JPH01219454A - Air conditioner for building - Google Patents

Air conditioner for building

Info

Publication number
JPH01219454A
JPH01219454A JP4562988A JP4562988A JPH01219454A JP H01219454 A JPH01219454 A JP H01219454A JP 4562988 A JP4562988 A JP 4562988A JP 4562988 A JP4562988 A JP 4562988A JP H01219454 A JPH01219454 A JP H01219454A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
condenser
air conditioning
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4562988A
Other languages
Japanese (ja)
Other versions
JP2543560B2 (en
Inventor
Yoshinori Inoue
良則 井上
Shinji Miura
晋司 三浦
Tadahiro Fukunaga
福永 忠裕
Yasutoshi Yoshida
吉田 康敏
Setsuo Kaneda
兼田 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Takenaka Komuten Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP63045629A priority Critical patent/JP2543560B2/en
Publication of JPH01219454A publication Critical patent/JPH01219454A/en
Application granted granted Critical
Publication of JP2543560B2 publication Critical patent/JP2543560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To perform cooling and heating operations without having water passage on the air-conditioned room side and to facilitate capacity control in each room unit by connecting 1st condenser with 1st evaporator by 1st refrigerant liquid tube and 1st refrigerant gas tube to form a cooling circuit, and by connecting 2nd evaporator with 2nd condenser by 2nd refrigerant liquid tube and 2nd refrigerant gas tube to form a heating circuit. CONSTITUTION:A refrigerant like fluorocarbon, etc., is used, which easily evaporates around the normal temperature. In case of cooling operation, the refrigerant that absorbed load heat of the air conditioned room side in 1st evaporator 6 inside an air conditioning unit 2 changes from liquid phase to gaseous phase, and comes to 1st condenser 8 after it went up inside 1st refrigerant gas tube 11 under gas pressure. The refrigerant in gaseous phase is cooled and condensed in the 1st condenser 8, and comes back to the 1st evaporator 6 of the air-conditioning unit 2 after it went down inside 1st refrigerant liquid tube 10 due to gravity. In case of heating operation, the refrigerant that absorbed load heat of the air- conditioned room side in 2nd condenser 6 inside the air conditioning unit 2 changes from gaseous phase to liquid phase, and is temporarily stored in reservoir 14 after it went down inside 2nd refrigerant liquid tube 12 due to gravity, and then, is sent to 2nd evaporator 9 through the 2nd refrigerant liquid tube under pressure from pump 15. Heated inside the 2nd evaporator 9, the refrigerant in liquid phase evaporates and comes back to the 2nd condenser 6 of the air conditioning unit 2 after it ran inside 2nd refrigerant gas tube 13 under its gas pressure.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ビルディングの空調システムに係1)、特に
、被空調室側に熱媒としての水の流路を設けずに冷暖房
を行ない、且つ空調機器の装置容量を小さくすることを
目的とするビル空調システムに関するものである。
The present invention relates to an air conditioning system for a building (1), and particularly aims to perform air conditioning and heating without providing a flow path for water as a heat medium on the side of an air-conditioned room, and to reduce the capacity of air conditioning equipment. This relates to building air conditioning systems.

【従来技術】[Prior art]

一般に、ビル空調システムで熱源装置と空調機との間の
熱搬送を行なう熱媒体には、通常は水が用いられる。と
ころで、この空調機を被空調室である居室側に設置する
場合もあるが、居室での漏水事故の恐れがあ1)、あま
り好まれない。そこで、近来のビル空調システムでは、
フロン等の冷媒を熱源装置から空調機の熱交換器へ直接
導くシステムが注目されている。 このシステムでは、例えばヒートポンプ等の屋外ユニッ
トを熱源装置として屋上等の屋外に設置し、一方、屋内
の居室側には、屋外ユニットから冷媒配管で直結された
室内ユニットが空調機として設置され、冷暖房が行なわ
れている。
In general, water is generally used as a heat medium for transferring heat between a heat source device and an air conditioner in a building air conditioning system. By the way, although this air conditioner is sometimes installed in the room to be air-conditioned, this is not preferred because there is a risk of water leakage in the room (1). Therefore, in recent building air conditioning systems,
Systems that directly guide refrigerants such as fluorocarbons from heat source devices to air conditioner heat exchangers are attracting attention. In this system, an outdoor unit such as a heat pump is installed outdoors on a rooftop as a heat source device, while an indoor unit directly connected to the outdoor unit via refrigerant piping is installed as an air conditioner in the indoor room. is being carried out.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、上述のごとく構成されたビル空調システムは
、屋外ユニットと室内ユニットとが冷媒配管で直結され
る直膨式のものであ1)、屋外ユニットの圧縮機の冷凍
機油がミスト状態で冷媒に混在して配管内を流れている
。したがって室内ユニット側へ冷媒とともに運ばれるこ
の冷凍機油を屋外ユニットの圧縮機へ回収する必要があ
1)、そのために種々の制約を受けることになる。 例えば被空調室での空調負荷の変動に対しては、各室内
ユニットに供給される冷媒の流mを制御するのが望まし
いが、冷凍機油を回収するためには冷媒配管内のガス流
速を略6 x/sec以上に保つことが必要であ1)、
絞り機構を絞り過ぎるとこのガス流速が維持できなくな
る。したがって冷媒成虫を制御する手段として絞り機構
を作用させることができず、強いて室内ユニット側で負
荷変動に対応しようとするならば、送風機のオン・オフ
を小刻みに繰り返し、これと略同時に絞り機構の開閉も
小刻みに繰り返すことによって能力制御を行なわなけれ
ばならず、このような制御方法は勿論好ましいものでは
ない。 したがって、冷凍機油を回収するためには1台の屋外ユ
ニットに対応させて接続できる室内ユニットの数も制限
され、実際には、条件によっても異なるが1台の屋外ユ
ニットに対して連結できる室内ユニットは通常2台ない
し3台が限度である。 本発明は上述のごとき従来技術の課題に鑑み、これらを
有効に解決すべく創案されたものである。 したがってその目的は、被空調室側に熱搬送媒体として
の水の流路を設けずに冷暖房を行ない、且つ各室内ユニ
ットでの能力制御を容易にし、また1台の屋外ユニット
に対応して設置できる室内ユニットの台数を直膨式より
も増加できるビル空調システムを提供することにある。
By the way, the building air conditioning system configured as described above is a direct expansion type in which the outdoor unit and the indoor unit are directly connected by refrigerant piping1), and the refrigerating machine oil in the compressor of the outdoor unit is converted into the refrigerant in a mist state. A mixture of these substances flows through the pipes. Therefore, it is necessary to recover this refrigerating machine oil, which is carried with the refrigerant to the indoor unit side, to the compressor of the outdoor unit (1), which imposes various restrictions. For example, in response to fluctuations in the air conditioning load in an air-conditioned room, it is desirable to control the flow m of refrigerant supplied to each indoor unit, but in order to recover refrigeration oil, the gas flow velocity in the refrigerant piping is It is necessary to maintain the speed at 6 x/sec or higher1),
If the throttling mechanism is throttled too much, this gas flow velocity cannot be maintained. Therefore, it is not possible to use the throttling mechanism as a means of controlling the refrigerant, and if you are forced to respond to load fluctuations on the indoor unit side, you will have to repeatedly turn the blower on and off in small increments. Capacity control must be performed by repeating opening and closing in small increments, and such a control method is of course not preferable. Therefore, in order to recover refrigeration oil, the number of indoor units that can be connected to one outdoor unit is also limited, and in reality, although it varies depending on the conditions, indoor units that can be connected to one outdoor unit are also limited. Normally, the limit is two or three. The present invention has been devised in view of the problems of the prior art as described above and to effectively solve these problems. Therefore, the purpose of this is to perform air conditioning and heating without providing a flow path for water as a heat transfer medium in the air-conditioned room, to facilitate capacity control of each indoor unit, and to install a system that corresponds to one outdoor unit. To provide a building air conditioning system that can increase the number of indoor units that can be installed compared to a direct expansion type.

【課題を解決するための手段】[Means to solve the problem]

本発明に係るビル空調システムは、従来技術の課題を解
決し、本発明の目的を達成するために以下のような構成
を備えている。 すなわち、建物の高所に設置された冷熱源側熱交換器と
しての第1凝縮器および温熱源側熱交換器としての第2
蒸発器と、上記第1凝縮器および第2蒸発器よりも低所
の建物内に、空調ユニットに内蔵されて設置される負荷
側熱交換器としての第1蒸発器および第2凝縮器と、上
記空調ユニットよりら低所に設置され、上記第2凝縮器
から流出する冷媒液を貯留する受液器とを備え、上記第
1凝縮器と第1蒸発器との間を、第1冷媒液管および第
1冷媒ガス管で連結して冷房回路を形成し、上記第2蒸
発器と第2凝縮器との間を、第2冷媒液管および第2冷
媒ガス管で連結して暖房回路を形成し、上記暖房回路の
第2冷媒液管に、上記受液器内の冷媒液を第2蒸発器へ
圧送するポンプを備えている。 また、上記空調ユニット内の第1蒸発器および第2凝縮
器は一の熱交換器により構成され、冷房運転時には上記
第1冷媒液管および第1冷媒ガス管が接続され、暖房運
転時には上記第2冷媒液管および第2冷媒ガス管に接続
されるように切り替えられてもよい。 また、冷熱源装置および温熱源装置を兼ねる装置として
吸収式冷凍機を備え、上記第1凝縮器は、吸収式冷凍機
における蒸発器の噴霧冷媒により冷却され、上記第2蒸
発器は、該吸収式冷凍機の再生器の加熱源の熱により加
熱されるように構成されてもよい。
The building air conditioning system according to the present invention has the following configuration in order to solve the problems of the prior art and achieve the object of the present invention. In other words, the first condenser is a cold heat source side heat exchanger installed at a high place in the building, and the second condenser is a hot heat source side heat exchanger.
an evaporator, and a first evaporator and a second condenser as a load-side heat exchanger that are built into an air conditioning unit and installed in a building at a lower location than the first condenser and second evaporator; a liquid receiver that is installed at a lower location than the air conditioning unit and stores the refrigerant liquid flowing out from the second condenser; The second evaporator and the second condenser are connected by a second refrigerant liquid pipe and a second refrigerant gas pipe to form a heating circuit. A pump is provided in the second refrigerant liquid pipe of the heating circuit to force-feed the refrigerant liquid in the liquid receiver to the second evaporator. Further, the first evaporator and the second condenser in the air conditioning unit are constituted by one heat exchanger, and the first refrigerant liquid pipe and the first refrigerant gas pipe are connected during cooling operation, and the first refrigerant gas pipe is connected during heating operation. It may be switched to be connected to two refrigerant liquid pipes and a second refrigerant gas pipe. Further, an absorption refrigerator is provided as a device that serves as a cold source device and a hot source device, and the first condenser is cooled by a refrigerant sprayed from an evaporator in the absorption refrigerator, and the second evaporator is cooled by a refrigerant sprayed from an evaporator in the absorption refrigerator. It may be configured to be heated by the heat of the heat source of the regenerator of the type refrigerator.

【作用】[Effect]

本発明に係るビル空調システムによれば、温熱源および
冷熱源と負荷側の各空調ユニットとの間で、水ではなく
フロン等の常温近傍で容易に蒸発する冷媒が熱搬送媒体
として循環する。 冷房運転時には、被空調室側の負荷熱を空調ユニット内
の第!蒸発器で吸収した冷媒が液相から気相に変化し、
第1冷媒ガス管内をガス圧で上昇して冷熱源側熱交換器
の第1凝縮器へ至る。気相の冷媒は第1凝縮器内で冷却
されて凝縮し、重力により第1冷媒液管内を下降して空
調ユニットの第1蒸発器へ戻る。このようにして、冷房
運転時の冷媒は自身のガス圧と重力とを利用することに
よ1)、冷房回路内を自然循環して熱搬送に供する。 また、暖房運転時には、被空調室側の負荷熱を空調ユニ
ット内の第2凝縮器で吸収した冷媒が気相から液相に変
化し、重力により第2冷媒液管内を下降して受液器内に
一旦貯留され、ポンプによって第2冷媒液管を通って温
熱源側熱交換器の第2蒸発器へ圧送される。液相の冷媒
は第2蒸発器内で加熱されて気化し、第2冷媒ガス管内
をそのガス圧で流動して空調ユニットの第2凝縮器へ戻
る。 このようにして、暖房運転時の冷媒は、重力を利用して
負荷側熱交換器に供給され、ポンプによって温熱源側熱
交換器へ回収されるという循環を繰り返しながら熱搬送
に供する。 本発明のビル空調システムでは、熱源側装置と負荷側装
置との間で冷媒が循環するサイクルは圧縮冷凍サイクル
ではなく、その系内に圧縮機を必要としないので、室内
ユニットである空調ユニット側へ冷凍機油が運ばれるこ
とはなく、その回収の必要もない。このため、系内を循
環する冷媒の流速に制約はなくな1)、各空調ユニット
に供給される冷媒の流量は、各被空調室の負荷に応じた
熱交換量に相当する量に制御できる。 また、空調ユニットの設置台数に関しては、冷媒が十分
に自然循環できる程度に系内の管路抵抗が小さければよ
く、冷凍機油回収のために必要となる冷媒ガス流速には
下限がない。 空調ユニット内の熱交換器は、第1蒸発器と第2凝縮器
とを冷房運転時と暖房運転時とで切り替えて用いること
によ1)、二つの熱交換器を設けなくとも一つで両方の
運転時に対応できる。 また、温熱源側熱交換器としての第2蒸発器を空調ユニ
ットよりも低所に設置すれば、暖房回路においても冷媒
を自然循環させることは可能であ1)、ポンプを用いる
必要もなくなるが、一方では熱源装置を冷房用と暖房用
とで建物の高所と低所とに分離して設置しなければなら
ず、メインテナンス上でも不利になるということもあ1
)、第2蒸発器を第1凝縮器とともに建物の高所に設置
することによって、特に吸収式冷凍機を用いることによ
って一つの装置で温熱源と冷熱源とを備えることができ
、メインテナンス上も有利である。
According to the building air conditioning system according to the present invention, a refrigerant that easily evaporates near room temperature, such as fluorocarbon, instead of water, circulates as a heat transfer medium between the heat source and the cold source and each air conditioning unit on the load side. During cooling operation, the load heat from the air-conditioned room is transferred to the air conditioning unit. The refrigerant absorbed in the evaporator changes from liquid phase to gas phase,
The gas pressure rises in the first refrigerant gas pipe and reaches the first condenser of the cold heat source side heat exchanger. The gas phase refrigerant is cooled and condensed in the first condenser, and is returned to the first evaporator of the air conditioning unit by gravity in the first refrigerant liquid pipe. In this way, during cooling operation, the refrigerant is naturally circulated within the cooling circuit by utilizing its own gas pressure and gravity (1), and is used for heat transfer. In addition, during heating operation, the refrigerant that absorbs the load heat from the air-conditioned room side in the second condenser in the air conditioning unit changes from the gas phase to the liquid phase, and descends in the second refrigerant liquid pipe due to gravity to the liquid receiver. The refrigerant is temporarily stored in the refrigerant liquid pipe, and is then force-fed by a pump to the second evaporator of the heat exchanger on the heat source side through the second refrigerant liquid pipe. The liquid phase refrigerant is heated and vaporized in the second evaporator, flows through the second refrigerant gas pipe at its gas pressure, and returns to the second condenser of the air conditioning unit. In this way, during heating operation, the refrigerant is supplied to the load-side heat exchanger using gravity, and is then recovered by the pump to the heat source-side heat exchanger, repeating the cycle for heat transfer. In the building air conditioning system of the present invention, the cycle in which refrigerant circulates between the heat source side device and the load side device is not a compression refrigeration cycle, and does not require a compressor in the system. No refrigeration oil is transported to the plant, and there is no need to collect it. Therefore, there is no restriction on the flow rate of the refrigerant circulating within the system (1), and the flow rate of the refrigerant supplied to each air conditioning unit can be controlled to an amount equivalent to the amount of heat exchange depending on the load of each air-conditioned room. . Regarding the number of air conditioning units installed, it is sufficient that the pipe resistance within the system is small enough to allow natural circulation of the refrigerant, and there is no lower limit to the refrigerant gas flow rate required for refrigerating machine oil recovery. By using the first evaporator and the second condenser while switching between cooling operation and heating operation, the heat exchanger in the air conditioning unit can be replaced with one heat exchanger instead of two heat exchangers. It can be used when driving both. Additionally, if the second evaporator, which serves as a heat exchanger on the heat source side, is installed at a lower location than the air conditioning unit, it is possible to naturally circulate the refrigerant in the heating circuit1), eliminating the need to use a pump. On the other hand, heat source equipment for cooling and heating must be installed separately in high and low parts of the building, which may be disadvantageous in terms of maintenance.
), by installing the second evaporator together with the first condenser at a high location in the building, especially by using an absorption chiller, it is possible to provide a hot source and a cold source in one device, which also reduces maintenance costs. It's advantageous.

【実施例】【Example】

以下に本発明の好適一実施例について添付図面を参照し
て説明する。 第1図は本発明のビル空調システムに係る一実施例を示
す概略構成図である。本システムの各構成はそれぞれの
設置位置が高さ位置に関して特定されている。建物の例
えば屋上のような高所には、冷熱源装置および温熱源装
置として吸収式冷凍機lが設置されている。また、建物
内の例えば各階の被空調室のような上記吸収式冷凍機l
の設置位置よりも低い場所には、負荷側装置として空調
ユニット2が群をなして設置されている。 吸収式冷凍機1は、その基本的構成として再生器3およ
び蒸発器4を備えてお1)、特にその再生器3において
リチウムブロマイド水溶液を加熱して水分を蒸発させる
ために、例えば小型ボイラ等の加熱源5を備えている。 また、蒸発器4には、冷媒液である水を蒸発さけるべく
蒸発熱を与える放熱器7が組み込まれている。一方、空
調ユニット2内には、被空調室内の空気を冷房時に冷却
または暖房時に加熱するための熱交換器6が内蔵されて
いる。 本空調システムの熱搬送系では、吸収式冷凍機lの蒸発
器4に組み込まれた放熱器7が冷房回路における第1凝
縮器として構成され、空調ユニット2内の熱交換器6が
冷房回路における第1蒸発器として構成される。したが
って、第1凝縮器8と第1蒸発器6の間は第1冷媒液管
10および第1冷媒ガス管11によって閉回路を形成す
るように連結されて冷房回路が構成されている。また、
吸収式冷凍機lには、その再生器3からその加熱源5の
熱によって蒸発させられた水分が導かれて、暖房回路に
おけろ温熱源側熱交換器を構成する第2蒸発器9が備え
られている。この第2蒸発器9がら空調ユニット2内の
熱交換器6までの間を第2冷媒ガス管13で連結し、さ
らにこの空調ユニット2よりも低い位置に設けられた受
液器14およびポンプ15を途中に介して空調ユニット
2内の熱交換器6から第2蒸発器9までの間を第2冷媒
液管12で連結して閉回路を形成するように暖房回路が
構成されている。したがって空調ユニット2内の熱交換
器6は暖房回路においては第2凝縮器を構成することに
なる。また、空調ユニット2内の熱交換器6の冷媒出入
口近辺には、熱交換器6の下側に第1流量制御弁16が
、熱交換器6の上側には第2流量制御井17か設けられ
ている。 このように、空調ユニット2内に内蔵された熱交換器6
は、本空調システムの冷媒系を冷房回路としてまたは暖
房回路として切り替えることによって、冷房運転用とし
ての第1蒸発器と暖房運転用の第2凝縮器とに切り替え
られる。したがって、冷房回路と暖房回路とが別々に構
成されている場合には熱交換器も別々に二つ設ければよ
い。本実施例においては、冷房回路における第1冷媒液
管10および第1冷媒ガス管11の一部と、暖房回路に
おける第2冷媒液管12および第2冷媒ガス管13の一
部とは互いに共用されてお1)、冷暖房切り替えのため
に、第1凝縮器8の冷媒ガス流入口近辺および冷媒液流
出口近辺には第1開閉弁18および第2開閉弁19が設
けられ、第2蒸発器9の冷媒液流入口近辺および冷媒ガ
ス流出口近辺には第3開閉弁20および第4開閉弁2!
が設けられ、さらには受液器14の冷媒液流入口近辺に
も第5開閉弁22が設けられている。 なお、本実施例の空調システムにおいて冷房回路および
暖房回路内を循環する冷媒はフロン冷媒とする。 以上のように構成された本実施例の空調システムで冷房
運転を行う場合には、まず第1および第2開閉弁18.
19が開かれ、且つ第3.第4および第5開閉弁20,
21.22が閉じられることによって冷房回路が形成さ
れる。第1凝縮器8即ち吸収式冷凍機lにおける蒸発器
4の放熱器7では、冷凍機lの冷媒である水が、蒸発器
4内の低圧の下で噴霧されて蒸発する際に奪うその蒸発
潜熱を、冷房回路内を循環しているフロン冷媒から得る
。 放熱器7内では、フロン冷媒は気相で流入し、水冷媒に
蒸発潜熱を与えることによって自らは凝縮して液相状態
に変化する。放熱器7即ち第1凝縮器8からは、液相の
フロン冷媒が重力によって第1冷媒液管IO内を流下し
、空調ユニット2内の熱交換器6即ち第1蒸発器へ供給
される。第1蒸発器6では、被空調室の負荷を持った室
内空気と液相フロン冷媒とが熱交換を行い、液相フロン
冷媒は室内空気から負荷熱を奪うことによって蒸発する
。フロン冷媒は気相となって第1冷媒ガス管li内をガ
ス圧で上昇し、第1凝縮器8即ち吸収式冷凍機1におけ
る蒸発器4の放熱器7へ至る。 このように冷房回路では、フロン冷媒が第1蒸発器6お
よび第1凝縮器8での熱交換による相変化を伴いながら
重力と自らのガス圧によって回路内を自然循環する。 フロン冷媒の流量制御は、熱交換器6の下側に設けられ
た第1流量制御弁16によって液相冷媒の流入量が制御
され、上側に設けられた第2流量制御弁17は常時開放
されている。 また暖房運転を行う場合には、第1および第2開閉弁1
8.19が閉じられ、且つ第3.第4および第5開閉弁
20.21.22が開かれることによって暖房回路が形
成される。第2蒸発器9では、吸収式冷凍機lのリチウ
ムブロマイド水溶液を加熱して水蒸気となったその水分
が再生器から導かれ、この水蒸気と暖房回路内を循環す
るフロン冷媒との間で熱交換が行われる。第2蒸発器9
内では、フロン冷媒はポンプ15により圧送されて液相
で流入し、水蒸気となっている水冷媒に加熱されて気相
に変化する。第2蒸発器9からは主に気相フロン冷媒の
ガス圧によって第2冷媒ガス管13内を流れ、空調ユニ
ット2内の熱交換器6即ち第2凝縮器へ供給される。第
2凝縮器6では、被空調室の負荷を持った室内空気と気
相フロン冷媒とが熱交換を行い、気相フロン冷媒は室内
空気へその負荷熱を与えることによって凝縮する。フロ
ン冷媒は液相となって第2冷媒液管12内を重力によっ
て流下し、受液器14へ至る。受液器14には所定量の
液相フロン冷媒が貯留されてお1)、ポンプ15の運転
に伴って第2蒸発器9へ至る。このように暖房回路では
、フロン冷媒が第2蒸発器9および第2凝縮器6での熱
交換による相変化を伴いながら重力および自らのガス圧
とポンプ!5の圧送によって回路内を循環する。 フロン冷媒の流量制御は、熱交換器6の上側に設けられ
た第2流量制御弁17によって気相冷媒の流入量が制御
され、下側に設けられた第1流量制御井16は常時開放
されている。 なお、上述の実施例では吸収式冷凍機!を用いることに
よって温熱源および冷熱源を得ているが、それぞれの熱
源を別の装置によって構成してもよいのは勿論である。
A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing an embodiment of the building air conditioning system of the present invention. Each component of this system has its installation position specified in terms of height position. At a high place such as the roof of a building, an absorption refrigerator 1 is installed as a cold source device and a hot source device. In addition, the above-mentioned absorption refrigerating machine l
A group of air conditioning units 2 are installed as load-side devices at a location lower than the installation position of. The absorption chiller 1 basically includes a regenerator 3 and an evaporator 4 (1). In particular, in the regenerator 3, a small boiler or the like is used to heat the lithium bromide aqueous solution and evaporate water. A heating source 5 is provided. Further, the evaporator 4 includes a heat radiator 7 that provides heat of evaporation to avoid evaporation of water, which is a refrigerant liquid. On the other hand, the air conditioning unit 2 includes a built-in heat exchanger 6 for cooling the air in the conditioned room during cooling or heating the air during heating. In the heat transfer system of this air conditioning system, the radiator 7 built into the evaporator 4 of the absorption chiller 1 is configured as the first condenser in the cooling circuit, and the heat exchanger 6 in the air conditioning unit 2 is configured as the first condenser in the cooling circuit. It is configured as a first evaporator. Therefore, the first condenser 8 and the first evaporator 6 are connected to form a closed circuit by the first refrigerant liquid pipe 10 and the first refrigerant gas pipe 11, thereby configuring a cooling circuit. Also,
The moisture evaporated by the heat of the heating source 5 is guided from the regenerator 3 to the absorption refrigerator 1, and a second evaporator 9 forming a heat exchanger on the heat source side in the heating circuit is introduced. It is equipped. A second refrigerant gas pipe 13 connects the second evaporator 9 to the heat exchanger 6 in the air conditioning unit 2, and a liquid receiver 14 and a pump 15 are provided at a lower position than the air conditioning unit 2. The heating circuit is configured to connect the heat exchanger 6 in the air conditioning unit 2 to the second evaporator 9 with a second refrigerant liquid pipe 12 to form a closed circuit. Therefore, the heat exchanger 6 in the air conditioning unit 2 constitutes a second condenser in the heating circuit. Further, near the refrigerant inlet/outlet of the heat exchanger 6 in the air conditioning unit 2, a first flow control valve 16 is provided below the heat exchanger 6, and a second flow control well 17 is provided above the heat exchanger 6. It is being In this way, the heat exchanger 6 built in the air conditioning unit 2
is switched between the first evaporator for cooling operation and the second condenser for heating operation by switching the refrigerant system of the air conditioning system as a cooling circuit or as a heating circuit. Therefore, when the cooling circuit and the heating circuit are configured separately, two heat exchangers may be provided separately. In this embodiment, a part of the first refrigerant liquid pipe 10 and the first refrigerant gas pipe 11 in the cooling circuit and a part of the second refrigerant liquid pipe 12 and the second refrigerant gas pipe 13 in the heating circuit are shared with each other. 1), in order to switch between heating and cooling, a first on-off valve 18 and a second on-off valve 19 are provided near the refrigerant gas inlet and the refrigerant liquid outlet of the first condenser 8, and A third on-off valve 20 and a fourth on-off valve 2 are located near the refrigerant liquid inlet and the refrigerant gas outlet of 9!
Further, a fifth on-off valve 22 is provided near the refrigerant liquid inlet of the liquid receiver 14. Note that in the air conditioning system of this embodiment, the refrigerant circulating in the cooling circuit and the heating circuit is a fluorocarbon refrigerant. When performing cooling operation with the air conditioning system of this embodiment configured as described above, first, the first and second on-off valves 18.
19 was opened, and the third. fourth and fifth on-off valves 20,
A cooling circuit is formed by closing 21 and 22. In the first condenser 8, that is, in the radiator 7 of the evaporator 4 in the absorption refrigerator 1, water, which is a refrigerant in the refrigerator 1, is sprayed under low pressure in the evaporator 4 and is removed when it evaporates. Latent heat is obtained from the Freon refrigerant circulating in the cooling circuit. In the heat radiator 7, the fluorocarbon refrigerant flows in a gas phase, and by imparting latent heat of vaporization to the water refrigerant, it condenses itself and changes to a liquid phase state. From the radiator 7, that is, the first condenser 8, the liquid-phase fluorocarbon refrigerant flows down in the first refrigerant liquid pipe IO by gravity, and is supplied to the heat exchanger 6, that is, the first evaporator in the air conditioning unit 2. In the first evaporator 6, the loaded indoor air of the air-conditioned room and the liquid-phase fluorocarbon refrigerant exchange heat, and the liquid-phase fluorocarbon refrigerant evaporates by taking the load heat from the indoor air. The fluorocarbon refrigerant becomes a gas phase and rises under gas pressure inside the first refrigerant gas pipe li, reaching the first condenser 8 , that is, the radiator 7 of the evaporator 4 in the absorption refrigerator 1 . In this manner, in the cooling circuit, the fluorocarbon refrigerant naturally circulates within the circuit due to gravity and its own gas pressure while undergoing a phase change due to heat exchange in the first evaporator 6 and first condenser 8. To control the flow rate of the fluorocarbon refrigerant, the inflow amount of the liquid phase refrigerant is controlled by a first flow control valve 16 provided on the lower side of the heat exchanger 6, and a second flow control valve 17 provided on the upper side is always open. ing. In addition, when performing heating operation, the first and second on-off valves 1
8.19 is closed and the third. A heating circuit is formed by opening the fourth and fifth on-off valves 20.21.22. In the second evaporator 9, the lithium bromide aqueous solution in the absorption refrigerator 1 is heated and the water vapor is led from the regenerator, and heat is exchanged between this water vapor and the fluorocarbon refrigerant circulating in the heating circuit. will be held. Second evaporator 9
Inside, the fluorocarbon refrigerant is pumped by the pump 15 and flows in the liquid phase, and is heated by the water refrigerant in the form of water vapor, changing to the gas phase. From the second evaporator 9, the gas-phase fluorocarbon refrigerant flows through the second refrigerant gas pipe 13 mainly due to the gas pressure, and is supplied to the heat exchanger 6 in the air conditioning unit 2, that is, the second condenser. In the second condenser 6, the loaded indoor air of the air-conditioned room and the vapor-phase fluorocarbon refrigerant exchange heat, and the vapor-phase fluorocarbon refrigerant is condensed by giving its load heat to the indoor air. The fluorocarbon refrigerant turns into a liquid phase and flows down by gravity within the second refrigerant liquid pipe 12 and reaches the liquid receiver 14 . A predetermined amount of liquid-phase fluorocarbon refrigerant is stored in the liquid receiver 14 (1), and reaches the second evaporator 9 as the pump 15 operates. In this way, in the heating circuit, the fluorocarbon refrigerant undergoes a phase change due to heat exchange in the second evaporator 9 and the second condenser 6, while interacting with gravity and its own gas pressure! It circulates in the circuit by pumping 5. To control the flow rate of the fluorocarbon refrigerant, the inflow amount of the gas phase refrigerant is controlled by the second flow control valve 17 provided on the upper side of the heat exchanger 6, and the first flow control well 16 provided on the lower side is always open. ing. In addition, in the above-mentioned example, an absorption refrigerator is used! Although the heat source and the cold source are obtained by using the above, it goes without saying that each heat source may be constituted by a separate device.

【発明の効果】【Effect of the invention】

以上の説明より明らかなように、本発明によれば次のご
とき優れた効果が発揮される。 すなわち、被空調室側に熱搬送媒体としての水の流路を
設けずに冷暖房を行なうので、居室内での漏水事故の発
生が防止できる。また、各空調ユニットでの冷媒流量制
御が可能になり能力制御が容易になる。また1台の屋外
ユニットに対応して設置できる室内ユニットの台数を直
膨式よりも増加できる。
As is clear from the above description, the present invention provides the following excellent effects. That is, since heating and cooling is performed without providing a flow path for water as a heat transfer medium on the side of the air-conditioned room, water leakage accidents in the living room can be prevented. Furthermore, it becomes possible to control the refrigerant flow rate in each air conditioning unit, making capacity control easier. Furthermore, the number of indoor units that can be installed corresponding to one outdoor unit can be increased compared to the direct expansion type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のビル空調システムに係る一実施例を示
す概略構成図である。 I・・・吸収式冷凍機、2・・・空調ユニット、3・・
・再生器、4・・・蒸発器、5・・・加熱源、6・・・
第1蒸発器または第2凝縮器としての熱交換器、7・・
・放熱器、訃・・第1凝縮器、9・・・第2蒸発器、1
0・・・第1冷媒液管、lト・・第1冷媒ガス管、12
・・・第2冷媒液管、13・・・第2冷媒ガス管、14
・・・受液器、15・・・ポンプ、16・・・第1流量
制御弁、17・・・第2流量制御弁、18・・・第1開
閉弁、19・・・第2開閉弁、20・・・第3開閉弁、
21・・・第4開閉弁、22・・・・第5開閉弁 特 許 出 願 人   株式会社竹中工務店(ほか1
名)
FIG. 1 is a schematic diagram showing an embodiment of the building air conditioning system of the present invention. I...Absorption chiller, 2...Air conditioning unit, 3...
・Regenerator, 4... Evaporator, 5... Heating source, 6...
Heat exchanger as first evaporator or second condenser, 7.
・Radiator, end...First condenser, 9...Second evaporator, 1
0...first refrigerant liquid pipe, lg...first refrigerant gas pipe, 12
...Second refrigerant liquid pipe, 13...Second refrigerant gas pipe, 14
...Liquid receiver, 15...Pump, 16...First flow control valve, 17...Second flow control valve, 18...First on-off valve, 19...Second on-off valve , 20... third on-off valve,
21...4th on-off valve, 22...5th on-off valve Patent Applicant: Takenaka Corporation (and 1 others)
given name)

Claims (3)

【特許請求の範囲】[Claims] (1)、建物の高所に設置された冷熱源側熱交換器とし
ての第1凝縮器(8)および温熱源側熱交換器としての
第2蒸発器(9)と、 上記第1凝縮器(8)および第2蒸発器(9)よりも低
所の建物内に、空調ユニット(2)に内蔵されて設置さ
れる負荷側熱交換器としての第1蒸発器(6)および第
2凝縮器(6)と、 上記空調ユニット(2)よりも低所に設置され、上記第
2凝縮器(6)から流出する冷媒液を貯留する受液器(
14)とを備え、 上記第1凝縮器(8)と第1蒸発器(6)との間を、第
1冷媒液管(10)および第1冷媒ガス管(11)で連
結して冷房回路を形成し、 上記第2蒸発器(9)と第2凝縮器(6)との間を、第
2冷媒液管(12)および第2冷媒ガス管(13)で連
結して暖房回路を形成し、 上記暖房回路の第2冷媒液管(12)に、上記受液器(
14)内の冷媒液を第2蒸発器(9)へ圧送するポンプ
(15)を備えたことを特徴とするビル空調システム。
(1) A first condenser (8) as a cold source side heat exchanger and a second evaporator (9) as a hot source side heat exchanger installed in a high place of the building, and the first condenser The first evaporator (6) and second condenser as a load-side heat exchanger are built into the air conditioning unit (2) and installed in a building at a lower location than the second evaporator (8) and the second evaporator (9). a liquid receiver (6), which is installed at a lower location than the air conditioning unit (2) and stores the refrigerant liquid flowing out from the second condenser (6).
14), the first condenser (8) and the first evaporator (6) are connected by a first refrigerant liquid pipe (10) and a first refrigerant gas pipe (11) to form a cooling circuit. A heating circuit is formed by connecting the second evaporator (9) and the second condenser (6) with a second refrigerant liquid pipe (12) and a second refrigerant gas pipe (13). The second refrigerant liquid pipe (12) of the heating circuit is connected to the liquid receiver (
14) A building air conditioning system characterized by comprising a pump (15) that pumps the refrigerant liquid in the air conditioner (14) to a second evaporator (9).
(2)、上記空調ユニット(2)内の第1蒸発器(6)
および第2凝縮器(6)は一の熱交換器(6)により構
成され、冷房運転時には上記第1冷媒液管(10)およ
び第1冷媒ガス管(11)が接続され、暖房運転時には
上記第2冷媒液管(12)および第2冷媒ガス管(13
)に接続される請求項1記載のビル空調システム。
(2), the first evaporator (6) in the air conditioning unit (2)
The second condenser (6) is constituted by one heat exchanger (6), and the first refrigerant liquid pipe (10) and the first refrigerant gas pipe (11) are connected during cooling operation, and the above-mentioned first refrigerant gas pipe (11) is connected during heating operation. The second refrigerant liquid pipe (12) and the second refrigerant gas pipe (13)
) The building air conditioning system according to claim 1, wherein the building air conditioning system is connected to.
(3)、上記第1凝縮器(8)は、吸収式冷凍機(1)
における蒸発器(4)の噴霧冷媒により冷却され、上記
第2蒸発器(9)は、該吸収式冷凍機(1)の再生器(
3)の加熱源(5)の熱により加熱される請求項1また
は2に記載のビル空調システム。
(3), the first condenser (8) is an absorption refrigerator (1)
The second evaporator (9) is cooled by the refrigerant sprayed from the evaporator (4) in the regenerator (1) of the absorption refrigerator (1).
The building air conditioning system according to claim 1 or 2, wherein the building air conditioning system is heated by the heat of the heating source (5) of (3).
JP63045629A 1988-02-26 1988-02-26 Building air conditioning system Expired - Lifetime JP2543560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045629A JP2543560B2 (en) 1988-02-26 1988-02-26 Building air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045629A JP2543560B2 (en) 1988-02-26 1988-02-26 Building air conditioning system

Publications (2)

Publication Number Publication Date
JPH01219454A true JPH01219454A (en) 1989-09-01
JP2543560B2 JP2543560B2 (en) 1996-10-16

Family

ID=12724664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045629A Expired - Lifetime JP2543560B2 (en) 1988-02-26 1988-02-26 Building air conditioning system

Country Status (1)

Country Link
JP (1) JP2543560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014306A1 (en) * 2010-07-29 2012-02-02 株式会社 日立製作所 Air conditioning and hot-water supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014306A1 (en) * 2010-07-29 2012-02-02 株式会社 日立製作所 Air conditioning and hot-water supply system
JP5572711B2 (en) * 2010-07-29 2014-08-13 株式会社日立製作所 Air conditioning and hot water supply system

Also Published As

Publication number Publication date
JP2543560B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US6591902B1 (en) Apparatus for applying controllable, multipurpose heat pipes to heating, ventilation, and air conditioning systems
US4569207A (en) Heat pump heating and cooling system
US5729985A (en) Air conditioning apparatus and method for air conditioning
JPH0235216B2 (en)
CN102844635B (en) Refrigeration system with consecutive expansions and method
CN111102770A (en) Air conditioning system capable of continuously heating
US9920963B1 (en) System for conditioning air with temperature and humidity control and heat utilization
JPH0341747B2 (en)
CN210832604U (en) Air conditioner
JP2005147623A (en) Air conditioner, and operating method for air conditioner
CN108302839A (en) Air-conditioner system
CN215892840U (en) Energy-saving dehumidifying refrigeration heat exchange device
CN208238089U (en) The air-conditioning system of Temperature and Humidity Control and heat utilization
JP2006220332A (en) Composite type air conditioner
JPH01219454A (en) Air conditioner for building
JPH01174834A (en) Air conditioning system for building
CN112797660A (en) Air conditioner and control method thereof
CN214249790U (en) Multi-split air conditioner
CN214370578U (en) Multi-split air conditioner
JPH06272978A (en) Air conditioner
CN214249789U (en) Multi-split air conditioner
CN215337172U (en) Air conditioner
CN213931199U (en) Outdoor heating assembly and multi-split air conditioning system
JPH0810065B2 (en) Building air conditioning system
JPH07151359A (en) Refrigerant circulation type air conditioning system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12