The magnetic fluid seal device 00 is arranged inside a housing 101, and a pair of annular magnetic pole pieces 102 are attached to the housing 1.
It is fixed within 01. A pair of annular magnetic pole pieces 102
The inner end portion of the movable shaft 103 is adjacent to the movable shaft 103 with a small gap therebetween. - between the pair of pole pieces 102, 103 and pole piece 1;
A magnet 104 forming a magnetic circuit between the magnet 102 and the magnet 102 is disposed. With this arrangement, a magnetic circuit is formed between the magnetic pole piece 102 and the movable shaft 103 by the magnet 104, and a magnetic attraction force is generated between the magnetic pole piece 102 and the movable shaft 103. The oxide magnetic fluid 105 is placed in the minute gap 107 due to the magnetic absorption force between the magnetic pole piece 102 and the movable shaft 103 . The operation of injecting the oxide magnetic fluid 105 is performed after the magnetic pole piece 102 and the magnet 104 are assembled into the housing 101.

一方、他の従来例として、第1)図に示すように磁石1
04と1対の磁極片102からなる単一の磁性流体シー
ル装置100をシールの耐圧性を上げるためにスペーサ
109を介して複数個差べて配置した磁性流体シール装
置1)0がある。
On the other hand, as another conventional example, as shown in Fig. 1), a magnet 1
There is a magnetic fluid seal device 1) 0 in which a plurality of single magnetic fluid seal devices 100 consisting of a magnetic pole piece 102 and a pair of magnetic pole pieces 102 are arranged with spacers 109 interposed therebetween in order to increase the pressure resistance of the seal.

さらに他の従来例として第12図に高耐圧な磁性流体シ
ール装置120を示す、これは、軸方向に磁化された環
状永久磁石122の両側に接して、環状の磁極片123
を設けると共に、これらを円筒状ハウジング131で固
定する。この環状磁極片123の内周面側には、環状磁
極片123内を流れる磁束を絞って、高磁場を発生させ
るために、テーパ面124が形成され、該、テーパ面1
24の先端部125と微小間隙126を介して環状磁 
1゜極片123の内周に可動軸121が貫通する。また
、微小間隙126及びその近傍に酸化物磁性流体128
 (マグネタイトやマンガンジンクフェライト等のフェ
リ磁性を呈する酸化物微粒子を油類等の溶媒中に分散さ
せた磁性流体)を介在させる。
As yet another conventional example, FIG. 12 shows a high pressure resistant magnetic fluid sealing device 120, in which an annular magnetic pole piece 123 is in contact with both sides of an annular permanent magnet 122 magnetized in the axial direction.
are provided, and these are fixed with a cylindrical housing 131. A tapered surface 124 is formed on the inner peripheral surface side of the annular magnetic pole piece 123 in order to narrow the magnetic flux flowing inside the annular magnetic pole piece 123 and generate a high magnetic field.
24 through the tip 125 and a minute gap 126.
A movable shaft 121 passes through the inner periphery of the 1° pole piece 123. In addition, the oxide magnetic fluid 128 is formed in the micro gap 126 and its vicinity.
(a magnetic fluid in which ferrimagnetic oxide fine particles such as magnetite or manganese zinc ferrite are dispersed in a solvent such as oil) is used.

そして、上記した環状永久磁石122とその両端に接す
る環状磁極片123及び微小間隙126に介在する酸化
物磁性流体128とから構成される単一の磁性流体シー
ルユニット129を軸121の長手方向にスペーサ13
0を介して複数個配列することによって高耐圧化をはか
っている。
A single magnetic fluid seal unit 129 composed of the above-described annular permanent magnet 122, annular magnetic pole pieces 123 in contact with both ends thereof, and an oxide magnetic fluid 128 interposed in a minute gap 126 is installed in the longitudinal direction of the shaft 121 with a spacer. 13
A high withstand voltage is achieved by arranging a plurality of them via 0.

(発明が解決しようとする課題) しかしながら斯かる従来技術の各磁性流体シール装置1
00,1)0,120によれば、以下の如き問題点を有
していた。即ち、従来の磁性流体シール装W1)00.
1)0.120が用いている酸化物磁性流体105.1
28は酸化物微粒子自体の飽和磁化が5000〜600
0 G程度と小さいため、磁性流体としての飽和磁化が
最高でも400〜500G程度にしかならない。そのた
め、環状永久磁石2に希土類磁石等の強磁力なものを用
いても、単一の磁性流体シールユニット129の耐圧は
0.9〜1.0気圧程度にしかならず、それ故、真空や
1気圧以上のガスをシールする場合には、前記したよう
に単一の磁性流体シールユニット129を軸121の長
手方向に複数個配列することによって高耐圧化をはかる
必要があった。従って、高耐圧用磁性流体シール装置1
20は長尺な型となり、ユーザーのコンパクト化要求に
答えることができなかった。また、シール耐圧を高める
ために、酸化物磁性流体128の飽和磁化を大きく、即
ち、酸化物磁性微粒子の分散濃度を高くしているため、
酸化物磁性流体128が高粘度であった。従って、軸1
2】の回転時の損失トルクが大きいと共に粘性発熱によ
って酸化物磁性流体128の温度が上昇して溶媒の蒸発
が著しくなり、シール寿命が短かいという問題があった
(Problems to be Solved by the Invention) However, each of the magnetic fluid seal devices 1 of the prior art
00,1) 0,120 had the following problems. That is, the conventional magnetic fluid sealing device W1)00.
1) Oxide magnetic fluid 105.1 used by 0.120
In 28, the saturation magnetization of the oxide fine particles itself is 5000 to 600.
Since it is as small as about 0 G, the maximum saturation magnetization as a magnetic fluid is only about 400 to 500 G. Therefore, even if a ferromagnetic material such as a rare earth magnet is used for the annular permanent magnet 2, the pressure resistance of a single magnetic fluid seal unit 129 is only about 0.9 to 1.0 atm. In order to seal the above gases, it is necessary to increase the pressure resistance by arranging a plurality of single magnetic fluid seal units 129 in the longitudinal direction of the shaft 121 as described above. Therefore, high pressure magnetic fluid seal device 1
20 was a long model and could not meet users' demands for compactness. In addition, in order to increase the seal pressure resistance, the saturation magnetization of the oxide magnetic fluid 128 is increased, that is, the dispersion concentration of the oxide magnetic fine particles is increased.
Oxide magnetic fluid 128 had high viscosity. Therefore, axis 1
In addition to the large torque loss during rotation, the temperature of the oxide magnetic fluid 128 rises due to viscous heat generation, resulting in significant evaporation of the solvent, resulting in a short seal life.

近年、上記した酸化物磁性流体128の欠点を解消すべ
く、酸化物磁性体に比べて著しく大きな飽和磁化を有す
る鉄、コバルト、ニッケル及びこれらの合金などの強磁
性金属(飽和磁化6000〜22000 G程度)の微
粒子を溶媒中に分散させた金属磁性流体が開発された(
磁性流体としての飽和磁化1000〜2000 G程度
)、シかしながら、金属磁性流体は金属微粒子が非常に
酸化しゃすく、酸化によって飽和磁化が著しく低下する
ため、磁性流体シールに用いることができないという問
題があった。
In recent years, in order to eliminate the drawbacks of the oxide magnetic fluid 128 described above, ferromagnetic metals such as iron, cobalt, nickel, and alloys thereof, which have significantly larger saturation magnetization than oxide magnetic materials (saturation magnetization 6000 to 22000 G) have been developed. A metal magnetic fluid in which fine particles of about
The saturation magnetization as a magnetic fluid is approximately 1000 to 2000 G), but it is said that metal magnetic fluids cannot be used for magnetic fluid seals because the metal particles are highly oxidized and the saturation magnetization decreases significantly due to oxidation. There was a problem.

本発明は上記諸問題に鑑みなされたもので、その目的と
するところは、高耐圧、低トルクであって長寿命でコン
パクトな磁性流体シール装Wを提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a magnetic fluid sealing device W that has high pressure resistance, low torque, long life, and is compact.

(課題を解決するための手段) 上記目的を有する本発明は、軸方向に磁化された環状永
久磁石と、前記環状磁石の両側に配置され、シールすべ
き軸に微小間隙を介して対向する一対の磁極片とか゛ら
なり、スペーサを介して互いに隣接して配置された複数
の磁性流体シール装置であって、最も外側の磁極片と軸
との間に酸化鉄磁性流体を配置し、内側の磁極片と軸と
の間に金属磁性流体を配置するとともに、酸化鉄磁性流
体によって密封された空間に不活性ガスを封入した。
(Means for Solving the Problems) The present invention having the above-mentioned object comprises: an annular permanent magnet magnetized in the axial direction; A plurality of ferrofluidic sealing devices arranged adjacent to each other with spacers interposed therebetween, the iron oxide ferrofluid being disposed between the outermost pole piece and the shaft, and the innermost pole piece A metal magnetic fluid was placed between the shaft and the iron oxide magnetic fluid, and an inert gas was filled in the space sealed by the iron oxide magnetic fluid.

さらに他の発明によれば軸方向に磁化された環状永久磁
石と、前記環状磁石の両側に配置されシールすべき軸に
微小間隙を介して対向する一対の磁極片とからなり、磁
極片と回転軸との間に金属磁性流体と該金属磁性流体と
不溶の低粘度で低蒸発率の酸化物磁性流体を注入した。
According to still another invention, the ring-shaped permanent magnet is magnetized in the axial direction, and a pair of magnetic pole pieces are disposed on both sides of the ring-shaped magnet and are opposed to the shaft to be sealed with a small gap therebetween. A metal magnetic fluid and an oxide magnetic fluid insoluble in the metal magnetic fluid and having a low viscosity and low evaporation rate were injected between the shaft and the shaft.

(作 用) 而して本発明の磁性流体シール装置によれば金属磁性流
体は、その両外側に介在する耐酸化性に優れる酸化物磁
性流体によって覆われ直接外気と接触することがなく酸
化が防止される。従って、酸化物磁性流体と比べて2倍
以上の大きな飽和磁化を有する金属磁性流体を磁性流体
シールに用いることができ、単一の磁性流体シールユニ
ットで2〜4気圧のシール耐圧が得られる。
(Function) According to the magnetic fluid sealing device of the present invention, the metal magnetic fluid is covered with the oxide magnetic fluid with excellent oxidation resistance interposed on both sides of the metal magnetic fluid, and is not exposed to oxidation without coming into direct contact with the outside air. Prevented. Therefore, a metal magnetic fluid having a saturation magnetization twice as large as that of an oxide magnetic fluid can be used for the magnetic fluid seal, and a sealing pressure of 2 to 4 atmospheres can be obtained with a single magnetic fluid seal unit.

ここで、金属磁性流体は、酸化物磁性流体と比べて飽和
磁化が大きいため、高磁場側である微小間隙及びその近
傍に確実に保持され、さらに金属磁性流体と酸化物磁性
流体は互いに不溶な溶媒を用いているので混じり合うこ
とは無い、さらに金属磁性流体は直接大気と接していな
いので溶媒の蒸発がほとんど無い、そのため、蒸発しや
すいが低粘度な溶媒を用いることができ、低トルク化が
はかれる。
Here, since the metal magnetic fluid has a larger saturation magnetization than the oxide magnetic fluid, it is reliably held in the microgap and its vicinity on the high magnetic field side, and furthermore, the metal magnetic fluid and the oxide magnetic fluid are insoluble in each other. Since a solvent is used, they do not mix together.Furthermore, since the metal magnetic fluid is not in direct contact with the atmosphere, there is almost no evaporation of the solvent.Therefore, it is possible to use a solvent that easily evaporates but has a low viscosity, resulting in low torque. is measured.

(実施例) 以下本発明を図示の実施例に基づいて説明する。(Example) The present invention will be explained below based on illustrated embodiments.

本実施例によれば磁性流体シール1置全体を1で表わす
、磁性流体シール装置lは軸方向に磁化された環状永久
磁石2を有し、環状永久磁石2の両側に配置され、シー
ルすべき軸5に微小間隙を介して対向する一対の磁極片
3を有する。さらにスペーサ4を介して互いに隣接した
複数の磁性流体シール装置が配置されている。最も外側
の磁極片3と軸5との間に酸化鉄磁性流体6が配置され
内側の磁極片3と軸5との間に金属磁性流体7を配置す
るとともに、酸化鉄磁性流体によって密封された空間に
例えば窒素ガス等の不活性ガス8を封入した。
According to this embodiment, the magnetic fluid sealing device 1, in which the entire magnetic fluid sealing device 1 is represented by 1, has an annular permanent magnet 2 magnetized in the axial direction, and is arranged on both sides of the annular permanent magnet 2 to be sealed. It has a pair of magnetic pole pieces 3 facing the shaft 5 with a small gap therebetween. Further, a plurality of magnetic fluid seal devices are arranged adjacent to each other with spacers 4 in between. An iron oxide magnetic fluid 6 is arranged between the outermost magnetic pole piece 3 and the shaft 5, and a metal magnetic fluid 7 is arranged between the innermost magnetic pole piece 3 and the shaft 5, and the iron oxide magnetic fluid is sealed. The space was filled with an inert gas 8 such as nitrogen gas.

このような構成により、従来の酸化鉄磁性流体のみを用
いた場合よりもシール耐圧が向上する。
Such a configuration improves the seal pressure resistance compared to the case where only conventional iron oxide magnetic fluid is used.

それと同時に、金属磁性流体7が直接空気に触れないた
め酸化されにくくなる。
At the same time, since the metal magnetic fluid 7 does not come into direct contact with air, it becomes less likely to be oxidized.

次に第2図に本発明の磁性流体シール装T1)の第2実
施例を示す0本実施例においては、磁性流体のシール部
、すなわち磁極片3と軸5、又は磁極片3とハウジング
9のすき間部に、互いに溶は合わない高飽和磁化磁性流
体10と低飽和磁化磁性流体1)を注入する。この時、
高飽和磁化磁性流体lOは低飽和磁化磁性流体1)より
磁気的吸着力が強い為、シール部において磁束密度の高
い中央部に引き寄せられ、低飽和磁化磁性流体1)は、
高飽和磁化磁性流体10の回りを包み込むように配置さ
れ、この結果高飽和磁化磁性流体lOは、大気に直接触
れることがないので酸化しない。
Next, FIG. 2 shows a second embodiment of the magnetic fluid sealing device T1) of the present invention. Highly saturated magnetized magnetic fluid 10 and low saturated magnetized magnetic fluid 1), which do not dissolve in each other, are injected into the gap between the two. At this time,
Highly saturated magnetized magnetic fluid 1O has a stronger magnetic adsorption force than low saturated magnetized magnetic fluid 1), so it is attracted to the central part of the seal where the magnetic flux density is high, and the low saturated magnetized magnetic fluid 1)
It is arranged so as to wrap around the highly saturated magnetized magnetic fluid 10, and as a result, the highly saturated magnetized magnetic fluid 10 does not oxidize because it does not come into direct contact with the atmosphere.

向、高飽和磁化磁性流体lOは従来の酸化鉄磁性流体か
又は、金属磁性流体(鉄、コバルト、ニッケル或はこれ
らの合金)のいずれでも構わない。
The highly saturated magnetized magnetic fluid IO can be either a conventional iron oxide magnetic fluid or a metal magnetic fluid (iron, cobalt, nickel, or alloys thereof).

第3図は、スペーサ4を用いて複数の磁性流体シール装
置を形成した例であり、高飽和磁化磁性流体10として
金属磁性流体を使用した例である。
FIG. 3 shows an example in which a plurality of magnetic fluid seal devices are formed using spacers 4, and is an example in which a metal magnetic fluid is used as the highly saturated magnetized magnetic fluid 10.

次に、第4図に本発明の第4実施例を示す。本実施例で
は、環状永久磁石12と、その両端に接して内周面側に
テーパ面14を1つ有する環状磁極片13を設けると共
に該テーパ面14の先端部15と微小間隙16を介して
環状磁極片13の内周に回転軸1)を貫通させることに
よって単一の磁性流体シールユニット19の磁気回路を
構成している。そして、夫々間−又は相溶性のある溶媒
を有する金属磁性流体17と酸化物磁性流体18を別々
に、または両磁性流体の混合物を環状磁極片13と軸1
)aの間隙に注入した結果、高磁場側である微小間隙1
6及びその近傍に飽和磁化が大きな金属磁性流体17が
、さらに、その両外側に金属磁性流体17より飽和磁化
が小さな酸化物磁性流体18が介在する。これによって
金属磁性流体17は、耐酸化性に優れている酸化物磁性
流体18によって覆われ、直接、外気と接触することが
ない、従って、アイコシルナフタレンベースコバルト磁
性流体17は酸化することが無いため、磁性流体シール
に用いることができ、その飽和磁化がアイコシルナフタ
レンベースマグネタイト磁性流体1Bの約2倍〜4倍大
きいので、単一の磁性流体シールユニソ)19で最大2
〜4気圧程度のシール耐圧が得られる。よって従来の高
耐圧な磁性流体シール装置では2〜4気圧のシール耐圧
を得るために単一の磁性流体シールユニット19を軸1
)aの長手方向に3〜4個配列する必要があったのに比
べ、本発明の磁性流体シール装置は単一の磁性流体シー
ルユニット191個で同じシール耐圧が得られ、極めて
コンパクトとなる。
Next, FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, an annular permanent magnet 12 and an annular magnetic pole piece 13 having one tapered surface 14 on the inner peripheral surface side in contact with both ends of the annular permanent magnet 12 are provided. A magnetic circuit of a single magnetic fluid seal unit 19 is constructed by passing the rotating shaft 1) through the inner periphery of the annular magnetic pole piece 13. Then, the metal magnetic fluid 17 and the oxide magnetic fluid 18 having mutually compatible solvents are mixed separately, or a mixture of both magnetic fluids is mixed between the annular magnetic pole piece 13 and the shaft 1.
) As a result of injection into the gap a, the micro gap 1 on the high magnetic field side
A metal magnetic fluid 17 having a large saturation magnetization is present at and near the metal magnetic fluid 17, and an oxide magnetic fluid 18 having a smaller saturation magnetization than the metal magnetic fluid 17 is further interposed on both sides thereof. As a result, the metal magnetic fluid 17 is covered with the oxide magnetic fluid 18, which has excellent oxidation resistance, and does not come into direct contact with the outside air. Therefore, the icosylnaphthalene-based cobalt magnetic fluid 17 does not oxidize. Therefore, it can be used for ferrofluid seals, and its saturation magnetization is about 2 to 4 times larger than that of icosylnaphthalene-based magnetite ferrofluid 1B, so a single ferrofluid seal (Uniso) 19 can produce up to 2
A sealing pressure of about 4 atm can be obtained. Therefore, in the conventional high-pressure magnetic fluid seal device, a single magnetic fluid seal unit 19 is connected to the shaft 1 in order to obtain a seal pressure of 2 to 4 atmospheres.
) Compared to the case where it was necessary to arrange 3 to 4 magnetic fluid seal units in the longitudinal direction of a, the magnetic fluid seal device of the present invention can obtain the same sealing pressure with 191 single magnetic fluid seal units, making it extremely compact.

第5図に本発明の第5実施例を示す。この実施例は、環
状磁極片13の内周面側に、両側面から中心に向う2つ
のテーパ面14を設けたものであり、それ以外は第4実
施例とまったく同一の構成である。このように2つのテ
ーパ面14を設けることによって、磁場勾配が左右均等
となるため、金属磁性流体17及び酸化物磁性流体18
の付着が左右均等となって、金属磁性流体17の両外側
を均等に酸化物磁性流体18が覆うため、金属磁性流体
の酸化及び蒸発がより確実に防止される。
FIG. 5 shows a fifth embodiment of the present invention. In this embodiment, two tapered surfaces 14 are provided on the inner circumferential surface of the annular magnetic pole piece 13, extending from both side surfaces toward the center, and other than that, the structure is exactly the same as that of the fourth embodiment. By providing the two tapered surfaces 14 in this way, the magnetic field gradient becomes equal on the left and right sides, so that the metal magnetic fluid 17 and the oxide magnetic fluid 18
Since the oxide magnetic fluid 18 is evenly attached on the left and right sides, and the oxide magnetic fluid 18 evenly covers both outer sides of the metal magnetic fluid 17, oxidation and evaporation of the metal magnetic fluid can be more reliably prevented.

第6図に本発明の第6実施例を示す、この実施例は、第
4図実施例と同一構造の単一の磁性流体シールユニット
19を軸長手方向に複数個(第6図では3個の例を示す
)配列したものである。これによって従来の高耐圧な磁
性流体シール(第5図)に比べて同じスペースで約2〜
4倍のシール耐圧が得られるため、従来はスペースの制
約上不可能であったより高い圧力を持った流体のシール
が可能となる。
FIG. 6 shows a sixth embodiment of the present invention. This embodiment includes a plurality of single magnetic fluid seal units 19 in the longitudinal direction of the shaft (three in FIG. 6) having the same structure as the embodiment in FIG. example)). Compared to conventional high pressure resistant magnetic fluid seals (Fig. 5), this allows approximately 2~
Since the sealing pressure is four times higher, it becomes possible to seal fluids with higher pressure than was previously possible due to space constraints.

第7図に本発明の第7実施例を示す。本実施例では、環
状永久磁石22と、その両端に接し内周面側にテーパ面
24を1つ有する環状磁極片23を設けると共に該テー
パ面24の先端部25と微小間隙26を介して環状磁極
片23の内周に回転軸21を貫通させることによって単
一の磁性流体シールユニット29の磁気回路を構成して
いる。
FIG. 7 shows a seventh embodiment of the present invention. In this embodiment, an annular permanent magnet 22 and an annular magnetic pole piece 23 which is in contact with both ends thereof and has one tapered surface 24 on the inner peripheral surface side are provided, and an annular magnetic pole piece 23 is provided with a tip 25 of the tapered surface 24 and a minute gap 26 between A magnetic circuit of a single magnetic fluid seal unit 29 is constructed by passing the rotating shaft 21 through the inner periphery of the magnetic pole piece 23 .

そして、高磁場側である微小間隙26及びその近傍に飽
和磁化が大きな金属磁性流体27を介在させ、さらに、
その両外側に金属磁性流体27より飽和磁化が小さな酸
化物磁性流体28を介在させている。これによって金属
磁性流体27は、耐酸化性に優れている酸化物磁性流体
28によって覆われ、直接、外気と接触することがない
、従って、金属磁性流体27は酸化することが無いため
、磁性流体シールに用いることができ、その飽和HI化
が酸化物磁性流体28の約2倍〜4倍大きいので単一の
磁性流体シールユニット29で最大2〜4気圧程度のシ
ール耐圧が得られる。よって従来技術の高耐圧な磁性流
体シール装置では2〜4気圧のシール耐圧を得るために
単一の磁性流体シールユニット29を軸21の長手方向
に3〜4個配列する必要があったのに比べ、本発明の磁
性流体シール装置は単一の磁性流体シールユニット29
1個で同じシール耐圧が得られ、極めてコンパクトとな
る。
Then, a metal magnetic fluid 27 with large saturation magnetization is interposed in the micro gap 26 on the high magnetic field side and in the vicinity thereof, and further,
An oxide magnetic fluid 28 having a smaller saturation magnetization than the metal magnetic fluid 27 is interposed on both outer sides thereof. As a result, the metal magnetic fluid 27 is covered with the oxide magnetic fluid 28, which has excellent oxidation resistance, and does not come into direct contact with the outside air. It can be used for sealing, and its saturation HI is about 2 to 4 times greater than that of the oxide magnetic fluid 28, so a single magnetic fluid seal unit 29 can provide a maximum sealing pressure of about 2 to 4 atmospheres. Therefore, in the conventional high-pressure magnetic fluid seal device, it was necessary to arrange three to four single magnetic fluid seal units 29 in the longitudinal direction of the shaft 21 in order to obtain a seal pressure of 2 to 4 atmospheres. In comparison, the magnetic fluid sealing device of the present invention uses a single magnetic fluid sealing unit 29.
The same sealing pressure can be obtained with just one unit, making it extremely compact.

また、金属磁性流体17は直接外気と接触しないので、
溶媒の蒸発がほとんど無い、そのため、これまで、シー
ル用磁性流体の溶媒としては不適であった比較的蒸発し
やすい溶媒を用いることが可能となる。蒸発しやすい溶
媒即ち高蒸気圧溶媒例えばトルエン、ヘキサン、ケロシ
ン、鉱油などは、従来シール用磁性流体の溶媒として用
いられてきた低蒸気圧溶媒例えばアルキルナフタレン。
In addition, since the metal magnetic fluid 17 does not come into direct contact with the outside air,
There is almost no evaporation of the solvent, so it becomes possible to use a solvent that evaporates relatively easily, which has hitherto been unsuitable as a solvent for sealing magnetic fluids. Easily evaporated solvents or high vapor pressure solvents such as toluene, hexane, kerosene, mineral oil, etc. are replaced by low vapor pressure solvents such as alkylnaphthalenes that have traditionally been used as solvents for sealing magnetic fluids.

ジエステル、トリエステル、パーフルオロエーテルなど
と比べて極めて低粘度であるため、この高蒸気圧(低粘
度)溶媒を用いた金属磁性流体27も従来のシール用酸
化物磁性流体28と比べて極めて低粘度となる。従って
、軸21の回転時における損失トルクが、従来の磁性流
体シール装置に対して同じ単一の磁性流体シールユニッ
ト291個で比較しても、かなり小さくなり、同じシー
ル耐圧を有する磁性流体シール装置で比較すると本発明
の磁性流体シール装置は単一の磁性流体シールユニット
29の個数が少ないことと1個当りの損失トルクが小さ
いことが相まって、損失トルクが格段に小さ(なる、ま
た、金属磁性流体27は低粘度であり、比較的高粘度な
酸化物磁性流体28は少量なので粘性発熱が少なくシー
ル寿命が長い。
Since it has an extremely low viscosity compared to diesters, triesters, perfluoroethers, etc., the metal magnetic fluid 27 using this high vapor pressure (low viscosity) solvent also has an extremely low viscosity compared to the conventional sealing oxide magnetic fluid 28. It becomes viscosity. Therefore, the torque loss during rotation of the shaft 21 is considerably smaller than that of a conventional magnetic fluid seal device, even when 291 single magnetic fluid seal units are used. In comparison, the magnetic fluid seal device of the present invention has a small number of single magnetic fluid seal units 29, and the torque loss per unit is small. The fluid 27 has a low viscosity, and the relatively high viscosity oxide magnetic fluid 28 is in a small amount, so viscous heat generation is small and the seal life is long.

ここで、金属磁性流体27は酸化物磁性流体28と比べ
て飽和磁化が大きいため、高磁場側である微小間隙26
及びその近傍に確実に保持され、さらに金属磁性流体2
7と酸化物磁性流体28は互いに不溶な溶媒を用いてい
るため混り合うことは無い。従って金属磁性流体27が
酸化物磁性流体28の外側即ち外気と直接触れる部分に
出てくることは無い。互いに不溶な溶媒としては、種々
の組合せが考えられるが、本実施例では、金属磁性流体
27の溶媒として低粘度な有機溶媒であるトルエンを用
い、酸化物磁性流体28の溶媒として低蒸気圧なフッ素
油であるパーフルオロエーテルを用いている。しかし、
この組合せはこれに限定されるものではなく、互に不溶
で、金属磁性流体27の溶媒は溶存酸素が少なく低粘度
であり、酸化物磁性流体28の溶媒は低蒸気圧であれば
良い。
Here, since the metal magnetic fluid 27 has a larger saturation magnetization than the oxide magnetic fluid 28, the minute gap 26 on the high magnetic field side
and the vicinity thereof, and the metal magnetic fluid 2
7 and the oxide magnetic fluid 28 use mutually insoluble solvents, so they do not mix. Therefore, the metal magnetic fluid 27 does not come out to the outside of the oxide magnetic fluid 28, that is, to the part that directly contacts the outside air. Various combinations of mutually insoluble solvents are possible, but in this example, toluene, which is a low viscosity organic solvent, is used as the solvent for the metal magnetic fluid 27, and a low vapor pressure solvent is used as the solvent for the oxide magnetic fluid 28. Perfluoroether, which is a fluorine oil, is used. but,
This combination is not limited to this, but it suffices if they are mutually insoluble, the solvent for the metal magnetic fluid 27 has low dissolved oxygen and low viscosity, and the solvent for the oxide magnetic fluid 28 has a low vapor pressure.

第8図に本発明の第8実施例を示す。本実施例では、環
状磁橿片23の内周面側に、両側面から中心に向う2つ
のテーパ面24を設けたものであり、それ以外は第7実
施例とまったく同一の構成である。このように2つのテ
ーパ面24を設けることによって、磁場勾配が左右均等
となるため、金属磁性流体27及び酸化物磁性流体28
の付着が左右均等となって、金属磁性流体27の両外側
を均等に酸化物磁性流体28が覆うため、金属磁性流体
°の酸化及び蒸発がより確実に防止される。
FIG. 8 shows an eighth embodiment of the present invention. In this embodiment, two tapered surfaces 24 are provided on the inner circumferential surface of the annular magnetic rod piece 23, which extends from both sides toward the center, and other than that, the structure is exactly the same as that of the seventh embodiment. By providing the two tapered surfaces 24 in this way, the magnetic field gradient becomes equal on the left and right sides, so that the metal magnetic fluid 27 and the oxide magnetic fluid 28
Since the oxide magnetic fluid 28 is evenly attached on the left and right sides and the oxide magnetic fluid 28 evenly covers both outer sides of the metal magnetic fluid 27, oxidation and evaporation of the metal magnetic fluid 27 can be more reliably prevented.

第9図に本発明の第9実施例を示す0本実施例では第7
図の第7実施例と同一構造の単一の磁性流体シールユニ
ット29を軸長手方向に複数個(第9図では3個の例を
示す)配列したものである。これによって従来の高耐圧
な磁性流体シール(第7図)に比べて同じスペースで約
2〜4倍のシール耐圧が得られるため、従来はスペース
の制約上不可能であったより高い圧力を持った流体のシ
ールが可能となる。
FIG. 9 shows a ninth embodiment of the present invention. In this embodiment, the seventh embodiment
A plurality of single magnetic fluid seal units 29 having the same structure as the seventh embodiment shown in the figure are arranged in the longitudinal direction of the shaft (three examples are shown in FIG. 9). As a result, compared to conventional high pressure resistant magnetic fluid seals (Fig. 7), a seal pressure that is approximately 2 to 4 times higher can be obtained in the same space, so it is possible to achieve higher pressure than conventionally possible due to space constraints. Fluid sealing becomes possible.

(発明の効果) 本発明の磁性流体シール装置は以上説明したように、微
小間隙及びその近傍に金属磁性流体を介在させると共に
その両外側に金属磁性流体の溶媒と相溶性のあるあるい
は、不溶な溶媒を用いた酸化物磁性流体を介在させ構成
とした。そのため、金属磁性流体の酸化が防止され、金
属磁性流体の大きな飽和磁化によって、従来の高耐圧な
磁性流体シール装置に比べて、同一スペースで大きなシ
ール耐圧が得られ、同一シール耐圧を得るためのシール
スペースがコンパクトになる。また、金属磁性流体の溶
媒に、酸化物磁性流体の溶媒と比べて低粘度な溶媒を用
いたのでその結果、軸の回転時における損失トルク□を
小さくすることができ、シール寿命を長期化し得る。
(Effects of the Invention) As explained above, the magnetic fluid sealing device of the present invention has a metal magnetic fluid interposed in a minute gap and its vicinity, and a metal magnetic fluid that is compatible with or insoluble in the solvent of the metal magnetic fluid on both sides thereof. The structure was constructed by interposing an oxide magnetic fluid using a solvent. Therefore, oxidation of the metal magnetic fluid is prevented, and due to the large saturation magnetization of the metal magnetic fluid, a large seal pressure can be obtained in the same space compared to conventional high pressure resistant magnetic fluid seal devices. Seal space becomes compact. In addition, since we used a solvent with lower viscosity than the solvent for oxide magnetic fluids for the metal magnetic fluid, the loss torque □ during rotation of the shaft can be reduced, and the seal life can be extended. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁性流体シール装置の第1実施例の縦
断面図、第2図は本発明の磁性流体シール装置の第2実
施例の縦断面図、第3図は本発明の磁性流体シール装置
の第3実施例の縦断面図、第4図は本発明の磁性流体シ
ール装置の第4実施例の縦断面図、第5図は本発明の磁
性流体シール装置の第5実施例の縦断面図、第6図は本
発明の磁性流体シール装置の第6実施例の縦断面図、第
7図は本発明の磁性流体シール装置の第7実施例の縦断
面図、第8図は本発明の磁性流体シール装置の第8実施
例の縦断面図、第9回は本発明の磁性流体シール装置の
第9実施例の縦断面図、第10図、第1)図、第12図
は従来技術の磁性流体シール装置の縦断面図である。 符  号  の  説  明 !・・・磁性流体シール装置 2・・・環状永久磁石   3・・・磁極片4・・・ス
ペーサ     5・・・軸7・・・金属磁性流体  
 8・・・不活性ガス9・・・ハウジング lO・・・高飽和磁化磁性流体 1)・・・低飽和磁化磁性流体 29・・・1fff’lfi体シールユニット実用新案
登録出願人 エヌオーケー株式会社:3(〜、:パ′。 代理人 弁理士 世 良 和 信 2 代理人 弁理士 奥 1)規 之、、、、1゜第1図 第5図 第6図
FIG. 1 is a longitudinal sectional view of a first embodiment of the magnetic fluid sealing device of the present invention, FIG. 2 is a longitudinal sectional view of the second embodiment of the magnetic fluid sealing device of the present invention, and FIG. 3 is a longitudinal sectional view of the magnetic fluid sealing device of the present invention. FIG. 4 is a longitudinal sectional view of a third embodiment of the fluid seal device, FIG. 4 is a longitudinal sectional view of the fourth embodiment of the magnetic fluid seal device of the present invention, and FIG. 5 is a longitudinal sectional view of the fourth embodiment of the magnetic fluid seal device of the present invention. FIG. 6 is a vertical cross-sectional view of the sixth embodiment of the magnetic fluid sealing device of the present invention, FIG. 7 is a vertical cross-sectional view of the seventh embodiment of the magnetic fluid sealing device of the present invention, and FIG. 9 is a longitudinal sectional view of the eighth embodiment of the magnetic fluid sealing device of the present invention, 9th is a longitudinal sectional view of the 9th embodiment of the magnetic fluid sealing device of the present invention, FIG. 10, 1), 12 The figure is a longitudinal sectional view of a conventional magnetic fluid sealing device. Explanation of symbols! ...Magnetic fluid sealing device 2...Annular permanent magnet 3...Magnetic pole piece 4...Spacer 5...Shaft 7...Metal magnetic fluid
8...Inert gas 9...Housing lO...Highly saturated magnetized magnetic fluid 1)...Low saturated magnetized magnetic fluid 29...1fff'lfi body seal unit Utility model registration applicant NOkay Co., Ltd. :3(~、:Pa′. Agent Patent Attorney Kazunobu Seryō 2 Agent Patent Attorney Oku 1)Regulations...... 1゜Figure 1 Figure 5 Figure 6

Claims (8)

【特許請求の範囲】[Claims] (1)軸方向に磁化された環状永久磁石と、前記環状磁
石の両側に配置され、シールすべき軸に微小間隙を介し
て対向する一対の磁極片とからなり、スペーサを介して
互いに隣接して配置された複数の磁性流体シール装置で
あって、最も外側の磁極片と軸との間に酸化鉄磁性流体
を配置し、内側の磁極片と軸との間に金属磁性流体を配
置するとともに、酸化鉄磁性流体によって密封された空
間に不活性ガスを封入したことを特徴とする磁性流体シ
ール装置。
(1) Consists of an annular permanent magnet that is magnetized in the axial direction, and a pair of magnetic pole pieces that are placed on both sides of the annular magnet and face the shaft to be sealed with a small gap between them, and are adjacent to each other with a spacer in between. A plurality of magnetic fluid seal devices arranged in a plurality of magnetic fluid seals, wherein an iron oxide magnetic fluid is arranged between the outermost magnetic pole piece and the shaft, a metal magnetic fluid is arranged between the innermost magnetic pole piece and the shaft, and , a magnetic fluid sealing device characterized in that an inert gas is sealed in a space sealed by an iron oxide magnetic fluid.
(2)前記不活性ガスは、窒素ガスであることを特徴と
する特許請求の範囲第1項に記載の磁性流体シール装置
(2) The magnetic fluid seal device according to claim 1, wherein the inert gas is nitrogen gas.
(3)軸方向に磁化された環状永久磁石と、前記環状磁
石の両側に配置され、シールすべき軸に微小間隙を介し
て対向する一対の磁極片とからなり、磁極片と回転軸と
の間に金属磁性流体と該金属磁性流体と不溶の低粘度で
低蒸発率の酸化鉄磁性流体を注入した磁性流体シール装
置。
(3) Consists of an annular permanent magnet magnetized in the axial direction and a pair of magnetic pole pieces placed on both sides of the annular magnet and facing the shaft to be sealed with a small gap between the magnetic pole pieces and the rotating shaft. A magnetic fluid sealing device in which a metal magnetic fluid and an iron oxide magnetic fluid with low viscosity and low evaporation rate, which is insoluble in the metal magnetic fluid, are injected between the metal magnetic fluid and the metal magnetic fluid.
(4)軸方向に磁化された環状永久磁石の両端に接して
内周面側に少なくとも1つのテーパ面を有する環状磁極
片を設け、該テーパ面の先端部と微小間隙を介して前記
環状磁極片の内周に軸を貫通させ、該微小間隙及びその
近傍に、強磁性金属微粒子を溶媒中に分散させてなる金
属磁性流体と、フェリ磁性酸化物微粒子を前記金属磁性
流体の溶媒と同一又は相溶性のある溶媒中に分散させて
なる酸化物磁性流体を介在させてなる磁性流体シール装
置。
(4) An annular magnetic pole piece having at least one tapered surface on the inner peripheral surface side is provided in contact with both ends of an annular permanent magnet magnetized in the axial direction, and the annular magnetic pole piece is connected to the tip of the tapered surface through a minute gap. A shaft passes through the inner periphery of the piece, and a metal magnetic fluid in which ferromagnetic metal fine particles are dispersed in a solvent and ferrimagnetic oxide fine particles are placed in the minute gap and its vicinity, and the metal magnetic fluid is the same as the solvent of the metal magnetic fluid or A magnetic fluid sealing device comprising an oxide magnetic fluid dispersed in a compatible solvent.
(5)環状永久磁石と、その両端に接する環状磁極片と
微小間隙に介在する金属磁性流体と、酸化物磁性流体と
から構成される単一の磁性流体シールユニットを軸の長
手方向に複数個配列してなる多段構造の磁性流体シール
装置。
(5) A single magnetic fluid seal unit consisting of an annular permanent magnet, an annular magnetic pole piece in contact with both ends of the magnet, a metal magnetic fluid interposed in a minute gap, and an oxide magnetic fluid, arranged in multiple units in the longitudinal direction of the shaft. A magnetic fluid seal device with a multi-stage structure.
(6)軸方向に磁化された環状永久磁石の両端に接して
内周面側に少なくとも1つのテーパ面を有する環状磁極
片を設け、該テーパ面の先端部と微小間隙を介して前記
環状磁極片の内周に軸を貫通させ、該微小間隙に強磁性
金属微粒子を溶媒中に分散させてなる金属磁性流体を介
在させると共に、該金属磁性流体の両外側に、フェリ磁
性酸化物微粒子を前記金属磁性流体の溶媒と不溶な溶媒
中に分散させてなる酸化物磁性流体を介在させてなる磁
性流体シール装置。
(6) An annular magnetic pole piece having at least one tapered surface on the inner peripheral surface side is provided in contact with both ends of an annular permanent magnet magnetized in the axial direction, and the annular magnetic pole piece is connected to the tip of the tapered surface through a minute gap. A shaft is passed through the inner periphery of the piece, a metal magnetic fluid made by dispersing ferromagnetic metal fine particles in a solvent is interposed in the minute gap, and ferrimagnetic oxide fine particles are placed on both outsides of the metal magnetic fluid. A magnetic fluid sealing device comprising an oxide magnetic fluid dispersed in a metal magnetic fluid solvent and an insoluble solvent.
(7)環状永久磁石と、その両端に接する前記環状磁極
片と、微小間隙に介在する金属磁性流体とその両外側に
介在する酸化物磁性流体とから構成される単一の磁性流
体シールユニットを軸の長手方向に複数個配列してなる
多段構造の磁性流体シール装置。
(7) A single magnetic fluid seal unit consisting of an annular permanent magnet, the annular magnetic pole pieces in contact with both ends thereof, a metal magnetic fluid interposed in a minute gap, and an oxide magnetic fluid interposed on both outsides thereof. A multi-stage structure magnetic fluid seal device with multiple pieces arranged in the longitudinal direction of the shaft.
(8)前記金属磁性流体の溶媒に、前記酸化物磁性流体
の溶媒と比べて低粘度な溶媒を用いてなる特許請求の範
囲第6項又は第7項記載の磁性流体シール装置。
(8) The magnetic fluid sealing device according to claim 6 or 7, wherein a solvent having a lower viscosity than that of the oxide magnetic fluid is used as a solvent for the metal magnetic fluid.
JP63042874A 1988-02-25 1988-02-25 Magnetic fluid sealing device Pending JPH01220776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042874A JPH01220776A (en) 1988-02-25 1988-02-25 Magnetic fluid sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042874A JPH01220776A (en) 1988-02-25 1988-02-25 Magnetic fluid sealing device

Publications (1)

Publication Number Publication Date
JPH01220776A true JPH01220776A (en) 1989-09-04

Family

ID=12648187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042874A Pending JPH01220776A (en) 1988-02-25 1988-02-25 Magnetic fluid sealing device

Country Status (1)

Country Link
JP (1) JPH01220776A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188840B2 (en) * 2003-07-07 2007-03-13 Zhixin Li Magnetic fluidic seal with improved pressure capacity
CN102588606A (en) * 2012-03-14 2012-07-18 无锡康力电子有限公司 Magnetic fluid sealing device for vacuum coating drive mechanism
CN102606745A (en) * 2012-04-06 2012-07-25 哈尔滨工业大学 Magnetic fluid multi-pole multi-level sealing device based on toothed groove structure
CN105134964A (en) * 2015-09-09 2015-12-09 北京交通大学 Multi-channel rotary gas delivery device for sealing magnetic liquid
CN108843791A (en) * 2018-08-13 2018-11-20 广西科技大学 A kind of tandem type magnetic fluid sealing structure
CN108869755A (en) * 2018-08-13 2018-11-23 广西科技大学 A kind of magnetic source hybrid magnetic fluid seal structure
CN112648382A (en) * 2020-12-31 2021-04-13 清华大学 Magnetic liquid sealing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188840B2 (en) * 2003-07-07 2007-03-13 Zhixin Li Magnetic fluidic seal with improved pressure capacity
CN102588606A (en) * 2012-03-14 2012-07-18 无锡康力电子有限公司 Magnetic fluid sealing device for vacuum coating drive mechanism
CN102606745A (en) * 2012-04-06 2012-07-25 哈尔滨工业大学 Magnetic fluid multi-pole multi-level sealing device based on toothed groove structure
CN105134964A (en) * 2015-09-09 2015-12-09 北京交通大学 Multi-channel rotary gas delivery device for sealing magnetic liquid
CN108843791A (en) * 2018-08-13 2018-11-20 广西科技大学 A kind of tandem type magnetic fluid sealing structure
CN108869755A (en) * 2018-08-13 2018-11-23 广西科技大学 A kind of magnetic source hybrid magnetic fluid seal structure
CN112648382A (en) * 2020-12-31 2021-04-13 清华大学 Magnetic liquid sealing device
CN112648382B (en) * 2020-12-31 2022-03-01 清华大学 Magnetic liquid sealing device

Similar Documents

Publication Publication Date Title
US5660397A (en) Devices employing a liquid-free medium
US10989308B1 (en) Sealing device with convertible magnetic sealing medium
US5270596A (en) Miniature D-C motor
JPH01220776A (en) Magnetic fluid sealing device
US3898599A (en) Toroidal magnetic device
JPWO2002095271A1 (en) Magnetic fluid sealing device
CN109690917A (en) Magnetic seal for magnetic response devices, systems, and methods
US3254745A (en) Seal to protect the bearings of powder magnetic clutches or of similar devices against the ferromagnetic powder
US3892461A (en) Load-break connector
JP3682807B2 (en) Permanent magnet magnetic circuit for axial magnetic field generation
JPS6143588B2 (en)
US2536824A (en) Laminated magnetic suspension
SU742657A1 (en) Magnetic-liquid seal
JPS5814949B2 (en) Magnetic fluid shaft sealing device
CN215990409U (en) Sealing structure and motor
JPS6132779B2 (en)
JPH0633941A (en) Kinetic pressure bearing device
JP2019140818A (en) motor
JP2577238B2 (en) Pressure-resistant sealing device using magnetic fluid
JPH07217747A (en) Magnetic fluid sealing device
JPH01164869A (en) Seal device using magnetic fluid
SU1732095A1 (en) Magnetoliquid seal
JP2002349718A (en) Magnetic fluid seal device
JPH0721971Y2 (en) Magnetic fluid sealing device
JPH02172205A (en) Magnetic fluid holding member and shaft sealing device employing it