JPH01215963A - Formation of thin superconducting film - Google Patents

Formation of thin superconducting film

Info

Publication number
JPH01215963A
JPH01215963A JP63039434A JP3943488A JPH01215963A JP H01215963 A JPH01215963 A JP H01215963A JP 63039434 A JP63039434 A JP 63039434A JP 3943488 A JP3943488 A JP 3943488A JP H01215963 A JPH01215963 A JP H01215963A
Authority
JP
Japan
Prior art keywords
thin film
heating
film
region
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039434A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ono
俊之 大野
Masahiro Kasai
葛西 昌弘
Yuzo Kozono
小園 裕三
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63039434A priority Critical patent/JPH01215963A/en
Publication of JPH01215963A publication Critical patent/JPH01215963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form a thin superconducting film into which the impurities from a base are less incorporated and which has good crystallinity by heating the band shaped region of the thin oxide superconducting film formed on the base and moving the heating region from one end to the other end of the thin film. CONSTITUTION:The thin oxide superconducting film 1 is formed by a sputtering method, etc., on the base 2. The thin superconducting film consisting of, for example, an oxide contg. Cu and more particularly the film consisting of Y, Ba, Cu, O, etc., are used. The band-shaped region including one width of the above-mentioned thin film 1 is heated upon formation of said film and this heating region 3 is moved in one direction like an arrow 6 from one end to the other end of the thin film 1. This heating is preferably executed in an oxygen atmosphere and is executable by irradiation of IR rays, light, etc., or high- frequency induction heating, etc. The unheated region 5 is thereby successively heated so that the heated region 4 is formed over the entire region of the thin film 1. The crystallinity of the above-mentioned thin film 1 is thereby improved and the incorporation of the impurities from the base 2 into the thin film is decreased. The good-quality thin superconducting film is thus formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導薄膜の形成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an oxide superconducting thin film.

〔従来の技術〕[Conventional technology]

1986年に銅、酸素を含む焼結体において高い転移温
度をもつ超電導体が発見されて以来、さらに高い転移温
度をもつ超電導体の探索、あるいはこれらの超電導体を
材料として用いるための研究が盛んに行なわれている。
Since the discovery in 1986 of a superconductor with a high transition temperature in a sintered body containing copper and oxygen, research has been actively conducted to search for superconductors with even higher transition temperatures or to use these superconductors as materials. is being carried out.

将来の機能的デバイスへの応用を考えた場合には、上記
の超電導体を薄膜化することが重要であり、現在、良質
の薄膜を得るための研究開発も盛んに行なわれている。
When considering the application to future functional devices, it is important to make the above-mentioned superconductors into thin films, and research and development to obtain high-quality thin films is currently being actively conducted.

」二記の酸化物超蕾導体の薄膜を形成するには例えば、
酸化マグネシウム(MgO)やチタン酸ストロンチウム
(SrTi03)の支持体の上にスパッタリング法や電
子ビーム蒸着法などによって薄膜を堆積する。この際の
組成の制御は、スパッタリングのターゲットに用いる焼
結体の金属成分の比をコン1〜ロールしたり、多元蒸着
法を用いて各々の蒸発量によってコントロールしたりす
る方法が用いられている。膜の結晶性は通常、成膜時の
支持体温度が室温から摂氏300″C程度では非晶質で
あり、また支持体温度が600℃程度では多結晶体であ
ることが知られており、結晶性を向」ニさせるために、
成膜後に酸素雰囲気中で熱処理を施している。熱処理温
度は非晶質膜については900°C前後、多結晶膜につ
いては600 ’C程度で数時間の熱処理か行なわれて
いる。
For example, to form a thin film of the oxide superconductor described in Section 2,
A thin film is deposited on a support of magnesium oxide (MgO) or strontium titanate (SrTi03) by sputtering, electron beam evaporation, or the like. In this case, the composition is controlled by controlling the ratio of the metal components of the sintered body used as the sputtering target, or by controlling the evaporation amount of each element using a multi-component evaporation method. . It is known that the crystallinity of the film is usually amorphous when the support temperature during film formation is from room temperature to about 300"C, and polycrystalline when the support temperature is about 600"C. In order to improve crystallinity,
After film formation, heat treatment is performed in an oxygen atmosphere. The heat treatment temperature is approximately 900° C. for amorphous films, and approximately 600° C. for polycrystalline films for several hours.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような方法により結晶性の良い酸化物超電導薄膜
は形成されるが、600℃あるいは900℃に加熱する
ことにより支持体側から支持体の構成元素が拡散混入し
て超電導特性を劣化させるという問題がある。たとえば
支持体としてチタン酸ストロンチウムを用いた場合に超
電導薄膜中にチタン、ストロンチウムが拡散混入するこ
とがアプライド・フイズイツクス レターズ 第51巻
(1987)第861頁から第863頁(Appl。
Although an oxide superconducting thin film with good crystallinity can be formed by the method described above, there is a problem in that heating to 600°C or 900°C causes constituent elements of the support to diffuse into the support and deteriorate the superconducting properties. There is. For example, when strontium titanate is used as a support, it is known that titanium and strontium diffuse into the superconducting thin film, Applied Physics Letters, Vol. 51 (1987), pp. 861-863 (Appl.

Phys、 Lett、 VoQ51 (1987) 
pp861−863)(公知例1)に述べられている。
Phys, Lett, VoQ51 (1987)
pp. 861-863) (Known Example 1).

このような問題に対する一つの解決方法としては例えば
、第48回応用物理学会講演予稿集19P−D−3(公
知例2)に述べられているように、非晶質の超電導薄膜
にレーザビームを照射し、これを走査することによって
結晶化させる方法がある。この方法ならば膜を局部的に
加熱する時間が比較的短くてすみ、支持体からの元素の
混入を大幅に減少することができうるという利点がある
One solution to this problem is to apply a laser beam to an amorphous superconducting thin film, as described in Proceedings of the 48th Japan Society of Applied Physics 19P-D-3 (Public Known Example 2). There is a method of crystallizing by irradiating and scanning the irradiation. This method has the advantage that the time required to locally heat the membrane is relatively short and that contamination of elements from the support can be significantly reduced.

しかし、逆に加熱部分が局部的であるということから、
微小部分で結晶化が行なわれるため、単結晶薄膜や結晶
粒の大きな薄膜を形成することは難しいという欠点をも
つ。
However, on the contrary, since the heating part is localized,
Since crystallization occurs in minute areas, it has the disadvantage that it is difficult to form single crystal thin films or thin films with large crystal grains.

本発明の目的は、支持体からの不純物の混入が少なく、
かつ結晶性の良好な超電導薄膜形成方法を提供すること
にある。
The purpose of the present invention is to reduce contamination of impurities from the support.
Another object of the present invention is to provide a method for forming a superconducting thin film with good crystallinity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこのような欠点を改善したものであり、支持体
上に酸化物超電導薄膜を堆積した後に、この薄膜の一方
の幅を含む帯状の領域を加熱し、この帯状の加熱領域を
薄膜の一端より他端まで一方向に移動せしめることによ
り、薄膜の全領域を順次加熱するというものである。こ
の方法を模式的に第1図に示す。第1図において、符号
1は超電導薄膜、2は支持体、3は加熱領域、4は加熱
済み領域、5は未加熱領域、6は加熱領域移動方向であ
る。この方法では、前記公知例2の場合とは異なり、加
熱領域ガスポット状ではなくある程度広い領域であるの
で広い部分が同時に結晶化でき、しかも支持体からの不
純物の混入を抑制できるという利点をもつ。加熱を酸素
雰囲気中で行なえば加熱によって膜中の酸素が脱離する
のを防ぐことができる。また、加熱雰囲気における薄膜
中の金属成分の蒸気圧をあらかじめ高くしておけば加熱
中に薄膜の金属成分が昇化あるいは蒸発して減少してし
まうことを防ぐことができる。
The present invention improves these drawbacks by depositing an oxide superconducting thin film on a support, heating a strip-shaped region including one width of the thin film, and using this strip-shaped heating region to extend the width of the thin film. By moving in one direction from one end to the other, the entire area of the thin film is sequentially heated. This method is schematically shown in FIG. In FIG. 1, reference numeral 1 is a superconducting thin film, 2 is a support, 3 is a heated region, 4 is a heated region, 5 is an unheated region, and 6 is a moving direction of the heated region. In this method, unlike the case of the above-mentioned known example 2, the heated region is not in the shape of a gas spot but rather a rather wide region, so that a wide region can be crystallized at the same time, and it has the advantage that contamination of impurities from the support can be suppressed. . If heating is performed in an oxygen atmosphere, oxygen in the film can be prevented from being desorbed by heating. Further, by increasing the vapor pressure of the metal components in the thin film in advance in the heating atmosphere, it is possible to prevent the metal components in the thin film from being elevated or evaporated and reduced during heating.

本発明における帯状の領域の加熱は光をこの帯状領域全
体に照射することによって可能であるし、また、高周波
誘導加熱によっても可能である。光の場合はレーザ光を
用いてもよいし、赤外光を集光させて用いてもよい。十
分な出力があれば光源としてタングステンランプ、高圧
キセノン放電ランプ、水銀放電ランプ等を用いることも
可能である。
In the present invention, the band-shaped region can be heated by irradiating the entire band-shaped region with light, or by high-frequency induction heating. In the case of light, laser light may be used, or infrared light may be condensed. It is also possible to use a tungsten lamp, a high-pressure xenon discharge lamp, a mercury discharge lamp, etc. as a light source if it has sufficient output.

本方法による加熱は薄膜が固体状態を保つ温度範囲で結
晶化を行なうのが普通と考えられるが、前記のように膜
中金属成分の脱離を防ぎうるような雰囲気下においては
溶融状態にまで加熱することも可能である。また前記の
帯状の加熱領域の移動を適当な速さで行なうことにより
、結晶粒の太きさを十分大きくすることが可能であり、
小さな支持体を用いる場合であれば単結晶薄膜を形成す
ることも可能である。
It is thought that heating using this method normally crystallizes the thin film within a temperature range in which it remains in a solid state, but as mentioned above, in an atmosphere that can prevent the detachment of the metal components in the film, it may reach a molten state. Heating is also possible. Furthermore, by moving the belt-shaped heating region at an appropriate speed, it is possible to increase the thickness of the crystal grains sufficiently.
If a small support is used, it is also possible to form a single crystal thin film.

〔作用〕[Effect]

前記のような加熱方法を用いることにより、支持体から
の不純物の混入が少なく結晶粒の大きな超電導薄膜を形
成することができる。
By using the heating method as described above, it is possible to form a superconducting thin film with less contamination of impurities from the support and with large crystal grains.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて説明するが、本発明はこ
れに限定されるものではない。超電導薄膜の堆積方法と
してはスパッタリング法、電子ビーム蒸着法などがある
Hereinafter, the present invention will be explained using Examples, but the present invention is not limited thereto. Examples of methods for depositing superconducting thin films include sputtering and electron beam evaporation.

1)高周波スパッタリング装置にイツトリウム、バリウ
ム、銅、酸素からなる焼結体ターゲットを装着する。こ
の焼結体ターゲットの組成は、Y:Ba:Cu=l:2
:4.5  となるように調整する。このような組成の
ターゲットを用い、下記の条件でスパッタリングを行な
うと、堆積した膜の組成は、Y:Ba:Cu=1.:2
:3となることが予備検討から確認されている。夕−ゲ
ラ1〜の対向位置に5nuX 15n+n+X O,5
mmの大きさのチタン酸ストロンチウム単結晶((10
0)面)を支持体として固定し、1×10−6Torr
程度にまで排気した後、支持体の表面温度を300 ’
Cに保ちつつ、酸素(02)、アルゴン(Ar)の混合
ガスをI X 10−2Torrの圧力まで導入する。
1) A sintered target made of yttrium, barium, copper, and oxygen is attached to a high-frequency sputtering device. The composition of this sintered target is Y:Ba:Cu=l:2
: Adjust so that it becomes 4.5. When sputtering is performed using a target with such a composition under the following conditions, the composition of the deposited film is Y:Ba:Cu=1. :2
Preliminary studies have confirmed that: :3. 5nuX 15n+n+X O,5 in the opposite position of Yu-galley 1~
Strontium titanate single crystal with a size of mm ((10
0) plane) as a support, and 1 x 10-6 Torr.
After evacuating to a temperature of 300', the surface temperature of the support was
A mixed gas of oxygen (02) and argon (Ar) is introduced to a pressure of I.times.10@-2 Torr while maintaining the temperature at 10.degree.

この時のガス比は、02/ (Ar+02)=0.1と
なるようにする。
The gas ratio at this time is set to 02/(Ar+02)=0.1.

13.56MHz、出力200Wの高周波グロー放電に
より、YBa2CusOx薄膜を1μmの厚みまで堆積
する。
A YBa2CusOx thin film is deposited to a thickness of 1 μm by high frequency glow discharge of 13.56 MHz and 200 W output.

2)1)で作製したYBazCuaOx薄膜のX線回折
を測定する。この結果を第2図に示す。第2図より明ら
かなように、この薄膜は非晶質である。
2) Measure the X-ray diffraction of the YBazCuaOx thin film produced in 1). The results are shown in FIG. As is clear from FIG. 2, this thin film is amorphous.

3)1気圧の酸素雰囲気中において1)で作製したYB
a2Cu30ア薄膜の長手方向の一端の2n冊X50I
Illの帯状領域に赤外光を第1図に示したように照射
する。上記の照射領域におけるエネルギー密度を十分高
くするために、赤外光を反射鏡等を用いて上記形状に集
光している。この帯状の照射領域を毎分1 n+n+の
速さで上記薄膜の長手方向に移動することにより薄膜全
体の加熱、結晶化を行なう。これを試料Aとする。
3) YB produced in 1) in an oxygen atmosphere of 1 atm
2n books at one end of the longitudinal direction of the a2Cu30a thin film
Infrared light is irradiated onto the band-shaped region of Ill as shown in FIG. In order to make the energy density in the irradiation area sufficiently high, the infrared light is focused into the above shape using a reflecting mirror or the like. By moving this belt-shaped irradiation area in the longitudinal direction of the thin film at a speed of 1 n+n+ per minute, the entire thin film is heated and crystallized. This is designated as sample A.

4)3)で熱処理したYBa2Cu30ア薄暎のX線回
折を測定する。この結果を第3図に示す。これより、試
料Aは結晶化しており、しかも(001)面が基板に平
行に成長していることがわかる。
4) Measure the X-ray diffraction of the YBa2Cu30 thin film heat-treated in 3). The results are shown in FIG. This shows that sample A is crystallized, and the (001) plane grows parallel to the substrate.

5)1)と全く同じ方法でYBaz’CuaOx薄膜を
作製し、これを電気炉に入れ、1気圧の酸素気流中で9
40 ’Cに保ち、2時間の熱処理を行なう。
5) Fabricate a YBaz'CuaOx thin film in exactly the same manner as in 1), place it in an electric furnace, and heat it in an oxygen stream at 1 atm for 90 minutes.
Heat treatment is carried out at 40'C for 2 hours.

従来法による熱処理で得られた膜を試料Bとする。Sample B is a film obtained by heat treatment using a conventional method.

6)試料A及びBの深さ方向の組成分布を二次イオン質
量分析装置(SIMS)を用いて測定する。測定領域を
アルゴンでスパッタリングを行ない穴掘りすることで深
さ方向の組成分布を測定する。表面からの深さは上記の
スパッタ時間により表わすことにする。この結果を第4
図の(a)、(b)とする。これより、従来法の試料B
では膜と支持体(チタン酸ストロンチウ1S)界面付近
でチタン、ストロンチウム、バリウムが相互に拡散して
いるのがみられるが、本発明による試料Aでは相互拡散
はきわめて小さいことがわかる。
6) Measure the composition distribution in the depth direction of samples A and B using a secondary ion mass spectrometer (SIMS). The composition distribution in the depth direction is measured by sputtering the measurement area with argon and digging holes. The depth from the surface will be expressed by the above sputtering time. This result is the fourth
(a) and (b) in the figure. From this, sample B of the conventional method
Although titanium, strontium, and barium are seen to be mutually diffusing near the interface between the membrane and the support (strontium titanate 1S), it can be seen that in sample A according to the present invention, the mutual diffusion is extremely small.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように本発明による方法を用いると、
支持体からの不純物の混入が少なく、かつ結晶性の良好
な超電導薄膜を得ることができる。
As is clear from the above, when the method according to the present invention is used,
A superconducting thin film with less contamination of impurities from the support and good crystallinity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超電導薄膜の加熱方法を模式的に
示した斜視図である。 第2図及び第3図は実施例1における本発明による熱処
理を行なう前後のX線回折パターンを示す特性図である
。 第4図は実施例1における本発明と従来法によるYBa
2Cu3Ox薄膜の深さ方向の組成分布を示す特性図で
ある。 1・・超電導薄膜、2・・・支持体、3・・加熱領域、
4・・加熱済み領域、5・未加熱領域、6・・加熱領域
移動方向。
FIG. 1 is a perspective view schematically showing a method of heating a superconducting thin film according to the present invention. FIGS. 2 and 3 are characteristic diagrams showing X-ray diffraction patterns before and after heat treatment according to the present invention in Example 1. FIG. 4 shows YBa according to the present invention and the conventional method in Example 1.
FIG. 2 is a characteristic diagram showing the composition distribution in the depth direction of a 2Cu3Ox thin film. 1... Superconducting thin film, 2... Support, 3... Heating region,
4. Heated area, 5. Unheated area, 6. Heated area moving direction.

Claims (1)

【特許請求の範囲】 1、支持体上に形成された酸化物超電導薄膜において、
支持体上に薄膜を堆積した後に、前記薄膜の一方の幅を
含む帯状の領域を加熱し、前記の帯状の加熱領域を、前
記薄膜の一端より他端まで一方向に移動せしめることに
より、前記薄膜の全領域を順次加熱し、前記薄膜の結晶
性を向上させ支持体から薄膜への不純物混入を減少させ
ることを特徴とする超電導薄膜形成方法。 2、前記の帯状領域の加熱を前記超電導薄膜を酸素雰囲
気中において行なうことを特徴とする特許請求の範囲第
1項に記載の超電導薄膜形成方法。 3、前記の帯状領域の加熱を赤外線あるいは光を前記薄
膜の帯状の部分に照射することによつて行なうことを特
徴とする特許請求の範囲第1項に記載の超電導薄膜形成
方法。 4、前記の帯状領域の加熱を高周波誘導加熱法を用いて
行なうことを特徴とする特許請求の範囲第1項に記載の
超電導薄膜形成方法。 5、前記の超電導薄膜が銅を含む酸化物であることを特
徴とする特許請求の範囲第1項に記載の超電導薄膜形成
方法。 6、前記の超電導薄膜がイットリウム、バリウム、銅、
酸素により構成されることを特徴とする特許請求の範囲
第1項に記載の超電導薄膜形成方法。
[Claims] 1. In an oxide superconducting thin film formed on a support,
After depositing the thin film on the support, heating a strip-shaped region including one width of the thin film, and moving the strip-shaped heating region in one direction from one end of the thin film to the other end. A method for forming a superconducting thin film, comprising sequentially heating the entire region of the thin film to improve the crystallinity of the thin film and reduce contamination of impurities from the support into the thin film. 2. The method for forming a superconducting thin film according to claim 1, wherein the heating of the strip-shaped region is performed in an oxygen atmosphere of the superconducting thin film. 3. The method of forming a superconducting thin film according to claim 1, wherein the heating of the strip-shaped region is performed by irradiating the strip-shaped portion of the thin film with infrared rays or light. 4. The method for forming a superconducting thin film according to claim 1, wherein the heating of the band-shaped region is performed using a high-frequency induction heating method. 5. The method for forming a superconducting thin film according to claim 1, wherein the superconducting thin film is an oxide containing copper. 6. The superconducting thin film is yttrium, barium, copper,
The method for forming a superconducting thin film according to claim 1, wherein the superconducting thin film is formed of oxygen.
JP63039434A 1988-02-24 1988-02-24 Formation of thin superconducting film Pending JPH01215963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039434A JPH01215963A (en) 1988-02-24 1988-02-24 Formation of thin superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039434A JPH01215963A (en) 1988-02-24 1988-02-24 Formation of thin superconducting film

Publications (1)

Publication Number Publication Date
JPH01215963A true JPH01215963A (en) 1989-08-29

Family

ID=12552892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039434A Pending JPH01215963A (en) 1988-02-24 1988-02-24 Formation of thin superconducting film

Country Status (1)

Country Link
JP (1) JPH01215963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634376A1 (en) * 1993-07-15 1995-01-18 Saint-Gobain Vitrage Process for treating a thin oxide layer
JP2014227600A (en) * 2013-05-23 2014-12-08 日本電子工業株式会社 Strengthening surface coating layer by heat treatment
US10629796B2 (en) 2017-03-30 2020-04-21 Tdk Corporation Laminate and thermoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634376A1 (en) * 1993-07-15 1995-01-18 Saint-Gobain Vitrage Process for treating a thin oxide layer
JP2014227600A (en) * 2013-05-23 2014-12-08 日本電子工業株式会社 Strengthening surface coating layer by heat treatment
US10629796B2 (en) 2017-03-30 2020-04-21 Tdk Corporation Laminate and thermoelectric conversion element

Similar Documents

Publication Publication Date Title
US5212148A (en) Method for manufacturing oxide superconducting films by laser evaporation
US5019552A (en) Long-laser-pulse method of producing thin films
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPH01215963A (en) Formation of thin superconducting film
JPH01309956A (en) Production of oxide superconductor
US5248659A (en) Process for preparing a superconducting thin oxide film
JP2963901B1 (en) Manufacturing method of superconducting thin film
JPH05320882A (en) Formation of vapor-deposited thin film
JPH01208327A (en) Production of thin film of superconductor
EP0392437B1 (en) Method for annealing thin film superconductors
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JP3187043B2 (en) Method for producing oxide superconductor by physical vapor deposition
JPH0238302A (en) Formation of superconducting thin film
JPH03174305A (en) Production of oxide superconductor
JP2742418B2 (en) Method for producing oxide superconducting thin film
JP3415874B2 (en) Manufacturing method of oxide superconducting conductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH05170448A (en) Production of thin ceramic film
JP3205666B2 (en) Method for synthesizing CeO2 epitaxial single crystal thin film on Si single crystal substrate
JPH07133189A (en) Production of oxide thin film
JP2953776B2 (en) Method for producing oxide superconductor thin film
JPH06279180A (en) Production of crystal thin film
JPH06329496A (en) Method for preparing deposited thin film
Sonnenberg et al. The Influence of Processing Parameters on the Development of Biaxially Aligned Zirconia Thin Films Deposited by Ion Beam Assisted Deposition
JPH01100827A (en) High temperature superconducting material