JPH01218797A - Baked flux for low-hydrogen, low-oxygen, low-oygen welding - Google Patents

Baked flux for low-hydrogen, low-oxygen, low-oygen welding

Info

Publication number
JPH01218797A
JPH01218797A JP4692988A JP4692988A JPH01218797A JP H01218797 A JPH01218797 A JP H01218797A JP 4692988 A JP4692988 A JP 4692988A JP 4692988 A JP4692988 A JP 4692988A JP H01218797 A JPH01218797 A JP H01218797A
Authority
JP
Japan
Prior art keywords
flux
amount
low
weld metal
basicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4692988A
Other languages
Japanese (ja)
Inventor
Shigeo Oyama
繁男 大山
Hiroshi Naganuma
長沼 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4692988A priority Critical patent/JPH01218797A/en
Publication of JPH01218797A publication Critical patent/JPH01218797A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve the toughness of a weld metal and welding workability by incorporating CaF2, MgO, CaO, Al2O3, SiO2, Ca-Si, metal and oxide of B at specific weight ratios into the above flux and controlling the basicity thereof to a prescribed range. CONSTITUTION:35-65wt.% CaF2, 5-25% MgO, 4-15% CaO, 1-20% Al2O3, and 5-20% SiO2 are respectively incorporated into the flux. Further, the basicity (B) expressed by formula 1 is controlled to >=1.5 and the Ca-Si is incorporated into the flux at 0.1-5%, a metal carbide (in terms of CO2) at 2-8%, and the B oxide at 0.05-1.0% as disoxidizing agent. Since the respective component compsns. and the flux basicity are controlled to the adequate ranges, the lower oxygen, lower hydrogen and lower nitrogen of the weld metal are attained. The toughness of the weld metal is, therefore, improved. Slag blow-up and instability of bead formation are prevented and the welding workability is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶接金属の低酸素化、低窒素化、低水素化を同
時に実現し、かつ良好な溶接作業性が得られるサブマー
ジド・アーク溶接用焼成型フラックスに関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is for submerged arc welding, which simultaneously achieves low oxygen, low nitrogen, and low hydrogen weld metal, and provides good welding workability. This relates to firing type flux.

[従来の技術] 溶接金属の靭性を向上させるには、溶接金属をTi−B
系にして溶接金属の微細化を図り、かつ溶接金属中の酸
素量を減少させることが有効な方法であり、サブマージ
ド・アーク溶接のようにフラックスを使用する溶接にお
いては、フラックスの塩基度を高めることにより効果的
に溶接金属中の酸素量は減少するため高塩基性フラック
スの開発が行われてきた。
[Prior art] In order to improve the toughness of weld metal, weld metal is made of Ti-B.
An effective method is to refine the weld metal and reduce the amount of oxygen in the weld metal.In welding that uses flux, such as submerged arc welding, it is effective to increase the basicity of the flux. Since this effectively reduces the amount of oxygen in the weld metal, highly basic fluxes have been developed.

[発明が解決しようとする課題] ところでフラックスの塩基度を高めると、フラックスの
物性の調整が困難になり、ビード形状の悪イし、スラグ
巻き、込み、アンダカット、その他の溶接諸欠陥が発生
する。
[Problem to be solved by the invention] However, when the basicity of flux is increased, it becomes difficult to adjust the physical properties of the flux, resulting in poor bead shape, slag wrapping, entrainment, undercutting, and other welding defects. do.

また、溶接金属中の酸素量が減少するにともない、窒素
量か増加する傾向がある。これは酸素量の減少により溶
接溶融池におけるc +o −co↑反応が減少し、大
気の巻き込みを防止するCOのシールド作用が低下し、
大気中の窒素を吸収することが一つの原因と考えられて
いる。窒素は溶接金属靭性を阻害する元素てあり、低酸
素化により窒素量が増加することは、低酸素化本来の目
的が損なわれる問題となる。
Furthermore, as the amount of oxygen in the weld metal decreases, the amount of nitrogen tends to increase. This is because the c+o-co↑ reaction in the weld pool decreases due to the decrease in the amount of oxygen, and the shielding effect of CO that prevents atmospheric entrainment decreases.
One cause is thought to be absorption of nitrogen from the atmosphere. Nitrogen is an element that inhibits the toughness of weld metal, and an increase in the amount of nitrogen due to lower oxygen levels poses a problem in that the original purpose of lower oxygen levels is lost.

さらに溶融型フラックスにおいては、溶解製造時に大気
中の水分を吸収し溶接金属の拡散性水素量を増加させ、
溶接時に低温割れやビットが発生し易くなる。特開昭6
0−191891号公報では、フラックス組成、製造方
法により低水素・低窒素・低酸素化を図っている。しか
しながら、脱酸剤を利用できず塩基度を高める以外有効
な低酸素化の手段のない溶融型フラックスでは、酸性度
の大きい5i02の使用量を制限し、中性〜酸性のAl
2O3により物性調整を行っているが、フラックス中の
Al2O3が多いと溶接時に還元、酸化が行われ、溶−
金属中のAIの歩留まりが多くなり、溶接金属組織を微
細にしWj′性を向上させるTi−0xideの主層を
阻害する。
Furthermore, molten flux absorbs moisture from the atmosphere during melting and manufacturing, increasing the amount of diffusible hydrogen in the weld metal.
Cold cracking and bits are more likely to occur during welding. Tokukai Showa 6
No. 0-191891 attempts to achieve low hydrogen, low nitrogen, and low oxygen levels by changing the flux composition and manufacturing method. However, in molten fluxes where deoxidizers cannot be used and there is no effective means of reducing oxygen content other than increasing basicity, the amount of 5i02, which has a high acidity, is limited, and neutral to acidic Al
Physical properties are adjusted using 2O3, but if there is too much Al2O3 in the flux, reduction and oxidation will occur during welding, causing the melt to deteriorate.
The yield of AI in the metal increases and inhibits the main layer of Ti-Oxide which makes the weld metal structure fine and improves Wj' properties.

一方、焼成型フラックスにおいても、特−昭541−1
50693号公報、特開昭82−151292号公報で
は、塩基度を高めて溶接金属中の酸素量を低減し、低温
靭性の一保を図っている。特に塩基性成分であるMgO
を多量に配合するためフラックスの融点が高くなり、ビ
ード形状が不安定になるなど作業性を悪化させる。また
、同じ塩基性成分であり溶接金属中の酸素を低下させ溶
融スラグの流動性を高めてスラグ−メタル反応を促進さ
せる効果を持つCaF2は、添加量を高め゛るとポック
マークの発生等によるビード外観不良を起こし易いこと
から、その添加量は抑えられがちである。
On the other hand, in the case of firing type flux, special
No. 50693 and Japanese Unexamined Patent Publication No. 82-151292 attempt to maintain low-temperature toughness by increasing the basicity and reducing the amount of oxygen in the weld metal. Especially the basic component MgO
Since a large amount of is blended, the melting point of the flux becomes high, which deteriorates workability such as making the bead shape unstable. In addition, CaF2, which is a basic component and has the effect of reducing oxygen in the weld metal, increasing the fluidity of molten slag, and promoting the slag-metal reaction, can cause pock marks and other problems if added in a high amount. Since it tends to cause poor bead appearance, the amount added tends to be suppressed.

さらに焼成型フラックスでは、脱酸剤を添加することに
より効果的に溶接金属中の酸素量は低下するが、少量の
添加で低酸素化が可能な脱酸力の強いAl系の脱酸剤は
、上述のようにTi−0xideの生成を阻害する。一
方へlの影響を受けないMn、 Siなどは、多量に添
加しなければその効果は十分発揮されず、これらを多く
含むフラックスは、□スラグ剥離性など作業性が悪化す
る問題が発生する。
Furthermore, with sintered flux, the amount of oxygen in the weld metal can be effectively reduced by adding a deoxidizing agent, but an Al-based deoxidizing agent with strong deoxidizing power can reduce oxygen by adding a small amount. , inhibits the production of Ti-Oxide as described above. On the other hand, Mn, Si, etc., which are not affected by l, will not be fully effective unless added in large amounts, and fluxes containing a large amount of these will cause problems such as deterioration of workability such as □ slag removability.

本発明は上記問題点を解消するためになされたものであ
り、高靭性をもつ溶接金属を得るため溶接金属の低酸素
化、低窒素化、低水素化を同時に実現し、かつ良好な溶
接作業性が得られるサブマージド・アーク溶接用焼成型
フラックスを提供することにある。
The present invention was made to solve the above problems, and it simultaneously realizes low oxygen, low nitrogen, and low hydrogen in the weld metal in order to obtain a weld metal with high toughness, and also achieves good welding work. The object of the present invention is to provide a sintered flux for submerged arc welding that provides excellent properties.

[課題を解決するための手段] 本発明の要旨とするところは、CaF2:35〜65重
量%(以下単に%で記す)、MgO:5+’25%、C
aO’:4〜15%、Al203 : 1〜20%、5
i02:5〜20%の組成を有し、これらのフラックス
塩基度(13)が下記計算式で1.5以上であり、かつ
脱酸剤としてCa−5iを外敵て0.1〜5%、金属炭
酸塩をco2に換算して外敵で2〜8%、ボロン酸化物
を8203に換算して外敵0.05〜1.0%含有する
ことを特徴とする低水素・低窒素・低酸素溶接用焼成型
フラックスである。
[Means for Solving the Problems] The gist of the present invention is that CaF2: 35 to 65% by weight (hereinafter simply expressed as %), MgO: 5+'25%, C
aO': 4-15%, Al203: 1-20%, 5
i02: has a composition of 5 to 20%, the basicity of these fluxes (13) is 1.5 or more according to the following calculation formula, and 0.1 to 5% excluding Ca-5i as a deoxidizing agent, Low-hydrogen, low-nitrogen, and low-oxygen welding characterized by containing 2 to 8% of metal carbonate in terms of CO2 and 0.05 to 1.0% of boron oxide in terms of 8203. It is a firing type flux.

B = 6.5ONB8o+ 6.05Nc8o+ 4
8NMnO+ 4.0’NMgO+”  4NFeO+
5.IN(Hap2+0.3Nzr02  ”NAl2
o3−2.2N   −fi、3”N5H)2Ti(h ただしNkの記号は成分にのそれぞれのモル分率をあら
れす。
B = 6.5ONB8o+ 6.05Nc8o+ 4
8NMnO+ 4.0'NMgO+" 4NFeO+
5. IN(Hap2+0.3Nzr02 ”NAl2
o3-2.2N -fi, 3''N5H)2Ti(h However, the symbol Nk represents the mole fraction of each component.

[作 用] 本発明者らは高塩i性焼成型フラックスによる前述の諸
問題を解決するため種々検討を行った結果、以下に述べ
る知見を得た。
[Function] The present inventors conducted various studies to solve the above-mentioned problems caused by the high-salt sintered flux, and as a result, the following findings were obtained.

フラックスの塩基度が増大するにともない、また脱酸剤
添加量がi犬するにともない溶接金属の酸−門は減少す
るが、′高塩基着oyラックユにおいてビート形状を良
好にし、溶接欠陥を防止する  ”方法を検討した。フ
ラックス成分がビード形状、スラグ巻き込み、アバタな
と熔接諸欠陥に影響をおよぼす原因は種々あるが、特に
重要なものは軟化溶融温度、粘度などのフラックス溶融
物性を変化させることと、アーク状態におよぼすことで
ある。たとえば、本成分系において、5i02が多く塩
基度が低くさらに脱酸剤が少ない領域ではアバタが発生
したり、Al2O3が多い領域ではスパッタが発生する
ことは、フラックスの物性が不調であることが原因と考
えられ、炭酸塩が多く脱酸剤が少ない領域でビード形状
が不安定になることは、フラックス成分がアークの安定
性を変化させることに原因があると考える。また、脱酸
剤として添加したCa−5iがアバタの発生を抑え、ア
ークを安定化させることも見出した。
As the basicity of the flux increases, and as the amount of deoxidizer added increases, the amount of acid in the weld metal decreases; There are various reasons why flux components affect welding defects such as bead shape, slag entrainment, and welding defects, but the most important ones are changes in flux melt properties such as softening melting temperature and viscosity. For example, in this component system, avatars will occur in areas where 5i02 is high and basicity is low, and there is little deoxidizer, and spatter will occur in areas where Al2O3 is high. This is thought to be caused by the poor physical properties of the flux, and the instability of the bead shape in areas with a lot of carbonate and little deoxidizer is thought to be caused by flux components changing the stability of the arc. We also found that Ca-5i added as a deoxidizer suppresses the generation of avatars and stabilizes the arc.

第1図は、CaF2含有量を変化させた焼成型フラック
スにおいて溶接した時の窒素量を示す。同図に示すよう
に、フラックス中のCaF2量が増加すると溶接金属中
の窒素量は減少するが、CaF2が35%を超えると窒
素量に変化はなくなる。これは、溶接時にガス化したC
aF2が、アーク空洞への大気の巻き込みを防ぐシール
ド効果の役割をはたしていると考えるが、CaF2が3
5%でシールド効果の頂点に達し、以後CaF2を増加
してもそれ以上の効果はないものと考えるが、CaF2
を多量に配合することにより、溶接時に大気から吸収す
る窒素量を少なくする効果は極めて大きい。
FIG. 1 shows the amount of nitrogen when welding was performed using sintered fluxes with varying CaF2 contents. As shown in the figure, when the amount of CaF2 in the flux increases, the amount of nitrogen in the weld metal decreases, but when CaF2 exceeds 35%, there is no change in the amount of nitrogen. This is the C gasified during welding.
We believe that aF2 plays a role as a shield to prevent atmospheric air from being drawn into the arc cavity, but CaF2
The shielding effect reaches its peak at 5%, and even if CaF2 is increased thereafter, there is no further effect.
By incorporating a large amount of , the effect of reducing the amount of nitrogen absorbed from the atmosphere during welding is extremely large.

第2図は、CaF2含有量を変化させた焼成型フラック
ス中クスて、溶接した時の声援金属中の拡散性水素量を
示す。同図は炭酸塩を添加しない場合と、CO2換算で
2%、5%、8%添加した場合を示す。CaF2を増加
させた場合拡散性水素は増加している。この水素はフラ
ックス原料中に含まれている水分で、通常の焼成型フラ
ックスの焼成温度ては抜けない水である。一方、炭酸塩
を添加すると、溶接時分解発生したC02ガスがアーク
空洞中の水素分圧を下げ、CaF2を65%含んでも溶
接金属の拡散性水素量を十分低位に保つことはできる。
FIG. 2 shows the amount of diffusible hydrogen in the supporting metal when welding was performed using a sintered flux with varying CaF2 content. The figure shows the case where carbonate is not added and the case where 2%, 5%, and 8% of carbonate is added in terms of CO2. Diffusible hydrogen increases when CaF2 is increased. This hydrogen is water contained in the flux raw material, and is water that cannot be removed even at the firing temperature of ordinary firing type flux. On the other hand, when carbonate is added, CO2 gas decomposed during welding lowers the hydrogen partial pressure in the arc cavity, and even if the weld metal contains 65% CaF2, the amount of diffusible hydrogen in the weld metal can be kept at a sufficiently low level.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

溶接金属の低酸素化を図るためにはフラックス塩基度を
高塩基度にしなければならず、そのためフラックスの物
性の調整には好ましいが、酸性度の大きい5i02、中
性蓋酸性を示すAl2O3の使用量を制限し、それに塩
基性弗化物であ6 CaF2、塩基性成分であるMgO
、CaOを加えたCaF2、MgO,。
In order to reduce the oxygen content of the weld metal, the basicity of the flux must be made high. Therefore, it is preferable to adjust the physical properties of the flux, but it is preferable to use 5i02, which has a high acidity, and Al2O3, which has a neutral lid acidity. The basic fluoride is 6 CaF2, and the basic component is MgO.
, CaF2 with added CaO, MgO,.

CaO,5i02、Al2O3系を、基本とするもので
ある。
It is based on CaO, 5i02, Al2O3 system.

CaF2;35〜65重量% 塩基性弗化物であり、フラックスの塩基度を高め溶接金
属の酸素量低減による靭性向上に有効な成分である。ま
たCaF2は、スラグの粘度、軟化溶融温度を低下させ
、流動性を調整しビード形状を改善する。さらに溶接時
にガス化し、アーク空洞への大気の巻込みを防ぐシール
ド効果の役割を果たし、溶接金属中の窒素量を低減する
。これらの効果を発揮させるためには35%以上必要で
ある。一方、CaF2が65%を越えるとアークが不安
定になり、また粘度、溶融温度が低下しビード形状が不
良となる。さらに拡散性水素が増しピットが発生する。
CaF2: 35 to 65% by weight This is a basic fluoride, and is an effective component for increasing the basicity of the flux and improving the toughness by reducing the amount of oxygen in the weld metal. Further, CaF2 lowers the viscosity and softening and melting temperature of the slag, adjusts the fluidity, and improves the bead shape. Furthermore, it gasifies during welding and acts as a shield to prevent atmospheric air from entering the arc cavity, reducing the amount of nitrogen in the weld metal. In order to exhibit these effects, a content of 35% or more is required. On the other hand, if CaF2 exceeds 65%, the arc becomes unstable, the viscosity and melting temperature decrease, and the bead shape becomes poor. Furthermore, diffusible hydrogen increases and pits occur.

したがってCaF2は35〜65重量%にすべきである
Therefore, CaF2 should be between 35 and 65% by weight.

MgO+5〜25重量% 塩基性成分であり、フラックスの塩基男を高やる酸化物
であるが、その量が5%未満の場合フラックスの塩基度
が不足し、溶接金属の酵素量が増加するばかりでなくス
ラグ剥離性が劣化する。
MgO + 5 to 25% by weight It is a basic component and is an oxide that increases the basicity of the flux, but if its amount is less than 5%, the basicity of the flux will be insufficient and the amount of enzymes in the weld metal will increase. slag removability deteriorates.

一方、MgOが25%を越えると、フラックスの融点が
高くなるとともに溶は込み形状が不安定となり、スラグ
巻込みが増加する。また、ビード形状が凸形となる。
On the other hand, when MgO exceeds 25%, the melting point of the flux becomes high, the shape of the melt penetration becomes unstable, and slag entrainment increases. Further, the bead shape becomes convex.

CaO:4〜15重量% 塩基性成分であり、フラックスの塩基度を高める酸化物
であるが、4%±満の場合フラックスの塩基度が不足す
るばかりでなく、粘度、溶融温度が高くなり、ガス抜け
が困難になるためアバタが多発する。一方、1苧%を越
えると、アークが不安定になりビード形状が不良となり
、スラグ剥離性も劣化する。
CaO: 4 to 15% by weight It is a basic component and is an oxide that increases the basicity of the flux, but if it is less than 4%, the basicity of the flux will not only be insufficient, but also the viscosity and melting temperature will increase. Avatars occur frequently because it becomes difficult to release gas. On the other hand, if it exceeds 1%, the arc becomes unstable, the bead shape becomes poor, and the slag removability deteriorates.

Al2O5: 1〜20重量% フラックス物性の調整に用いられる中性〜酸性を示す酸
化物であるが、その量が20%を越える領域では溶接金
属中のAlの歩留が多くなり、溶接金属組織を微細にし
、靭性を向上させるTi−oxideの生成を阻害する
。また、アークが不安定となり、ビード形状が不良とな
る。一方、1%未満ではスラグ剥離性が劣化する。
Al2O5: 1 to 20% by weight This is a neutral to acidic oxide used to adjust the physical properties of flux, but in the region where the amount exceeds 20%, the yield of Al in the weld metal increases and the weld metal structure deteriorates. This inhibits the formation of Ti-oxide, which makes the particles fine and improves toughness. Additionally, the arc becomes unstable and the bead shape becomes poor. On the other hand, if it is less than 1%, the slag removability deteriorates.

5i02:5〜20重量% フラックス物性の調整に用いられる酸性の酸化物であり
、良好なビードな得るのに必要な成分であるが、20%
を越えるとフラックスの塩基度が低下することにより、
溶接金属の酸素量が増し靭性は低下する。また、スラグ
の溶融温度の低下、粘度の上昇によりアバタが多発する
。一方、5%未満で番1ビード形状が不安定になり、ア
ンダカットも生ずる。
5i02: 5 to 20% by weight An acidic oxide used to adjust the physical properties of flux, and a necessary component to obtain good bead quality.
If the basicity of the flux is exceeded, the basicity of the flux decreases.
The amount of oxygen in the weld metal increases and the toughness decreases. Further, a drop in the melting temperature of the slag and an increase in its viscosity result in frequent occurrence of avatars. On the other hand, if it is less than 5%, the shape of the No. 1 bead becomes unstable and undercuts occur.

塩基度B:1.5以上 溶接フラックスを高塩基度にすると溶接金属の酸素量は
低下するが、従来のフラックスは上述の通りビード形状
、作業性の悪化、諸欠陥の発生等の問題があった。また
、脱酸剤の添加により酸素量は低下するが、後述に示す
ように脱酸剤の添加量には限界がある。そこでやはり塩
基度調整が必要となる。第3図は本発明の主要成分を変
化させたフラックスにおいて、塩基度と溶接金属酸素量
の関係を示したものである。大略塩基度の増大に伴い酸
素量は低下しており、1100pp以下も見受けられる
。同図よりフラックス成分による酸素量のバラツキを考
慮すると、塩基度(B)を1.5以上とすれば、溶接金
属の酸素量を200ppm以下にすることができる。
Basicity B: 1.5 or higher When welding flux has a high basicity, the amount of oxygen in the weld metal decreases, but as mentioned above, conventional fluxes have problems such as bead shape, poor workability, and various defects. Ta. Further, although the amount of oxygen is reduced by adding a deoxidizing agent, there is a limit to the amount of the deoxidizing agent added, as will be described later. Therefore, it is necessary to adjust the basicity. FIG. 3 shows the relationship between the basicity and the amount of oxygen in the weld metal in the fluxes of the present invention with different main components. The amount of oxygen decreases as the basicity increases, and can be found to be less than 1100 pp. From the same figure, considering the variation in the amount of oxygen depending on the flux components, if the basicity (B) is set to 1.5 or more, the amount of oxygen in the weld metal can be made to be 200 ppm or less.

Ca−5t  : 0.1〜5重量%以下本発明フラッ
クスは、後述のように炭酸塩を添加するか、これによる
溶接金属酸素量増加の抑制、アバタ発生防止およびアー
クを安定させ良好なビード外観を得るために脱酸剤を添
加する。脱酸力の強いAl系の脱酸剤は、上述のように
Ti−0xideの生成を阻害する。一方、Atの影響
を受けないMn、 Stなどは、大量に添加しなければ
その効果は十分に発揮されず、脱酸剤を多く含むフラッ
クスは作業性が悪化する。そこでAlの影響を受けず脱
酸力が比較的強いCa−5tを用いた。
Ca-5t: 0.1 to 5% by weight or less The flux of the present invention can be used by adding carbonate as described later, or by suppressing an increase in the amount of oxygen in the weld metal, preventing avatar generation, and stabilizing the arc to improve bead appearance. Add deoxidizer to obtain . The Al-based deoxidizer, which has a strong deoxidizing ability, inhibits the production of Ti-Oxide as described above. On the other hand, Mn, St, etc., which are not affected by At, do not exhibit their full effect unless added in large quantities, and fluxes containing a large amount of deoxidizing agent deteriorate workability. Therefore, Ca-5t, which is not affected by Al and has a relatively strong deoxidizing ability, was used.

Ca−5tが件数で0.1%未満では上記効果は得られ
ず、5%を越えて添加されると溶接金属中のSt含有量
の増加を伴い、溶接金属の靭性低下門招くばかりでなく
、フラックス製造時の造粒性も悪化させる。
If Ca-5t is less than 0.1%, the above effects cannot be obtained, and if more than 5% is added, the St content in the weld metal increases, which not only causes a decrease in the toughness of the weld metal. , it also deteriorates granulation properties during flux production.

CO2:2〜8重量%以下 金属炭酸塩は溶接時の分解反応によりC02ガスを発生
し、アーク雰囲気中の水蒸気分圧を下げさことによって
、溶接金属の拡散性水素量を低下させるために添加する
。木廠明者らは、低温割れ、ビットの発生防止を考慮し
、溶接金属の拡散性水素の目標を3 c’c/100g
 D’M以下とした。CO2量換算値が外敵2%未満で
はその効果が十分に発揮されず、一方8%を越えるとア
ークが不安定となり、スラグ吹き上げ、ビード形状不良
、アバタの発生などが起こる。
CO2: 2 to 8% by weight or less Metal carbonates generate CO2 gas through a decomposition reaction during welding, and are added to reduce the amount of diffusible hydrogen in the weld metal by lowering the water vapor partial pressure in the arc atmosphere. do. Akira Kibori and his colleagues set the target for diffusible hydrogen in weld metal to 3 c'c/100g, taking into account the prevention of cold cracking and bit formation.
D'M or less. If the CO2 amount equivalent value is less than 2%, the effect will not be fully exhibited, while if it exceeds 8%, the arc will become unstable, causing slag blow-up, poor bead shape, and avatar formation.

B2O3: 0.05〜1.0重量% Bは固溶Bとして冷却過程におけるオーステナイト粒界
に偏析し、粒界に生成しやすい粗大なフェライト粒の析
出を抑制する。B20.換算で件数0.05%未満では
上記効果は得られず、一方1.0%を越えると溶接金属
の焼入性が過大となり、脆弱な上部ベイナイト組織が生
成するとともに、耐割れ性も劣化する。
B2O3: 0.05 to 1.0% by weight B segregates as solid solution B at the austenite grain boundaries during the cooling process, and suppresses the precipitation of coarse ferrite grains that tend to form at the grain boundaries. B20. If the number is less than 0.05% in terms of conversion, the above effects cannot be obtained, while if it exceeds 1.0%, the hardenability of the weld metal becomes excessive, a weak upper bainite structure is generated, and the cracking resistance deteriorates. .

なお、残部は各々の原材料に含まれる微量成分および不
純物からなるが、以上の要件が満足されれば本発明フラ
ックスの特性を損なうことはない。特にNa2O、K2
Oは固着剤の成分として含有され、アーク安定剤として
効果的である。
The remainder consists of trace components and impurities contained in each raw material, but as long as the above requirements are satisfied, the properties of the flux of the present invention will not be impaired. Especially Na2O, K2
O is contained as a component of the fixing agent and is effective as an arc stabilizer.

[実施例1] 以下に本発明の効果を実施例によりさらに具体的に示す
[Example 1] The effects of the present invention will be shown below in more detail through Examples.

第1表に使用したフラックス成分、溶接結果、第2表に
鋼板およびワイヤ成分を示す。溶接は入熱54.4に’
J/cm 、溶接速度120cm/min 、交流電流
の3電極によるサブマージド・アーク溶接で1パス溶接
を行った。尚、開先形状(開先角度a=75″、開先深
さb =7.5mm )を第4図に示す。
Table 1 shows the flux components used and welding results, and Table 2 shows the steel plate and wire components. Welding has a heat input of 54.4'
One pass welding was performed by submerged arc welding using three electrodes with alternating current at a welding speed of 120 cm/min and a welding speed of 120 cm/min. The groove shape (groove angle a=75'', groove depth b=7.5 mm) is shown in FIG.

この溶接によって、ビード形状、溶接欠陥の観察を行い
、酸素量、窒素量を分析した。また、拡散性水素の測定
はJIS Z 3118で行った。
Through this welding, the bead shape and weld defects were observed, and the oxygen content and nitrogen content were analyzed. Moreover, the measurement of diffusible hydrogen was performed according to JIS Z 3118.

No、 1〜5は本発明例であり、No、 6〜10は
比較例である。
Nos. 1 to 5 are examples of the present invention, and Nos. 6 to 10 are comparative examples.

本発明によるフラックスNo、  1〜5はいずれの場
合もビード形状は良好で、溶接欠陥もなく、溶接金属中
の拡散性水素は3 cc7100g DM以下、窒素吸
収量は20 ppm以下、酸素量は150ppm以下で
あり、高靭性溶接金属が得られた。
Flux Nos. 1 to 5 according to the present invention had good bead shape in all cases, no welding defects, diffusible hydrogen in the weld metal was 3 cc7100g DM or less, nitrogen absorption was 20 ppm or less, and oxygen amount was 150 ppm. and a high-toughness weld metal was obtained.

これに対しNo、 6は、5jO2量が本発明の上限を
越え、塩基度が本発明の下限未満の例である。
On the other hand, No. 6 is an example in which the amount of 5jO2 exceeds the upper limit of the present invention and the basicity is less than the lower limit of the present invention.

ビード中央部にアバタが多発し、ビード形状も不良であ
った。酸素量も300ppmを越えて靭性も低下した。
There were many avatars in the center of the bead, and the bead shape was also poor. The oxygen content also exceeded 300 ppm, and the toughness also decreased.

No、  7は、MgO量が本発明の上限を越え、ビー
ドが不安定になり、多数のスラグ巻込みが発生した。ま
た、Ca−3t量、6203量も本発明の上限を越えて
いるため、靭性が低下した。さらに炭酸塩の添加がない
ため拡散性水素量が増加した。
In No. 7, the amount of MgO exceeded the upper limit of the present invention, the bead became unstable, and a large number of slag entrainments occurred. Furthermore, since the amounts of Ca-3t and 6203 exceeded the upper limits of the present invention, the toughness decreased. Furthermore, the amount of diffusible hydrogen increased since there was no addition of carbonate.

No、 8は、^1203量、Ca−5t量が本発明の
上限を越えた例であり、ビード形状は良好で溶接欠陥も
なく、水素量、窒素吸収量も少なかったが、溶接金属中
のAI、 Stの歩留が高くなり、靭性が得られなかっ
た。
No. 8 is an example in which the amount of ^1203 and the amount of Ca-5t exceeded the upper limits of the present invention, and the bead shape was good, there were no welding defects, and the amount of hydrogen and nitrogen absorbed were small, but the amount of hydrogen and nitrogen in the weld metal was The yield of AI and St increased, and toughness could not be obtained.

No、9は、CaF2量が本発明の下限未満でCaO量
、002量が本発明の上限を越えた例である。
No. 9 is an example in which the amount of CaF2 is less than the lower limit of the present invention, and the amount of CaO and 002 exceed the upper limit of the present invention.

ビード形状が不安定でアバタの発生が多く、炭酸塩が多
いため酸素量が200ppm以上となった。また、Ca
F2量が少ないので窒素吸収量も多くなり、高靭性は得
られなかった。
The bead shape was unstable, a lot of avatar was generated, and the amount of oxygen was 200 ppm or more because of the large amount of carbonate. Also, Ca
Since the amount of F2 was small, the amount of nitrogen absorbed was also large, and high toughness could not be obtained.

No、10は、CaF2量、CaO量、C02量が本発
明の下限未満であり、AI、03量が本発明の上限を越
え、塩基度が本発明の下限未満の例である。ビード中央
にアバタが発生し、アンダカットも発生している。拡散
性水素量、窒素吸収量、酸素量が多く高靭性は得られて
いない。
No. 10 is an example in which the amount of CaF2, the amount of CaO, and the amount of C02 are less than the lower limit of the present invention, the amount of AI, 03 exceeds the upper limit of the present invention, and the basicity is less than the lower limit of the present invention. Avatars occur in the center of the bead, and undercuts also occur. High toughness cannot be obtained due to large amounts of diffusible hydrogen, nitrogen absorption, and oxygen.

[発明の効果] 本発明は以上のように構成され、サブマージド・アーク
溶接において、フラックスを構成する組成、塩基度の範
囲が本発明の範囲内であれば、溶接金属の低酸素化、低
水素化、低窒素化が同時に実現し、高靭性が得られると
ともに、良好な溶接作業性を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and in submerged arc welding, as long as the composition and basicity of the flux are within the range of the present invention, the weld metal can have low oxygen and low hydrogen. It is possible to simultaneously realize low nitrogen content and low nitrogen content, obtain high toughness, and obtain good welding workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフラックス中のCaF2量と溶接金属の窒素吸
収量との関係を示す図、第2図はフラックス中めCaF
2量と溶接金属の拡散性水素量との関係を示す図、i’
31]、よ;F、v、:、、。塩基度、溶接金属の酸素
量との関係を示す図、第4図は実施例における鋼板の開
先形状を示す図である。
Figure 1 shows the relationship between the amount of CaF2 in the flux and the amount of nitrogen absorbed by the weld metal, and Figure 2 shows the relationship between the amount of CaF2 in the flux and the amount of nitrogen absorbed by the weld metal.
A diagram showing the relationship between the amount of hydrogen and the amount of diffusible hydrogen in the weld metal, i'
31], yo;F,v,:,,. A diagram showing the relationship between the basicity and the oxygen content of the weld metal, and FIG. 4 is a diagram showing the groove shape of the steel plate in the example.

Claims (1)

【特許請求の範囲】 CaF_2:35〜65重量% MgO:5〜25重量% CaO:4〜15重量% Al_2O_3:1〜20重量% SiO_2:5〜20重量% の組成を有し、これらのフラックス塩基度(B)が下記
計算式で1.5以上であり、かつ脱酸剤としてCa−S
iを外数で0.1〜5重量%、金属炭酸塩をCO_2に
換算して外数で2〜8重量%、ボロン酸化物をB_2O
_3に換算して外数で0.05〜1.0重量%含有する
ことを特徴とする低水素・低窒素・低酸素溶接用焼成型
フラックス。 B=6.50N_B_a_O+6.05N_C_a_O
+4.8N_M_n_O+4.0N_M_g_O+3.
4N_F_eO+5.1N_C_a_F__2+0.3
N_Z_r_O__2−0.2N_A_l__2_O_
_3−2.2N_T_i_O__2−6.3N_S_i
_O__2ただしNkの記号は成分kのそれぞれのモル
分率をあらわす。
[Claims] CaF_2: 35 to 65% by weight, MgO: 5 to 25% by weight, CaO: 4 to 15% by weight, Al_2O_3: 1 to 20% by weight, SiO_2: 5 to 20% by weight, and these fluxes The basicity (B) is 1.5 or more according to the formula below, and Ca-S is used as a deoxidizing agent.
i is 0.1 to 5% by weight as an external number, metal carbonate is 2 to 8% by weight as an external number converted to CO_2, and boron oxide is B_2O
A sintered flux for low hydrogen, low nitrogen, and low oxygen welding characterized by containing 0.05 to 1.0% by weight in terms of _3. B=6.50N_B_a_O+6.05N_C_a_O
+4.8N_M_n_O+4.0N_M_g_O+3.
4N_F_eO+5.1N_C_a_F__2+0.3
N_Z_r_O__2-0.2N_A_l__2_O_
_3-2.2N_T_i_O__2-6.3N_S_i
_O__2 However, the symbol Nk represents the mole fraction of each component k.
JP4692988A 1988-02-29 1988-02-29 Baked flux for low-hydrogen, low-oxygen, low-oygen welding Pending JPH01218797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4692988A JPH01218797A (en) 1988-02-29 1988-02-29 Baked flux for low-hydrogen, low-oxygen, low-oygen welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4692988A JPH01218797A (en) 1988-02-29 1988-02-29 Baked flux for low-hydrogen, low-oxygen, low-oygen welding

Publications (1)

Publication Number Publication Date
JPH01218797A true JPH01218797A (en) 1989-08-31

Family

ID=12761018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4692988A Pending JPH01218797A (en) 1988-02-29 1988-02-29 Baked flux for low-hydrogen, low-oxygen, low-oygen welding

Country Status (1)

Country Link
JP (1) JPH01218797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090399A (en) * 2005-09-29 2007-04-12 Nippon Steel Corp Fusing flux for low oxygen-based submerged-arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090399A (en) * 2005-09-29 2007-04-12 Nippon Steel Corp Fusing flux for low oxygen-based submerged-arc welding

Similar Documents

Publication Publication Date Title
US6940042B2 (en) Flux-cored wire for gas-shielded arc welding
US4465921A (en) Flux-cored wire for gas-shielded arc welding
CN108581270A (en) A kind of LPG ships welding sintered flux and the preparation method and application thereof
JPS6313694A (en) Baked flux for submerged arc welding
CN104148824A (en) High-tenacity flux-cored wire for electro-gas welding
KR100706026B1 (en) High speed submerged arc welding flux
KR100671068B1 (en) 570mpa grade agglomerated flux with high impact-value for submerged arc welding
KR20020027238A (en) Large heat input submerged arc welding joint, method for producing the joint, steel wire for the submerged arc welding joint, and flux for the submerged arc welding joint
CN112621016B (en) Welding material, weld metal, and electroslag welding method
KR100502571B1 (en) Flux cored wire for co2 gas shielded arc welding
JPS62252695A (en) Submerged arc welding method for low temperature steel
JPH01218797A (en) Baked flux for low-hydrogen, low-oxygen, low-oygen welding
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JPS5855197A (en) Fused flux for submerged arc welding
EP0414481A2 (en) Flux cored wire for use in stainless steel welding
JP3620383B2 (en) Firing-type flux for submerged arc welding, manufacturing method thereof, and submerged arc fillet welding method
JPH07256489A (en) Submerged arc welding bonded flux
JP3157060B2 (en) Highly basic molten flux
JPS6174797A (en) Baked flux for sumberged arc welding
JPH0378197B2 (en)
JPH03294096A (en) Combined wire for electrogas arc welding
JPH0994694A (en) Flux cored wire for stainless steel
JPS62197296A (en) Flux for submerged arc welding of low-alloy heat-resisting steel
JPH07100689A (en) Bonded flux for submerged arc welding downward facing fillet
JPS59191590A (en) Submerged arc welding method of cr-mo alloy steel