JPH01217914A - Aligner - Google Patents

Aligner

Info

Publication number
JPH01217914A
JPH01217914A JP63042158A JP4215888A JPH01217914A JP H01217914 A JPH01217914 A JP H01217914A JP 63042158 A JP63042158 A JP 63042158A JP 4215888 A JP4215888 A JP 4215888A JP H01217914 A JPH01217914 A JP H01217914A
Authority
JP
Japan
Prior art keywords
guide
superconduction
magnets
slide member
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042158A
Other languages
Japanese (ja)
Inventor
Shinji Tsutsui
慎二 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63042158A priority Critical patent/JPH01217914A/en
Publication of JPH01217914A publication Critical patent/JPH01217914A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To eliminate the use of air and to perform an accurate alignment and the correction of a magnification error by employing, as a guide for scanning of an exposure system, a superconduction magnetic levitation guide using a superconduction magnet and a coil. CONSTITUTION:Superconduction magnets 9a-9f are provided on upper and lower, and right and left sides of the guide rail 6b of a guide 6, and superconduction coils 8a-8f are provided on a slide member 6a slidable on the rail 6b. On the other hand, superconduction magnets 9g, 9h are provided above and below the guide rail 7b of a guide 7, and superconduction magnets 8g, 8h are provided at a slide member 7a, thereby levitating the slide member by the repulsion of the magnets when the coil secured to the member 6a is conducted. The current flowing in the coils of the guide 6 is controlled to alter the levitation forces, thereby arbitrarily altering a gap set. Thus, the attitude and position of a coupler 5 are driven in a small area. When the attitude and position of the coupler 5 are adjusted, a mask 1 can be accurately projected to a desired position of a wafer 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体集積回路製造において、マスク上の回路
パターンをウェハ上に露光転写して焼付けるための露光
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exposure apparatus for exposing and transferring and printing a circuit pattern on a mask onto a wafer in the manufacture of semiconductor integrated circuits.

[従来技術と問題点] 従来のミラープロジェクション方式の半導体露光装置を
第3図と第4図を用いて説明する。第3図は光学系の概
念図である。このミラー投影光学系では、フォトマスク
1のパターンをウェハ3上にスリット光Sj!で露光し
、フォトマスク1とウェハ3を一体的にスリット長手方
向と直交する方向(矢印A方向)に移動させて、全体の
露光を完了する。図中、m、、m2はミラーであり例え
ば台形ミラーの両サイドの一部に形成される。m。
[Prior Art and Problems] A conventional mirror projection type semiconductor exposure apparatus will be described with reference to FIGS. 3 and 4. FIG. 3 is a conceptual diagram of the optical system. This mirror projection optical system projects the pattern of the photomask 1 onto the wafer 3 with slit light Sj! The photomask 1 and the wafer 3 are integrally moved in the direction perpendicular to the longitudinal direction of the slit (in the direction of arrow A) to complete the entire exposure. In the figure, m, , m2 are mirrors, and are formed, for example, on parts of both sides of a trapezoidal mirror. m.

は凹ミラー、m4は凸ミラーをそれぞれ示している。8
4図はこの露光装置の機構を示す正面図で、2はフォト
マスク1を搭載しこれを移動するためのマスク移動ステ
ージである。4はウェハ3を搭載しこれを移動するため
のウェハ移動ステージである。マスク移動ステージ2と
ウェハ移動ステージ4は連結体5により連結されている
。このような状態でウェハ移動ステージ4を駆動してフ
ォトマスク1に対しウェハ3を位置合せし、位置合せ終
了後、連結体5全体を第3図矢印Aの方向に移動しなが
ら露光用の光を照射することにより、露光が完了する。
indicates a concave mirror, and m4 indicates a convex mirror. 8
FIG. 4 is a front view showing the mechanism of this exposure apparatus, and 2 is a mask moving stage on which the photomask 1 is mounted and for moving it. Reference numeral 4 denotes a wafer moving stage on which the wafer 3 is mounted and for moving it. The mask moving stage 2 and the wafer moving stage 4 are connected by a connecting body 5. In this state, the wafer moving stage 4 is driven to align the wafer 3 with respect to the photomask 1, and after the alignment is completed, the entire connecting body 5 is moved in the direction of arrow A in FIG. Exposure is completed by irradiating.

この一連の動作において連結体5を矢印Aの方向に移動
(以後スキャンと呼ぶ)する時の精度が、この装置性能
に大きく影響する。従って、従来はこの連結体5を非常
に高精度で移動させるために、静圧軸受がガイドとして
用いられていた0図中6は上下左右方向を拘束された全
拘束型のガイドであり、7は上下方向のみ拘束された上
下拘束型ガイドである。連結体5のスキャン精度は、全
拘束型ガイド6に依存する。
The accuracy with which the connecting body 5 is moved in the direction of arrow A (hereinafter referred to as scanning) in this series of operations greatly influences the performance of this device. Therefore, in the past, static pressure bearings were used as guides in order to move this connecting body 5 with very high precision. 6 in Figure 0 is a fully constrained guide that is constrained in the vertical and horizontal directions, and 7 is a vertical restraint type guide that is restrained only in the vertical direction. The scanning accuracy of the coupling body 5 depends on the fully constrained guide 6.

通常このような静圧軸受はガイドの真直度を充分高める
ことにより非常に優秀なガイドとなる。すなわち、面精
度の影響を受けにくいこと、摩擦係数が非常に小さいこ
と、浮上刃と隙間を適切に選ぶことにより高剛性となる
こと、エアーが常に吹き出しているので、ガイドに付い
たゴミを吹き飛ばしてゴミの影響を受けにくいこと等の
メリ・lトが挙げられる。しかし、その反面常にエアー
を吹き出すための高圧発生設備が必要であり、特にこの
ような静圧ガイドの場合、圧力が5〜6 Kg/cm’
と高くエアーの吹き出し穴が0.3〜0.5 mm程度
と非常に小さいためエアーが吹き出す際の結露を防止す
るために大気圧露点−40℃程度の高ドライ圧縮空気を
作り出す設備が必要となる。さらに、このエアーの温度
変動があるとこの影響でスライド部およびガイドレール
部が変形し姿9!j精度が劣化する。また、常にエアー
を吹き出しているために、まわりに付着しているゴミを
まき上げウェハやマスク上に飛び散ってしまう可能性が
有るといった問題点があった。
Normally, such a hydrostatic bearing can become an excellent guide by sufficiently increasing the straightness of the guide. In other words, it is not easily affected by surface accuracy, the coefficient of friction is extremely small, high rigidity is achieved by appropriately selecting the floating blade and the gap, and the air is constantly blown out, so it can blow away dirt stuck to the guide. Advantages include that it is less susceptible to the effects of dust. However, on the other hand, high pressure generation equipment is required to constantly blow out air, and especially in the case of such a static pressure guide, the pressure is 5 to 6 Kg/cm'
Since the air outlet hole is very small, about 0.3 to 0.5 mm, equipment that produces high dry compressed air with an atmospheric pressure dew point of about -40°C is required to prevent condensation when the air blows out. Become. Furthermore, if there is a temperature change in this air, the slide section and guide rail section will be deformed due to this influence, Figure 9! j Accuracy deteriorates. In addition, since air is constantly blown out, there is a problem in that there is a possibility that dust adhering to the surroundings may be thrown up and scattered onto the wafer or mask.

またこの静圧軸受に関連して非接触ガイドの一種として
常電導コイルを利用した磁気浮上ガイドも存在するがこ
れは、精度的に露光装置に適用するのは不可能である。
In addition, there is a magnetically levitated guide using a normally conducting coil as a type of non-contact guide related to this hydrostatic bearing, but it is impossible to apply this to an exposure apparatus with high accuracy.

[発明の目的] 本発明は前記従来技術の欠点に鑑みなされたものであっ
て、高精度、非接触、高剛性等の静圧ガイドの利点を保
持しかつエアー使用による従来の欠点を除去した露光装
置の提供を目的とする。
[Object of the Invention] The present invention has been made in view of the drawbacks of the prior art, and maintains the advantages of a static pressure guide such as high precision, non-contact, and high rigidity, and eliminates the drawbacks of the conventional method due to the use of air. The purpose is to provide exposure equipment.

[問題点を解決するための手段および作用]前記目的を
達成するため本発明ではマスクおよびウェハを一体的に
移動するためのガイド手段として複数の超電導磁石およ
び超電導コイルをガイドレールおよびスライド部材上に
対向させて設けた超電導磁気浮上ガイドを用いている。
[Means and effects for solving the problem] In order to achieve the above object, the present invention provides a plurality of superconducting magnets and superconducting coils on a guide rail and a slide member as guide means for integrally moving the mask and the wafer. It uses superconducting magnetically levitated guides placed opposite each other.

これによリゴアーを用いることなくスライド部材はガイ
ドレール上を非接触で高精度、高剛性で摺動する。
As a result, the slide member slides on the guide rail in a non-contact manner with high precision and high rigidity without using a regoar.

[実施例] 第1図、第2図は本発明の実施例を示す。[Example] 1 and 2 show an embodiment of the present invention.

第1図は、第4図と同様露光装置の正面図であるが、こ
の装置の左右のガイド6.7には超電導磁石98〜9h
、超電導コイル88〜8hが備えられている。すなわち
、右側のガイド6のガイドレール6bには上下左右方向
にBIE導磁石98〜9fが設けられ、ガイドレール6
b上を摺動するスライド部材6aには磁石に対向して超
電導コイル88〜8fが設けられる。それぞれの磁石の
反発力により各方向が均等な隙間を持った全拘束型ガイ
ドを構成する。一方、左側のガイド7のガイドレール7
bには上下方向に超電導磁石9g、9hが設けられ、ス
ライド部材7aには磁石に対向して超電導コイル8g、
8hが設けられる。これにより上下方向のみが拘束を受
ける上下拘束型ガイドを構成している。第2図は、この
全拘束型ガイドの断面図である。図のようにガイドレー
ル6bの上下部には複数の超電導磁石9b、〜9b、、
9d、〜9drlがそれぞれ隙間無く固定されガイド面
10.11は高精度に仕上げられている。またスライド
部材6aには複数の超電導コイル8b、〜8b、、8d
、〜8d、が固定され、これらに通電することにより、
ガイド6bに設けられた超電導磁石と互いに反発し合い
、スライド部材が浮上する0以上の原理により、高精度
な磁気浮上ガイドを構成することが可能になる。
FIG. 1 is a front view of the exposure apparatus similar to FIG. 4, but superconducting magnets 98 to 9
, superconducting coils 88 to 8h are provided. That is, the guide rail 6b of the right guide 6 is provided with BIE guiding magnets 98 to 9f in the vertical and horizontal directions.
Superconducting coils 88 to 8f are provided on the slide member 6a that slides on the slide member b, facing the magnets. The repulsive force of each magnet forms a fully constrained guide with equal gaps in each direction. On the other hand, the guide rail 7 of the left guide 7
Superconducting magnets 9g and 9h are provided in the vertical direction on b, and superconducting coils 8g and 9h are provided on the slide member 7a facing the magnets.
8h is provided. This constitutes a vertical restraint type guide that is restrained only in the vertical direction. FIG. 2 is a sectional view of this fully constrained guide. As shown in the figure, a plurality of superconducting magnets 9b, 9b, .
9d and 9drl are each fixed without any gaps, and the guide surfaces 10.11 are finished with high precision. Moreover, the slide member 6a has a plurality of superconducting coils 8b, 8b, 8d.
, ~8d are fixed, and by energizing them,
The superconducting magnet provided on the guide 6b and the superconducting magnet repel each other, and the principle of 0 or more in which the slide member levitates makes it possible to construct a highly accurate magnetically levitated guide.

ここで超電導磁石およびコイルを用いたのはこれらによ
り発生する磁力が従来の常電導磁石の磁力に比べ2ケタ
程強くなり、この程度強い磁力を持たなければ露光装置
のような高精度を必要とするガイドとしては不敵である
ためである。また、このガイド手段により連結体5がス
キャン動作するためにはりニアモータ(不図示)または
これに類する駆動源が必要である。
The reason we used superconducting magnets and coils here is that the magnetic force generated by them is about two orders of magnitude stronger than the magnetic force of conventional normal-conducting magnets. This is because he is invincible as a guide. Further, in order for the connecting body 5 to perform a scanning operation using this guide means, a linear motor (not shown) or a similar drive source is required.

次に上記超電導磁気浮上ガイドの超電導コイルへの電流
制御について説明する。
Next, current control to the superconducting coil of the superconducting magnetic levitation guide will be explained.

第1図において、ガイド6の各コイル列8a〜8fに流
す電流を独立に制御してやればそれぞれの浮力上が変わ
り隙間設定を任意に変えることが可能である。さらに各
コイル列の中のコイル−個−個(例えば第2図の8bl
〜8b、、8d、〜8d1)の電流を独立に制御するこ
とも可能である。従って、これらの各コイルを系統的に
制御することにより、連結体5の姿勢や位置(第1図に
於るX方向)を微小領域で駆動することが可能である。
In FIG. 1, if the currents flowing through the coil arrays 8a to 8f of the guide 6 are independently controlled, the buoyancy of each coil can be changed and the gap setting can be arbitrarily changed. Furthermore, the coils in each coil row (for example, 8bl in FIG.
It is also possible to independently control the currents of ~8b, , 8d, ~8d1). Therefore, by systematically controlling each of these coils, it is possible to drive the posture and position (X direction in FIG. 1) of the connecting body 5 in a minute area.

これは、露光装置にとっては非常に意味のあることであ
る。すなわち連結体5の姿勢や位置が変わるとウェハ3
に投影されるマスク1の像が動く。従ってこの連結体5
がスキャンしていない時(アライメントの時)にコイル
を駆動して連結体5の姿勢、位置を調整すればマスク1
0投影像をウェハ3の所望位置に非常に高精度で投影可
能となる。またこの姿勢、位置の制御をスキャンと同時
に平行して行なえば、ウェハ3に投影されるマスク1の
像の倍率や直交度誤差等を任意に増減させることが可能
となる。
This is very meaningful for exposure equipment. In other words, if the posture or position of the connecting body 5 changes, the wafer 3
The image of the mask 1 projected on the image moves. Therefore, this connector 5
If the coil is driven to adjust the posture and position of the connecting body 5 when the mask 1 is not scanning (at the time of alignment), the mask 1
It becomes possible to project a zero projection image onto a desired position on the wafer 3 with very high precision. Furthermore, if this attitude and position control is performed in parallel with scanning, it becomes possible to arbitrarily increase or decrease the magnification, orthogonality error, etc. of the image of the mask 1 projected onto the wafer 3.

[発明の効果] 以上述べたように、露光装置のスキャン用ガイドに、超
電導磁石およびコイルを用いた超電導磁気浮上ガイドを
用いることにより、従来の静圧軸受の利点を損なうこと
なく高ドライ圧縮空気製造設備を不要にし、エアーを使
うことによる温度、ゴミの影響を除去することが可能に
なる。さらに、超電導コイルに流す電流を各コイル列毎
またはコイル毎に系統別に制御することにより、高精度
アライメントや倍率誤差の補正が可能となる。
[Effects of the Invention] As described above, by using a superconducting magnetically levitated guide using a superconducting magnet and coil as a scanning guide for an exposure device, high dry compressed air can be used without sacrificing the advantages of conventional hydrostatic bearings. This eliminates the need for manufacturing equipment and eliminates the effects of temperature and dust due to the use of air. Furthermore, by controlling the current flowing through the superconducting coils for each coil row or for each coil system, highly accurate alignment and correction of magnification errors are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る露光装置のマスクおよびクエへの
移動ガイド機構部の正面図、第2図は第1図の11− 
II線の断面図、第3図は従来のミラープロジェクショ
ン方式の露光装置の構成説明図、第4図は従来の露光装
置の静圧軸受ガイドの正面図である。 1:マスク、 2:マスク移動ステージ、 3:ウェハ、 4:ウニへ穆動ステージ、 5:連結体、 6.7:ガイド、 8:超電導コイル、 9:超電導磁石。
FIG. 1 is a front view of a movement guide mechanism for a mask and a cross section of an exposure apparatus according to the present invention, and FIG.
3 is a diagram illustrating the configuration of a conventional mirror projection type exposure apparatus, and FIG. 4 is a front view of a hydrostatic bearing guide of the conventional exposure apparatus. 1: Mask, 2: Mask movement stage, 3: Wafer, 4: Sea urchin movement stage, 5: Connector, 6.7: Guide, 8: Superconducting coil, 9: Superconducting magnet.

Claims (4)

【特許請求の範囲】[Claims] (1)ウェハを搭載するウェハ移動ステージと、マスク
を搭載するマスク移動ステージと、該マスク移動ステー
ジおよびウェハ移動ステージとを一体的に連結する連結
手段と、該連結手段を移動させるための超電導磁気浮上
ガイドからなる移動ガイド手段とを具備したことを特徴
とする露光装置。
(1) A wafer movement stage on which a wafer is mounted, a mask movement stage on which a mask is mounted, a connection means for integrally connecting the mask movement stage and the wafer movement stage, and a superconducting magnetism for moving the connection means. 1. An exposure apparatus comprising: a moving guide means comprising a floating guide.
(2)前記移動ガイド手段は装置に対し固定されたガイ
ドレールおよびこのガイドレールに沿つて摺動するスラ
イド部材からなり、前記連結体はこのスライド部材に連
結固定されたことを特徴とする特許請求の範囲第1項記
載の露光装置。
(2) A patent claim characterized in that the movement guide means includes a guide rail fixed to the device and a slide member that slides along the guide rail, and the connecting body is connected and fixed to the slide member. The exposure apparatus according to item 1.
(3)前記ガイドレールおよびスライド部材の対向摺動
面の一方の面に複数の超電導コイルを設け、他方の面に
複数の超電導磁石を設けたことを特徴とする特許請求の
範囲第2項記載の露光装置。
(3) A plurality of superconducting coils are provided on one surface of the opposing sliding surfaces of the guide rail and the slide member, and a plurality of superconducting magnets are provided on the other surface. exposure equipment.
(4)前記複数の超電導コイルは少なくとも2系統の電
流制御系統に分離され、各系統毎に異なる電流を通電可
能としたことを特徴とする特許請求の範囲第3項記載の
露光装置。
(4) The exposure apparatus according to claim 3, wherein the plurality of superconducting coils are separated into at least two current control systems, and a different current can be applied to each system.
JP63042158A 1988-02-26 1988-02-26 Aligner Pending JPH01217914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042158A JPH01217914A (en) 1988-02-26 1988-02-26 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042158A JPH01217914A (en) 1988-02-26 1988-02-26 Aligner

Publications (1)

Publication Number Publication Date
JPH01217914A true JPH01217914A (en) 1989-08-31

Family

ID=12628143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042158A Pending JPH01217914A (en) 1988-02-26 1988-02-26 Aligner

Country Status (1)

Country Link
JP (1) JPH01217914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391000B1 (en) * 2001-06-30 2003-07-12 주식회사 하이닉스반도체 Exposure device for semiconductor device
JP2006149087A (en) * 2004-11-19 2006-06-08 Yaskawa Electric Corp Magnetic levitation propulsion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607725A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic positioning device
JPS607724A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic arranging device
JPS607726A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic aligning device
JPS6011447B2 (en) * 1976-12-17 1985-03-26 ヤマハ株式会社 Manufacturing method of magnetic materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011447B2 (en) * 1976-12-17 1985-03-26 ヤマハ株式会社 Manufacturing method of magnetic materials
JPS607725A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic positioning device
JPS607724A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic arranging device
JPS607726A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic aligning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391000B1 (en) * 2001-06-30 2003-07-12 주식회사 하이닉스반도체 Exposure device for semiconductor device
JP2006149087A (en) * 2004-11-19 2006-06-08 Yaskawa Electric Corp Magnetic levitation propulsion device

Similar Documents

Publication Publication Date Title
JP4027916B2 (en) Reticle masking blade system and reticle masking blade control method
US6353271B1 (en) Extreme-UV scanning wafer and reticle stages
US6363809B1 (en) Precision scanning apparatus and method with fixed and movable guide members
JP3483452B2 (en) Stage apparatus, exposure apparatus, and device manufacturing method
JP6885336B2 (en) Exposure equipment, exposure methods, flat panel display manufacturing methods, and device manufacturing methods
TWI503633B (en) Exposure apparatus and device manufacturing method
TW574632B (en) Stage apparatus and exposure apparatus
KR20120091159A (en) Exposure apparatus and device manufacturing method
JP2631485B2 (en) Positioning device
WO2016159176A1 (en) Exposure apparatus, flat-panel-display production method, device production method, and exposure method
KR100766059B1 (en) System and apparatus for management of reaction loads in a lithography system
US10935894B2 (en) Movable body apparatus, exposure apparatus, manufacturing method of flat-panel display and device manufacturing method, and movement method of object
KR102130964B1 (en) Exposure apparatus and device manufacturing method
JPS6320014B2 (en)
US7084538B2 (en) Bearing assembly, stage device using same, and exposure apparatus using same
US7602091B2 (en) Positioning apparatus and exposure apparatus
US9823587B2 (en) Lithography apparatus, stage apparatus, and method of manufacturing articles
US6781138B2 (en) Positioning stage with stationary actuators
US6693284B2 (en) Stage apparatus providing multiple degrees of freedom of movement while exhibiting reduced magnetic disturbance of a charged particle beam
US5180230A (en) Rolling element cage constraint
JPH01217914A (en) Aligner
JP2003178958A (en) Stage device and exposure system
JP2780837B2 (en) Movable stage device
US9081308B2 (en) Driving apparatus and exposure apparatus and device fabrication method
JP2706184B2 (en) Movable stage device