JPH01219110A - Production of metal powder - Google Patents

Production of metal powder

Info

Publication number
JPH01219110A
JPH01219110A JP4543888A JP4543888A JPH01219110A JP H01219110 A JPH01219110 A JP H01219110A JP 4543888 A JP4543888 A JP 4543888A JP 4543888 A JP4543888 A JP 4543888A JP H01219110 A JPH01219110 A JP H01219110A
Authority
JP
Japan
Prior art keywords
molten metal
metal flow
nozzles
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4543888A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuda
匡 福田
Toshihiko Kubo
敏彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4543888A priority Critical patent/JPH01219110A/en
Publication of JPH01219110A publication Critical patent/JPH01219110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To stably produce uniform fine particles in a high yield by arranging plural pairs of fluid jet spouting nozzles around a flow of a molten metal and specifying the positions of the nozzles forming each pair, the reciprocal positions of the pairs and the angle of the nozzles. CONSTITUTION:Plural pairs of gas jet spouting nozzles 2 are fitted to the bottom of a circular nozzle chamber 5 so that they are arranged around a flow 1 of a molten metal on the same horizontal plane. At this time, the nozzles 2 forming each pair are set opposite to each other at equal intervals from the flow 1, the pairs of nozzles 2 are set at different intervals from the flow 1 and all the nozzles 2 are positioned so that they intersect the flow 1 at the same angle. Blocking due to spouting-up of liq. jets is avoided and spherical fine powder of the desired particle size is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は垂直に流下する高温の溶融金属流に高流速の
流体ジェットを衝突させて粉砕・冷却することによって
微粉末を得る方法に係り、流体ジェットおよび溶融金属
の吹き上げを防止し、かつ安定した微粉化効果を得る方
法に関する。
The present invention relates to a method of obtaining fine powder by colliding a high-velocity fluid jet with a vertically descending high-temperature molten metal stream to crush and cool it, which prevents the fluid jet and molten metal from blowing up, and provides stable Concerning a method for obtaining a micronization effect.

【従来の技術】[Conventional technology]

金属粉末の製造方法としては、周知のとおり溶融金属に
ガス、油あるいは水のジェットを吹付けて粉化させるア
トマイズ法が生産性がよく、適用範囲が広いこと等から
多用されている。 特に最近では、射出成形、溶射等の用途から球形の微粉
末の需要が多く、この球形の微粉末の製造にはガス7ト
マイズ法が適用されている。 このガスアトマイズ法の噴霧装置としては、円環型、ペ
ンシル型、■型等が使用されているが、特にペンシル型
は噴射ジェットの調整がノズルチップの取替のみで可能
であること、噴射の経時的安定性が高いこと等の利点を
有する。 近年、粉末の利用分野では粒子径をざらに微細化するこ
゛とが要求されているが、粉末の微細化をはかるために
噴霧媒の噴射速度や噴射角度を増大すると、ガスジェッ
トの焦点すなわち溶融金属流とガスジェットとの交差点
付近から噴射ガスの一部が吹き上げられる現象が発生し
、溶融金属滴がガス流れによってはね上げられてノズル
おるいはノズル室等に付着堆積し、操業を停止せざるを
得ない状況となる。 これを回避するため、噴霧装置の複数のノズルチップの
噴射角度を変化させて溶融金属流とガスジェットの交差
点を分散させる方法(特開昭61−91303公報、特
公昭62−24481公報等)、あるいは溶融金属流の
周囲で噴射ガスを旋回させる方法(特開昭62−474
12号公報)等が提案されている。 [発明が解決しようとする課題] しかし、従来の前記の方法には次のような欠点があった
。 噴射角度の異なるノズルチップを配置して溶融金属流と
ガスジェットの交差点を分散させる方法では、溶融金属
流とガスジェットの衝突角度が異なることによって、生
成粒子径に大きな差が生ずる結果、粒度分布に大きなバ
ラツキが生じ、目標粒度の粉末収率が低い。 また、旋回ジェットを用いる方法ではガスジェットの溶
融金属流に対する衝突力が弱くなり、溶融金属を粉化さ
せる能力が低下し微粉の収率が低い。 この発明は従来の技術のこのような問題点に鑑みなされ
たものであり、目標粒度の微粉末を高収率で安定して1
mし得る方法を提案しようとするものである。 [課題を解決するための手段] この発明は溶融金属流の周囲から複数のガスジェットを
噴射して微粉化する場合、ガスジェットと溶融金属流と
の交差点を一点に集中させず分散させればガスの吹き上
げに伴うブロッキングを回避できるが、溶融金属流とガ
スジェットの衝突角度が異なると前記したとおり粒度分
布に大きなバラツキが生じるため、この問題を解決する
手段として、衝突角度を一定として流体ジェット噴射ノ
ズルの配置を改善するとともに、溶融金属流と流体ジェ
ットの交差点の分布範囲を適正化したものである。 すなわち、この発明は垂直に流下する溶融金属流の周囲
に2本一対の流体ジェット噴射ノズルを溶融金属流の中
心軸から同一距離を隔てて同一水平面に対向して配置す
るとともに、各2本一対の流体ジェット噴射ノズルを溶
融金属流と流体ジェットの交差角度一定で、流体ジェッ
ト噴射孔と溶融金属流との水平距離を変化させて設ける
ことにより、溶融金属流と流体ジェットの交差点を溶融
金属流の流下方向に沿って溶融金属流の直径の2〜5倍
の範囲で分布させることを特徴とするものである。
As a method for producing metal powder, the atomization method, in which molten metal is pulverized by spraying a jet of gas, oil, or water, is widely used because of its high productivity and wide range of applications. Particularly recently, there has been a great demand for spherical fine powder for applications such as injection molding and thermal spraying, and the gas 7tomization method has been applied to produce this spherical fine powder. As the atomizing device for this gas atomization method, annular type, pencil type, ■ type, etc. are used, but in particular, the pencil type requires that the injection jet can be adjusted only by replacing the nozzle tip, and that the injection time elapses. It has advantages such as high physical stability. In recent years, there has been a demand for finer particle sizes in the field of powder application, but increasing the injection speed and spray angle of the spray medium in order to make the powder finer reduces the focus of the gas jet, that is, the molten metal. A phenomenon occurs in which part of the injected gas is blown up from near the intersection of the gas flow and the gas jet, and molten metal droplets are thrown up by the gas flow and deposit on the nozzle or nozzle chamber, forcing the operation to stop. It becomes a no-win situation. In order to avoid this, there is a method of dispersing the intersection of the molten metal flow and the gas jet by changing the spray angle of a plurality of nozzle tips of the spray device (Japanese Patent Laid-Open No. 61-91303, Japanese Patent Publication No. 62-24481, etc.); Alternatively, a method of swirling the injection gas around the molten metal flow (Japanese Patent Application Laid-Open No. 62-474
12) etc. have been proposed. [Problems to be Solved by the Invention] However, the above conventional method has the following drawbacks. In the method of dispersing the intersection of the molten metal flow and the gas jet by arranging nozzle tips with different injection angles, the difference in the collision angle between the molten metal flow and the gas jet causes a large difference in the diameter of the generated particles, resulting in a change in particle size distribution. There is a large variation in the particle size, and the powder yield of the target particle size is low. In addition, in the method using a swirling jet, the collision force of the gas jet against the molten metal flow is weakened, the ability to pulverize the molten metal is reduced, and the yield of fine powder is low. This invention was made in view of the problems of the conventional technology, and it is possible to stably produce fine powder with a target particle size at a high yield.
The purpose of this paper is to propose a method that can [Means for Solving the Problems] This invention provides that when a plurality of gas jets are injected from around a molten metal flow to pulverize it, if the intersections of the gas jets and the molten metal flow are dispersed instead of being concentrated at one point. Blocking due to gas blow-up can be avoided, but if the collision angle between the molten metal flow and the gas jet differs, as mentioned above, large variations in particle size distribution will occur, so as a means to solve this problem, a fluid jet with a constant collision angle is used. The arrangement of the injection nozzle has been improved and the distribution range of the intersection of the molten metal flow and the fluid jet has been optimized. That is, in this invention, two pairs of fluid jet jet nozzles are arranged around a vertically descending molten metal stream, facing each other on the same horizontal plane at the same distance from the central axis of the molten metal stream. By providing a fluid jet injection nozzle with a constant intersection angle between the molten metal flow and the fluid jet and varying the horizontal distance between the fluid jet injection hole and the molten metal flow, the intersection of the molten metal flow and the fluid jet is The molten metal is distributed along the flow direction in a range of 2 to 5 times the diameter of the molten metal flow.

【作  用】[For production]

溶融金属流の周囲に溶融金属流の中心軸から同一距離を
隔てて同一水平面上に2個一対の流体ジェットを対向さ
せて配置させるのは、以下に示す理由による。 第3図(A>に示すごとく、同一水平面上における溶融
金属流(1)の中心軸との距離が同一であると、垂直に
流下する溶融金属流(1)と、噴射ノズル(2)から噴
出する流体ジェット(3)の交差点付近で溶融金属の粉
化が完了し、かつ生成した溶融滴が溶融金属流の鉛直下
方に落下する。したがって、粒−子径の均一な粉末が得
られ、また粉末回収タンク壁への衝突による異径粉も生
成しない。 しかし、同図(B)(C)に示すように、噴射角度が同
一であっても2個一対の噴射ノズル(2)の配置が溶融
金属流に関して非対象であると、生成粒子の粒径が相対
的に大きくなり、かつ回収タンクへの衝突による異形粉
が生成混入して品質を劣化させることになる。 このため、噴射ノズルは溶融金属流の中心を円の中心と
する同心円上に対向させて配置する必要がある。 また、噴射ノズルから噴出するガスジェットの噴射角度
を一定にするのは、噴射角度(溶融金属流とガスジェッ
トの衝突角度)と生成粒子径の関係を考慮したことによ
る。 すなわち、アトマイズ法による粉末の製造においては、
溶融金属流と噴霧媒の衝突角度が生成粒子径に大きな影
響をおよぼす。第4図は第5図に示すようなV型噴射を
第1表に示す噴霧条件で行なった場合の生成粒子径と噴
射角度の関係を示す。 第4図より、噴射角度を小さくすると衝突角度が小さく
なり衝突力が弱められることと、ガスの噴射孔と交差点
との距離が長くなって交差点でのガス流速が低下して粉
化しにくいことの相乗影響により粒子径が大きくなる。 したがって、ガスジェットの噴射角度は一定とする必要
がある。 第  1   表 また、溶融金属流とガスジェットの交差点をある1点に
集中させずに鉛直方向に分布させるのは、既に明らかに
なっているように、ガスの吹き上げ現象を防止するため
である。これは、上方で焦点を結ぶガスジェットによる
鉛直下向きガス流れによって、その下方で焦点を結ぶガ
スジェットの一部が吹き上がるのを抑制する効果による
。 しかしながら、単に鉛直方向に分布させるだけでは、ガ
スの吹き上げ現象は防止できても生成粒子径の微細化お
よび粒度分布の均一化ははかれない。 そこで発明では溶融金属流とガスジェットの交差点の分
布範囲を溶融金属流の流下方向に沿って当該溶融金属流
の直径の2〜5倍の範囲と規定したのである。 すなわち、ガスジェットの吹き上げを防止するためには
交差点の分布範囲を溶融金属流の直径(D)の2倍以上
とする必要があり、また生成粒子径を小ざくし、かつ粒
度分布を均一化し目標粒度の粉末収率を上げるためには
交差点の分布範囲をOの5倍以下とする必要がある。 第6図は生成粒子径と交差点の分布の長さの関係を実験
により求めたデータである。なお、衝突角度は15度で
行なった。第7図(A)はアトマイズノズルの配置状況
を示す平面図であり、B−B。 B’ −8’ 、B”−B″断面重ねて描いた図を第7
図(B)に示す。第7図(B)中のしは交差点分布範囲
である。 このデータより、L/Dが2〜5の範囲で粉末の平均粒
子径が最も小さく、L/Dが5以上になると平均粒子径
が大きくなることがわかる。 次に、この発明方法を実施するためのアトマイズノズル
としては、第1図(A>(B)にその−例を示すごとく
、円環型のノズル室(5)の底面に2本一対のガスジェ
ット噴射ノズル(2)を溶融金属流(1)の中心軸から
同一距離を隔ててそれぞれ相対向して配置するとともに
、その複数組の2本一対の噴射ノズル(2)はすべて溶
融金属流(1)と流体ジェット(3)との衝突角度を一
定として、溶融金属流と流体ジェットの交差する点が溶
融金属流の直径りの2゛〜5倍の範囲に分布するように
取付ける。 また、第2図に示すように、菱形に形成したノズル室(
15)に2個一対の噴射孔(12)をそれぞれ相対向し
て設けた構造の7トマイズノズルを用いる等、この発明
の条件を満しておればノズル室の形状に制限はない。 (実 施 例] 第1図に示す噴射ノズルを使用し、Cu−20%N。 溶湯から第2表に示す噴霧条件で粉末を製造した結果を
、噴射角度を変化させて交差点を分散させる方法(従来
法1)と、噴射ガスを旋回させる方法(従来法2)と比
較して第2表に併せて示す。 第2表より、本発明法は平均粒子径並びに粒度分布のい
ずれも従来法に比し優れていることがわかる。 以下余白 第  2  表 *累積篩上10%径と60%径の比 (小ざいほど均一径に近い) [発明の効果] 以上説明したごとく、この発明方法によれば、流体ジェ
ットの吹き上げに伴うブロッキングを回避できるだけで
なく、粒子の微細化並びに粒度分布の均一化がはかられ
、目標粒度の球形微粉末を安定して高収率で製造するこ
とができ、そのもたらす効果は甚大である。
The reason why a pair of fluid jets are arranged facing each other on the same horizontal plane at the same distance from the central axis of the molten metal flow around the molten metal flow is as follows. As shown in Fig. 3 (A>), if the distance between the molten metal flow (1) and the central axis on the same horizontal plane is the same, the molten metal flow (1) flowing vertically and the injection nozzle (2) The pulverization of the molten metal is completed near the intersection of the ejected fluid jets (3), and the generated molten droplets fall vertically below the molten metal flow.Therefore, powder with a uniform particle size is obtained. In addition, powder with different diameters due to collision with the powder recovery tank wall is not generated. However, as shown in Figures (B) and (C), even if the injection angle is the same, the arrangement of the two injection nozzles (2) If it is asymmetrical with respect to the molten metal flow, the particle size of the generated particles will be relatively large, and irregularly shaped powder will be generated and mixed in due to collision with the recovery tank, degrading the quality of the injection nozzle. need to be placed facing each other on concentric circles with the center of the molten metal flow as the center of the circle.Also, to keep the injection angle of the gas jet ejected from the injection nozzle constant, the injection angle (molten metal flow and This is due to the consideration of the relationship between the collision angle of the gas jet and the diameter of the particles produced.In other words, in the production of powder by the atomization method,
The collision angle between the molten metal flow and the spray medium has a large effect on the particle size produced. FIG. 4 shows the relationship between the diameter of generated particles and the injection angle when V-shaped injection as shown in FIG. 5 is carried out under the spray conditions shown in Table 1. From Figure 4, it can be seen that when the injection angle is decreased, the collision angle becomes smaller and the collision force is weakened, and the distance between the gas injection hole and the intersection becomes longer, reducing the gas flow velocity at the intersection and making it difficult to powder. The particle size increases due to the synergistic effect. Therefore, the injection angle of the gas jet needs to be constant. Table 1 Furthermore, as has already been made clear, the reason why the intersections of the molten metal flow and the gas jet are distributed in the vertical direction instead of concentrating on one point is to prevent the gas from blowing up. This is due to the effect of suppressing a portion of the gas jet focused below from blowing up due to the vertically downward gas flow caused by the gas jet focused above. However, by simply distributing the particles in the vertical direction, even if the gas blow-up phenomenon can be prevented, it is not possible to make the particle size of the generated particles finer or to make the particle size distribution more uniform. Therefore, in the invention, the distribution range of the intersection of the molten metal flow and the gas jet is defined as a range of 2 to 5 times the diameter of the molten metal flow along the downstream direction of the molten metal flow. That is, in order to prevent the gas jet from blowing up, it is necessary to make the distribution range of the intersection more than twice the diameter (D) of the molten metal flow, and also to make the generated particle size small and the particle size distribution uniform. In order to increase the powder yield of the target particle size, it is necessary to make the distribution range of the intersection point 5 times or less of O. FIG. 6 shows experimentally determined data on the relationship between the diameter of generated particles and the length of the intersection point distribution. Note that the collision angle was 15 degrees. FIG. 7(A) is a plan view showing the arrangement of atomizing nozzles, taken along line B-B. B'-8' and B''-B'' cross-sections are shown in Figure 7.
Shown in Figure (B). The box in FIG. 7(B) is the intersection distribution range. From this data, it can be seen that the average particle size of the powder is the smallest when L/D is in the range of 2 to 5, and when L/D is 5 or more, the average particle size becomes large. Next, as an atomizing nozzle for carrying out the method of this invention, as shown in FIG. The jet injection nozzles (2) are arranged opposite to each other at the same distance from the central axis of the molten metal flow (1), and the plurality of pairs of injection nozzles (2) are all arranged to face each other at the same distance from the central axis of the molten metal flow (1). The collision angle between 1) and the fluid jet (3) is fixed, and the points where the molten metal flow and the fluid jet intersect are distributed in a range of 2 to 5 times the diameter of the molten metal flow. As shown in Figure 2, the nozzle chamber (
There is no restriction on the shape of the nozzle chamber as long as it satisfies the conditions of the present invention, such as using a 7tomized nozzle having two pairs of injection holes (12) facing each other in 15). (Example) Using the injection nozzle shown in Fig. 1, Cu-20%N was produced from the molten metal under the spray conditions shown in Table 2.The method of dispersing the intersection points by changing the injection angle (Conventional method 1) and the method of swirling the injected gas (Conventional method 2) are also compared in Table 2.From Table 2, the method of the present invention has both the average particle diameter and particle size distribution compared to the conventional method. It can be seen that the method is superior to the above.Table 2 in the margin *Ratio of cumulative 10% diameter on sieve to 60% diameter (the smaller the diameter, the closer to uniform diameter) [Effects of the invention] As explained above, the method of this invention According to this method, it is possible to not only avoid blocking caused by the blow-up of a fluid jet, but also to make particles finer and more uniform in particle size distribution, and to produce spherical fine powder with a target particle size in a stable manner at a high yield. Yes, the effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A>はこの発明方法を実施するための7トマイ
ズノズルの一例を示す縦断面 図、同図(B)は同上ノズルの底面図 である。 第2図は同じくアトマイズノズルの変形例を示す斜視図
である。 第3図はアトマイズノズルの噴霧形態例を示す図で、図
(A>は溶融金属流の中心軸との距離を同一にした2本
一対の噴射ノズルによる噴霧形態、図(B)(C)は2
本一対の噴射ノズルの配置が溶融金属に関して非対称の
場合の噴霧形態をそれぞれ示す。 第4図は溶融金属流とガスジェットとの衝突角度と平均
粒子径の関係を示す図である。 第5図は■型噴霧を模式的に示す図である。 第6図はガスジェット交差点の分布と平均粒子径の関係
を示す図である。 第7図(A>はアトマイズノズルの配置状況を示す平面
図、同図(B)は図(A>のB−B線上、B’−8’線
上、B′l  B//線上の断面を重ねて描いた図であ
る。 1・・・溶融金属流     2・・・噴射ノズル3・
・・流体ジェット    5・・・ノズル室出願人  
住友金屈工業株式会社 代理人  弁理士 押田良久、7ji、@11〜.=:
+ 第1図 (A)       (B) 第2図 第3図 (A)       (B)       (C)第4
図 溶融金属とガスジェットとの衝突角度(deg )L/
Fig. 1 (A) is a vertical cross-sectional view showing an example of a 7 atomizing nozzle for carrying out the method of the present invention, and Fig. 1 (B) is a bottom view of the same nozzle. Fig. 2 is a modification of the same atomizing nozzle. Fig. 3 is a diagram showing an example of the spray form of the atomizing nozzle; Figures (B) and (C) are 2
The spray forms are shown when the arrangement of the pair of injection nozzles is asymmetrical with respect to the molten metal. FIG. 4 is a diagram showing the relationship between the collision angle of the molten metal flow and the gas jet and the average particle diameter. FIG. 5 is a diagram schematically showing ■-shaped spray. FIG. 6 is a diagram showing the relationship between the distribution of gas jet intersections and the average particle diameter. Fig. 7 (A> is a plan view showing the arrangement of the atomizing nozzles, and Fig. 7 (B) is a cross section on the BB line, B'-8' line, and B'l B// line of the figure (A>). These are overlapping diagrams. 1... Molten metal flow 2... Injection nozzle 3.
...Fluid jet 5...Nozzle chamber applicant
Sumitomo Kinku Kogyo Co., Ltd. Agent Patent Attorney Yoshihisa Oshida, 7ji, @11~. =:
+ Figure 1 (A) (B) Figure 2 Figure 3 (A) (B) (C) Figure 4
Figure: Collision angle between molten metal and gas jet (deg) L/
D

Claims (1)

【特許請求の範囲】[Claims] 1 垂直に流下する溶融金属流の周囲から複数の流体ジ
ェットを溶融金属流の流下方向下方で交差・衝突するよ
う噴射して微粉末を製造する方法において、溶融金属流
の周囲に2本一対の流体ジェット噴射ノズルを溶融金属
流の中心軸から同一距離を隔てて同一水平面上に対向し
て配置し、かつ溶融金属流と流体ジェットの交差角度一
定で、流体ジェット噴射ノズルと溶融金属流との水平距
離を変化させて設けることにより、溶融金属流と流体ジ
ェットの交差する点を溶融金属流の流下方向に沿って溶
融金属流の直径の2〜5倍の範囲で分布させることを特
徴とする金属粉末の製造方法。
1 In a method of producing fine powder by injecting multiple fluid jets from around a vertically descending molten metal flow so as to intersect and collide with each other in the downward direction of the molten metal flow, a pair of two jets are jetted around the molten metal flow. The fluid jet injection nozzles are arranged facing each other on the same horizontal plane at the same distance from the central axis of the molten metal flow, and the intersection angle between the molten metal flow and the fluid jet is constant. By varying the horizontal distance, the points where the molten metal flow and the fluid jet intersect are distributed in a range of 2 to 5 times the diameter of the molten metal flow along the downstream direction of the molten metal flow. Method for producing metal powder.
JP4543888A 1988-02-27 1988-02-27 Production of metal powder Pending JPH01219110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4543888A JPH01219110A (en) 1988-02-27 1988-02-27 Production of metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4543888A JPH01219110A (en) 1988-02-27 1988-02-27 Production of metal powder

Publications (1)

Publication Number Publication Date
JPH01219110A true JPH01219110A (en) 1989-09-01

Family

ID=12719323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4543888A Pending JPH01219110A (en) 1988-02-27 1988-02-27 Production of metal powder

Country Status (1)

Country Link
JP (1) JPH01219110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7276637B1 (en) * 2021-12-21 2023-05-18 Jfeスチール株式会社 Method for producing water-atomized metal powder and apparatus for producing water-atomized metal powder
WO2023119896A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Production method for water-atomized metal powder, and production device for water-atomized metal powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7276637B1 (en) * 2021-12-21 2023-05-18 Jfeスチール株式会社 Method for producing water-atomized metal powder and apparatus for producing water-atomized metal powder
WO2023119896A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Production method for water-atomized metal powder, and production device for water-atomized metal powder

Similar Documents

Publication Publication Date Title
KR102266202B1 (en) Metal powder producing apparatus and gas jet device for same
AU2018379291B2 (en) Metal powder manufacturing device, gas injector for same, and crucible
US20220080503A1 (en) Metal powder producing apparatus and gas jet device therefor
EP3085475B1 (en) Powder manufacturing apparatus and powder forming method
KR20210101086A (en) fluid spraying nozzle assembly
JP2015000997A (en) Soft magnetic metal powder production device
JPH01219110A (en) Production of metal powder
EP0419479B1 (en) A method and equipment for microatomizing liquids, preferably melts
JPH04173906A (en) Atomizing nozzle device
JPS6350404A (en) Spray nozzle for producing metallic powder
JPS6227058A (en) Molten metal atomizer
US5190701A (en) Method and equipment for microatomizing liquids, preferably melts
JPH0649512A (en) Device for producing gas-atomized metal powder
JP2834348B2 (en) Manufacturing method of metal powder
JPH08199207A (en) Production of metallic powder and device therefor
JPH04114523U (en) Manufacturing equipment for spherical metal fine powder
JP2002129209A (en) Atomizing nozzle device for metal powder manufacture
KR20230129084A (en) Gas Spraying Apparatus for Manufacturing Metal and Alloy Powders and Apparatus for Manufacturing Metal Powder Using the Same
JPS63241104A (en) Production of fine spherical metal powder
JPH01246306A (en) Manufacture of fine spherical metal powder and nozzle therefor
JPH02153006A (en) Manufacture of metal powder
JPH04308293A (en) Jetter for pulp black liquor
JPH04247809A (en) Production of metal powder
JPH04168210A (en) Manufacture of metal powder
JPS6191303A (en) Method for producing pulverous metallic powder and liquid sprayer for producing pulverous metallic powder