JPH01220351A - Automatic focusing of scanning type electron microscope or the like - Google Patents

Automatic focusing of scanning type electron microscope or the like

Info

Publication number
JPH01220351A
JPH01220351A JP4557888A JP4557888A JPH01220351A JP H01220351 A JPH01220351 A JP H01220351A JP 4557888 A JP4557888 A JP 4557888A JP 4557888 A JP4557888 A JP 4557888A JP H01220351 A JPH01220351 A JP H01220351A
Authority
JP
Japan
Prior art keywords
astigmatism
circuit
objective lens
peaks
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4557888A
Other languages
Japanese (ja)
Inventor
Mitsugi Yamada
貢 山田
Kiyoshi Chikaoka
近岡 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP4557888A priority Critical patent/JPH01220351A/en
Publication of JPH01220351A publication Critical patent/JPH01220351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform correct focusing even if astigmatism is not corrected by changing the objective lens current so that the information signal detection value becomes the maximum value point or the mid-point of two peaks. CONSTITUTION:A sample 8 is radiated and scanned by a focused electron beam from the electron gun 2 of a lens barrel 1 via an objective lens 6 or the like, the secondary emission beam outputted from the sample 8 is detected by a detector 9. This detection output is fed to a maximum value/intermediate value calculating circuit 21 via HPF 12, an integrating circuit 13, an A/D converter 14, and a sampling value memory circuit 15, the current to the lens is feedback- controlled via the circuit 21 and an objective lens DC detecting circuit 11. Astigmatism is increased in response to this current change, two peaks across the focal point position are generated in the output of the detector 9, focusing is correctly performed even if there is astigmatism in the intermediate value calculation result by the circuit 21. Astigmatism is subsequently corrected, focusing is performed based on the maximum value calculation by the circuit 21, an automatic focusing device easily attaining a good image is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走査型電子顕微鏡等における自動焦点合わせ方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic focusing method in a scanning electron microscope or the like.

〔従来の技術〕[Conventional technology]

第6図は走査型電子顕微鏡における従来の自動焦点合わ
せ方法を説明するための図で、1は鏡筒、2は電子銃、
3は収束レンズ、5は走査コイル、6は対物レンズ、7
は電子プローブ、8は試料、9は検出器、10は走査回
路、11は対物レンズ電流出力回路、12は高域成分抽
出フィルタ、13は積分回路、14はA/D変換器、1
5はサンプリング値記憶回路、16は最大値算出回路で
ある。
FIG. 6 is a diagram for explaining the conventional automatic focusing method in a scanning electron microscope, in which 1 is a lens barrel, 2 is an electron gun,
3 is a converging lens, 5 is a scanning coil, 6 is an objective lens, 7
1 is an electronic probe, 8 is a sample, 9 is a detector, 10 is a scanning circuit, 11 is an objective lens current output circuit, 12 is a high frequency component extraction filter, 13 is an integration circuit, 14 is an A/D converter, 1
5 is a sampling value storage circuit, and 16 is a maximum value calculation circuit.

図において、電子銃2から放出された電子は収束レンズ
3で収束され、走査コイル5で走査されると共に、対物
レンズ6により絞られて電子プローブ7として試料8上
に照射されて試料8から2次電子が放出される。放出さ
れた2次電子は検出器9で検出され、高域成分抽出フィ
ルタ12により高周波数成分の信号が抽出されて2次電
子像として積分回路13に加えられ、A/D変換器14
によりディジタル信号に変換され、サンプリングされて
サンプリング値記憶回路15に記憶される。
In the figure, electrons emitted from an electron gun 2 are converged by a converging lens 3, scanned by a scanning coil 5, focused by an objective lens 6, and irradiated onto a sample 8 as an electron probe 7. Secondary electrons are emitted. The emitted secondary electrons are detected by a detector 9, a high frequency component signal is extracted by a high frequency component extraction filter 12, and is applied as a secondary electron image to an integrating circuit 13, and then to an A/D converter 14.
The signal is converted into a digital signal, sampled, and stored in the sampling value storage circuit 15.

最大値算出回路16は対物レンズ電流出力回路11を制
御して対物レンズ6への供給電流を変え、前述と同様の
プロセスで各対物レンズ電流に対するサンプリング値が
求められる。
The maximum value calculation circuit 16 controls the objective lens current output circuit 11 to change the current supplied to the objective lens 6, and the sampling value for each objective lens current is determined by the same process as described above.

対物レンズ電流に対するサンプリングデータ列は、第7
図に示すような特性を示し、対物レンズ電流の違いによ
って電子プローブ7の焦点位置が変わり、試料8上で電
子プローブ径が最小になったとき、すなわち合焦点位置
において像信号の高い周波数成分の積分値は最大になる
。したがって、この最大値を示す位置を最大値算出回路
16によって求め、これに対応する対物レンズ電流を出
力するようにすれば、焦点を自動的に合わせることがで
きる。なお、走査回路10は走査周期と積分周期との同
期をとるために走査同期信号で積分回路をリセットして
いる。なお、この例では2次電子を検出したが、試料か
らの他の情報信号、例えば、反射電子を検出しても焦点
合わせを行うことができる。
The sampling data string for the objective lens current is the seventh
The focal position of the electron probe 7 changes depending on the difference in the objective lens current, and when the electron probe diameter becomes the minimum on the sample 8, that is, the high frequency components of the image signal change at the focal point position. The integral value becomes maximum. Therefore, if the maximum value calculation circuit 16 determines the position showing this maximum value and outputs the objective lens current corresponding to this position, the focus can be automatically adjusted. Note that the scanning circuit 10 resets the integration circuit using a scanning synchronization signal in order to synchronize the scanning period and the integration period. Although secondary electrons are detected in this example, focusing can also be performed by detecting other information signals from the sample, such as reflected electrons.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

しかしながら、このような従来の自動焦点合わせ方法に
おいては、非点収差が補正されていない状態ではサンプ
リング値が最大となる点が本来の焦点とずれてしまい、
正しく焦点合わせをすることができないという問題があ
った。
However, in such conventional automatic focusing methods, if astigmatism is not corrected, the point where the sampling value is maximum will deviate from the original focus.
There was a problem in that it was not possible to focus correctly.

本発明は上記問題点を解決するためのもので、非点収差
が補正されていない状態でも正しい焦点位置が求められ
、その後非点収差を補正することにより、焦点合わせ、
及び非点収差補正を行うことができ、良好な像を容易に
得ることができる走査型電子顕微鏡等の自動焦点合わせ
方法を提供することを目的とするものである。
The present invention is intended to solve the above problems, and it is possible to find the correct focal position even when the astigmatism is not corrected, and then correct the astigmatism to achieve focusing,
It is an object of the present invention to provide an automatic focusing method for a scanning electron microscope, etc., which can correct astigmatism and easily obtain a good image.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明の走査型電子顕微鏡等の自動焦点合わ
せ方法は、電子銃から放出された電子線を収束させると
共に走査して試料面上に照射し、該電子線の照射に基づ
き試料から得られた情報信号を検出して合焦点位置を求
める走査型電子顕微鏡等の自動焦点合わせ方法において
、対物レンズ電流を変えたときの情報信号検出値の最大
値位置、または2つのピークの中間点を求めることによ
り焦点合わせを行うこと、さらに対物レンズ電流を変え
たときの情報信号検出値の最大値、2つのピークが明確
でないとき、非点収差補正装置により非点収差を大きく
して2つのピークを出現させ、2つのピークの中間点を
求めることにより焦点合わせを行うことを特徴とする 〔作用〕 本発明は、電子プローブを試料に照射し、試料面から放
出される2次電子や反射電子電流を検出し、対物レンズ
電流を変化させたとき、検出電流値が最大になる位置、
または非点収差がある場合に生ずる2つのピークの中間
点から合焦点位置を求め、また最大値、2つのピークが
明確でないとき非点収差補正装置により非点収差を大き
くして2つのピークを出現させてその中間点から合焦点
位置を求めることにより非点収差が補正されてない状態
でも正しい焦点位置を求めることができる。
To this end, the automatic focusing method of a scanning electron microscope, etc. of the present invention converges and scans an electron beam emitted from an electron gun to irradiate it onto the sample surface. In the automatic focusing method of scanning electron microscopes, etc., which detects the information signal and determines the focal point position, find the maximum position of the detected information signal value or the midpoint between two peaks when changing the objective lens current. Furthermore, when the maximum value of the information signal detection value when the objective lens current is changed, and the two peaks are not clear, the astigmatism is increased using an astigmatism corrector to correct the two peaks. [Operation] The present invention is characterized by focusing by determining the midpoint between the two peaks. [Operation] The present invention is characterized by irradiating the sample with an electron probe and detecting the secondary electrons emitted from the sample surface and the reflected electron current. When detecting and changing the objective lens current, the position where the detected current value is maximum,
Or, if there is astigmatism, find the in-focus position from the midpoint of the two peaks that occur, and if the maximum value or the two peaks are not clear, use an astigmatism corrector to increase the astigmatism and find the two peaks. By making the focal point appear and determining the in-focus position from the intermediate point, the correct focal position can be determined even in a state where astigmatism has not been corrected.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明による走査型電子顕微鏡等における自動
焦点合わせ方法の全体構成を示す図で、第6図と同一番
号は同一内容を示している。
FIG. 1 is a diagram showing the overall configuration of an automatic focusing method for a scanning electron microscope or the like according to the present invention, and the same numbers as in FIG. 6 indicate the same contents.

第1図のものは最大値・中間点演算回路21が第6図の
最大値算出回路16に置き代わっている以外は同様の構
成になっている。
The circuit shown in FIG. 1 has the same structure except that the maximum value/intermediate point calculation circuit 21 is replaced with the maximum value calculation circuit 16 shown in FIG.

いま、非点収差がない状態では、電子プローブの断面形
状は第2図(イ)に示すように、試料面S上で焦点が合
つている。そして、非点収差がある場合は、第2図(ロ
)に示すようにX軸、Y軸をとると、例えばX、z平面
の電子線の焦点はPt、Y、Z平面の電子線の焦点はP
lとなる。その結果、対物レンズ電流とサンプリング値
との関係は非点収差のない場合は、第3図(イ)に示す
ように、単峰性を示し、その最大値の位置が焦点の合っ
た位置となる。これに対し、非点収差が補正されていな
い状態でサンプリングした場合には、そのデータ列は第
3図(ロ)に示すようにP、点、22点に対応して2つ
のピーク点を有する双峰性を示す。この場合、2つのピ
ーク点の中間点が焦点の合った位置となる。これは、第
2図(ロ)に示すように非点収差のある電子プローブで
は、最小錯乱円の位置から非点隔差の±1/2だけ離れ
た位置でX軸またはY軸方向に対して電子プローブの径
が最小になるためであり、この2点が試料面に一致した
ときに像信号の高い周波数成分はそれぞれ最大となる。
Now, in a state where there is no astigmatism, the cross-sectional shape of the electron probe is focused on the sample surface S, as shown in FIG. 2(A). If there is astigmatism, if we take the X and Y axes as shown in Figure 2 (b), for example, the focal point of the electron beam on the X, Z plane will be the focus of the electron beam on the Pt, Y, Z plane. The focus is P
It becomes l. As a result, when there is no astigmatism, the relationship between the objective lens current and the sampling value shows a single peak, as shown in Figure 3 (a), and the position of the maximum value is the in-focus position. Become. On the other hand, when sampling is performed without astigmatism being corrected, the data sequence has two peak points corresponding to point P and point 22, as shown in Figure 3 (b). Shows bimodality. In this case, the midpoint between the two peak points is the in-focus position. As shown in Figure 2 (b), in an electron probe with astigmatism, this occurs in the X-axis or Y-axis direction at a position that is ±1/2 of the astigmatic difference from the position of the circle of least confusion. This is because the diameter of the electron probe becomes minimum, and when these two points coincide with the sample surface, the high frequency components of the image signal become maximum.

したがって、最大値・中間点演算回路21により、第3
図(イ)の場合にはサンプリング値が最大値を示す位置
を、また、第3図(ロ)の場合には2つのピーク点の中
間点をそれぞれ求めることにより、焦点位置を算出して
焦点を自動的に合わせることができる。
Therefore, the maximum value/midpoint calculation circuit 21 calculates the third
In the case of Figure (A), the position where the sampling value shows the maximum value is determined, and in the case of Figure 3 (B), the midpoint between the two peak points is calculated to calculate the focal point. can be adjusted automatically.

第4図は本発明の他の実施例を示す図で、第1図のもの
に非点収差補正装置31、及び非点収差補正装置用電流
出力回路32を設けたものである。
FIG. 4 is a diagram showing another embodiment of the present invention, in which an astigmatism correction device 31 and a current output circuit 32 for the astigmatism correction device are added to the one shown in FIG.

本実施例を説明するために、第5図により対物レンズ電
流に対するサンプリングデータ列の各種特性を説明する
In order to explain this embodiment, various characteristics of the sampling data sequence with respect to the objective lens current will be explained with reference to FIG.

第5図(イ)は非点補正されてい゛る場合で、単峰特性
を示し、第5図(ロ)は非点補正されていない場合で、
2つの大きさの等しいピーク点が表れる双峰特性を示し
、第5図(ハ)は非点補正されていない場合であるが、
2つのピーク点の大きさが異なる場合を示し、第5図(
ニ)は非点補正されていない場合で2つのピークが明確
でなく、単峰性か双峰性かはっきりしない場合である。
Figure 5 (a) shows the case with astigmatism correction, showing a single peak characteristic, and Figure 5 (b) shows the case with no astigmatism correction.
It shows a bimodal characteristic in which two peak points of equal size appear, and Fig. 5 (c) shows the case where astigmatism correction is not performed.
Figure 5 (
D) is a case where astigmatism correction is not performed, the two peaks are not clear, and it is not clear whether they are unimodal or bimodal.

前述したように、第5図(ロ)、(ハ)の場合は2つの
ピーク点の中間点が合焦点位置となるが、第5図(ニ)
の場合は、最大値が焦点の合った所でもなく、また、2
つのピークの中間点を求めようにも、ピーク位置がはっ
きりしないので求めることができない、ところで、非点
収差とサンプリングデータ例との関係を見ると、非点収
差補正がされている場合は、第5図(イ)のように1つ
のピークができ、その高さも大きい、また、逆に非点収
差が補正されていない場合は、−gに双峰性を示し、そ
の収差が大きいと、第5図(ニ)のような特性を示すこ
とはなくなり、その代わり、第5図(ホ)のように2つ
のピークがはっきりする代わりに、ピーク時の高さは低
くなる。
As mentioned above, in the cases of Figures 5 (B) and (C), the midpoint between the two peak points is the in-focus position, but in Figure 5 (D)
In the case of , the maximum value is not in focus, and 2
Even if you try to find the midpoint between the two peaks, you cannot find it because the peak position is not clear.By the way, looking at the relationship between astigmatism and sampled data, if astigmatism has been corrected, As shown in Figure 5 (a), a single peak is formed and its height is large. Conversely, if astigmatism is not corrected, -g exhibits bimodality, and if the aberration is large, the peak height is large. The characteristic as shown in FIG. 5(d) is no longer exhibited, and instead, two peaks become clear as shown in FIG. 5(e), and the height at the peak becomes low.

そこで、本実施例においては非点収差補正装置用電流出
力回路32により非点収差補正装置31に電流出力して
収差を大きくし、2つのピークを出現させて第5図(ニ
)のような状態を回避するようにしたものであり、その
状態で最大値・中間点演算回路21により2つのピーク
点の中間位置を求め、これにより焦点合わせを行う。
Therefore, in this embodiment, the current output circuit 32 for the astigmatism correction device outputs a current to the astigmatism correction device 31 to increase the aberration, so that two peaks appear, and as shown in FIG. In this state, the maximum value/intermediate point calculation circuit 21 determines the intermediate position between the two peak points, and focusing is thereby performed.

なお、上述した実施例では2次電子を検出するようにし
たが、反射電子等の試料から得られる他の情報信号を検
出するようにししも良い。
In the above-described embodiment, secondary electrons are detected, but other information signals obtained from the sample such as reflected electrons may also be detected.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、−船釣に焦点合わせをす
る際に、非点収差が補正されていない状態で焦点合わせ
を行うことが多いが、従来の非点収差補正装置では、焦
点が合ったか、はぼ合っている場合でなければこれを行
うことができなかったが、本発明によれば、非点収差が
補正されていない状態でも、正しく焦点位置を求めるこ
とができ、その後、非点収差を補正すれ、ば焦点合わせ
及び非点収差補正の行われた良好な像を容易に得ること
が可能となる。
As described above, according to the present invention, - When focusing while fishing on a boat, focusing is often performed without astigmatism being corrected. However, according to the present invention, even when astigmatism has not been corrected, it is possible to correctly determine the focal position, and then By correcting astigmatism, it becomes possible to easily obtain a good focused and astigmatically corrected image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による走査型電子顕微鏡等における自動
焦点合わせ方法を説明するための図、第2図(イ)は試
料面上で焦点が合っているときの電子プローブの断面形
状を示す図、第2図(ロ)は非点収差があるときの電子
プローブの断面形状を示す図、第3図(イ)、(ロ)は
対物レンズ電流に対するサンプリング値特性を示す図、
第3図(ロ)は双峰性を示す図、第4図は本発明の他の
実施例を示す図、第5図(イ)〜(ホ)は対物レンズ電
流に対するサンプリング値の各種特性を示す図、第6図
は従来の自動焦点合わせ方法を説明するための図、第7
図は対物レンズ電流に対するサンプリング値特性を示す
図である。 1・・・鏡筒、2・・・電子銃、3・・・収束レンズ、
5・・・走査コイル、6・・・対物レンズ、7・・・電
子プローブ、8・・・試料、9・・・検出器、10・・
・走査回路、11・・・対物レンズ電流出力回路、12
・・・高域成分抽出フィルタ、13・・・積分回路、1
4・・・A/D変換器、15・・・サンプリング値記憶
回路、21・・・最大値・中間点演算回路、31・・・
非点収差補正装置、32・・・非点収差補正装置用電流
出力回路。 出  願  人  日本電子株式会社 代理人 弁理士  蛭 川 昌 信(外4名)第1図 第3図 (イ)                (O)第4図 第6図 第7図
Figure 1 is a diagram for explaining the automatic focusing method in a scanning electron microscope, etc. according to the present invention, and Figure 2 (a) is a diagram showing the cross-sectional shape of the electron probe when it is focused on the sample surface. , FIG. 2 (b) is a diagram showing the cross-sectional shape of the electron probe when there is astigmatism, and FIGS. 3 (a) and (b) are diagrams showing the sampling value characteristics with respect to the objective lens current.
Figure 3 (b) is a diagram showing bimodality, Figure 4 is a diagram showing another embodiment of the present invention, and Figures 5 (a) to (e) are diagrams showing various characteristics of sampling values with respect to objective lens current. Figure 6 is a diagram for explaining the conventional automatic focusing method, and Figure 7 is a diagram for explaining the conventional automatic focusing method.
The figure is a diagram showing sampling value characteristics with respect to objective lens current. 1... Lens barrel, 2... Electron gun, 3... Converging lens,
5... Scanning coil, 6... Objective lens, 7... Electronic probe, 8... Sample, 9... Detector, 10...
・Scanning circuit, 11...Objective lens current output circuit, 12
...High-frequency component extraction filter, 13...Integrator circuit, 1
4... A/D converter, 15... Sampling value storage circuit, 21... Maximum value/intermediate point calculation circuit, 31...
Astigmatism correction device, 32... Current output circuit for the astigmatism correction device. Applicant JEOL Ltd. Agent Patent Attorney Masanobu Hirukawa (4 others) Figure 1 Figure 3 (A) (O) Figure 4 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)電子銃から放出された電子線を収束させると共に
走査して試料面上に照射し、該電子線の照射に基づいて
試料から得られた情報信号を検出して合焦点位置を求め
る走査型電子顕微鏡等の自動焦点合わせ方法において、
対物レンズ電流を変化させたときの情報信号検出値の最
大値位置、または2つのピークの中間点を求めることに
より焦点合わせを行うことを特徴とする走査型電子顕微
鏡等の自動焦点合わせ方法。
(1) Scanning in which the electron beam emitted from the electron gun is focused and scanned to irradiate it onto the sample surface, and the information signal obtained from the sample is detected based on the irradiation of the electron beam to determine the focal point position. In automatic focusing methods such as type electron microscopes,
An automatic focusing method for a scanning electron microscope, etc., characterized in that focusing is performed by determining the maximum value position of an information signal detection value when changing an objective lens current, or the midpoint between two peaks.
(2)請求項1記載の焦点合わせ方法において、対物レ
ンズ電流を変化させたときの情報信号検出値の最大値、
2つのピークが明確でないとき、非点収差補正装置によ
り非点収差を大きくして2つのピークを出現させ、2つ
のピークの中間点を求めることにより焦点合わせを行う
ことを特徴とする走査型電子顕微鏡等の自動焦点合わせ
方法。
(2) In the focusing method according to claim 1, the maximum value of the information signal detection value when changing the objective lens current;
When the two peaks are not clear, the astigmatism is increased by an astigmatism corrector to make the two peaks appear, and focusing is performed by finding the midpoint between the two peaks. Automatic focusing method for microscopes, etc.
JP4557888A 1988-02-27 1988-02-27 Automatic focusing of scanning type electron microscope or the like Pending JPH01220351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4557888A JPH01220351A (en) 1988-02-27 1988-02-27 Automatic focusing of scanning type electron microscope or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4557888A JPH01220351A (en) 1988-02-27 1988-02-27 Automatic focusing of scanning type electron microscope or the like

Publications (1)

Publication Number Publication Date
JPH01220351A true JPH01220351A (en) 1989-09-04

Family

ID=12723232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4557888A Pending JPH01220351A (en) 1988-02-27 1988-02-27 Automatic focusing of scanning type electron microscope or the like

Country Status (1)

Country Link
JP (1) JPH01220351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108526675A (en) * 2018-03-28 2018-09-14 河北众航高能科技有限公司 A kind of autofocus and method of electron beam equipment
JP2020187980A (en) * 2019-05-17 2020-11-19 株式会社日立製作所 Inspection device
EP3772084A1 (en) 2019-07-29 2021-02-03 JEOL Ltd. Focus adjustment method for charged particle beam device and charged particle beam device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946745A (en) * 1982-09-09 1984-03-16 Nichidenshi Tekunikusu:Kk Automatic focal point aligning unit for charged particle beam device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946745A (en) * 1982-09-09 1984-03-16 Nichidenshi Tekunikusu:Kk Automatic focal point aligning unit for charged particle beam device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108526675A (en) * 2018-03-28 2018-09-14 河北众航高能科技有限公司 A kind of autofocus and method of electron beam equipment
JP2020187980A (en) * 2019-05-17 2020-11-19 株式会社日立製作所 Inspection device
EP3772084A1 (en) 2019-07-29 2021-02-03 JEOL Ltd. Focus adjustment method for charged particle beam device and charged particle beam device
US11776786B2 (en) 2019-07-29 2023-10-03 Jeol Ltd. Focus adjustment method for charged particle beam device and charged particle beam device

Similar Documents

Publication Publication Date Title
US7807966B2 (en) Scanning electron microscope
JP2877624B2 (en) Objective lens alignment control apparatus and control method for scanning electron microscope
US5084618A (en) Autofocus method and apparatus for electron microscope
JPH1173903A (en) Autofocusing method for scanning electron microscope
US4424448A (en) Electron beam apparatus
JPH0689687A (en) Automatic focusing device for scanning electron microscope
JPH01220351A (en) Automatic focusing of scanning type electron microscope or the like
JPH0475242A (en) Auto-focusing method of scanning electron microscope
EP3772084B1 (en) Focus adjustment method for charged particle beam device and charged particle beam device
US4933553A (en) Focusing apparatus of electron microscope
JPH0438100B2 (en)
JPS61168852A (en) Focusing device of transmission type electron microscope
JPH05296754A (en) Edge detecting method
JP3428487B2 (en) Automatic focusing method in scanning electron microscope
JPS6070651A (en) Focusing method and device therefor
JP2001006599A (en) Method for controlling electron beam in electron beam device
US10446365B2 (en) Method of verifying operation parameter of scanning electron microscope
JPH03219543A (en) Automatic focusing system of scanning type electron microscope
JPS6054152A (en) Method of automatically controlling focus in electron ray device
JP2001110347A (en) Automated focusing method for charged-particle beam apparatus
JP3414602B2 (en) Scanning electron microscope and control method thereof
JPS58214258A (en) Focal point detection device for scanning type electron microscope and the like
JP3114416B2 (en) Focusing method in charged particle beam device
JPH0487246A (en) Automatic focusing system for scanning type electron microscope
JPH0831364A (en) Scanning electron microscope