JPH01215936A - Manufacture of heat-resistant composite material - Google Patents

Manufacture of heat-resistant composite material

Info

Publication number
JPH01215936A
JPH01215936A JP3965888A JP3965888A JPH01215936A JP H01215936 A JPH01215936 A JP H01215936A JP 3965888 A JP3965888 A JP 3965888A JP 3965888 A JP3965888 A JP 3965888A JP H01215936 A JPH01215936 A JP H01215936A
Authority
JP
Japan
Prior art keywords
heat
alloy
resistant composite
aluminum
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3965888A
Other languages
Japanese (ja)
Inventor
Hiromitsu Takeda
博光 竹田
Masako Nakabashi
中橋 昌子
Takao Suzuki
隆夫 鈴木
Masayuki Ito
伊藤 昌行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3965888A priority Critical patent/JPH01215936A/en
Publication of JPH01215936A publication Critical patent/JPH01215936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture the title material having high temp. strength and stability by bonding each other of heat-resistant composite matrix consisting of fireproof metallic fiber and Nb (alloy) surrounding it in such a manner that Al (alloy) is regulated to its filler. CONSTITUTION:The surface of the fireproof metallic fiber is coated with Nb (alloy) by the means of plasma thermal spraying, etc., in the atmosphere of a low pressure inert gas to unify into a heat-resistant composite matrix having the shape of a sheet. The above matrix is sandwiched by Al (alloy) sheets into a laminated body and is thereafter heated to the melting point or above of the Al (alloy) in the atmosphere of an inert gas to unify, by which W wire strengthened Nb heat-resistant composite material is manufactured in bulk. Al among each layer is brought into reaction with Nb to form Nb3Al and Al3Nb and to change into a material having high melting point, so that the strength and stability at high temp. can be obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は耐熱複合材料の製造方法に係わり、特に、高温
における強度と安定性を有する耐熱複合材料の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a heat-resistant composite material, and particularly to a method for manufacturing a heat-resistant composite material having strength and stability at high temperatures.

(従来の技術) 最近、省資源の観点からガスタービンに代表される大型
のエネルギー変換機器の高効率化が重要視されている。
(Prior Art) Recently, from the viewpoint of resource conservation, increasing the efficiency of large energy conversion devices such as gas turbines has become important.

高効率化を実現する基本的手段としては、変換機器の動
作温度の高温化を挙げることができる。この場合、機器
に使用される部材その耐用温度が構造上問題となる。こ
のエネルギー変換機器の材料として、従来より鉄基(F
e基)、コバルト基(Co基)またはニッケル基(Ni
基)等の超合金が使用されている。しかしながら、これ
らの超合金を用いても、耐用温度を上昇させるための材
料開発は限界に近い状況である。
A basic means of achieving higher efficiency is increasing the operating temperature of conversion equipment. In this case, the withstand temperature of the members used in the equipment becomes a structural problem. Traditionally, iron-based (F
e group), cobalt group (Co group) or nickel group (Ni
Superalloys such as (based on) are used. However, even with the use of these superalloys, the development of materials to increase the withstand temperature is nearing its limit.

この様な状況から、次世代の耐熱材料として、耐火金属
繊維で上記超合金を強化した複合材料が注目され始めて
いる。この複合材料として、例えば、耐火金属繊維であ
るタングステン線(W線)を超合金に埋め込んで一体化
したものが挙げられる。
Under these circumstances, composite materials in which the above-mentioned superalloys are reinforced with refractory metal fibers are beginning to attract attention as next-generation heat-resistant materials. An example of this composite material is one in which tungsten wire (W wire), which is a refractory metal fiber, is embedded and integrated into a superalloy.

この複合材料はW線の高温での優れた機械的性質と超合
金の高温での優れた耐食性との複合化を意図したもので
ある。こうした耐火金属繊維と超合金との組合わせにお
いては、高温での相互拡散が問題となるが、これを解決
するために、比較的相互拡散の程度が低い組合わせとし
てW線強化Fe基合金複合材料が既に提案されている。
This composite material is intended to combine the excellent mechanical properties at high temperatures of W wire with the excellent corrosion resistance at high temperatures of superalloys. In such combinations of refractory metal fibers and superalloys, interdiffusion at high temperatures becomes a problem. Materials have already been proposed.

しかしながら、このW線強化Fe基合金複合材料を使用
しても、1100℃以上の高温ではW線の強度劣化を阻
止することができず、現実には変換機器の使用温度は1
000℃以下に制限されてしまうという問題がある。
However, even if this W-wire-reinforced Fe-based alloy composite material is used, it is not possible to prevent the strength of the W-wire from deteriorating at high temperatures of 1100°C or higher, and in reality, the operating temperature of conversion equipment is 1.
There is a problem that the temperature is limited to 000°C or less.

また、W線を含めた耐火金属繊維の多くは熱膨張係数が
他の金属に比べて小さいために、複合化により超合金の
熱膨張係数の違いにより生じる熱応力を避けることがで
きない不都合もある。
In addition, since many refractory metal fibers, including W wire, have a smaller coefficient of thermal expansion than other metals, there is also the disadvantage that thermal stress caused by the difference in thermal expansion coefficients of superalloys cannot be avoided when composited. .

かかる問題点を解決するために、耐・火金属繊維と反応
することなく、かつ、耐火金属繊維との熱膨脹の差が小
さいニオブからなる合金を用いることが考えられる。し
かしながら、ニオブおよびニオブを主体とする合金は高
融点合金であるために。
In order to solve this problem, it is conceivable to use an alloy made of niobium, which does not react with the refractory metal fibers and has a small difference in thermal expansion from the refractory metal fibers. However, since niobium and niobium-based alloys are high melting point alloys.

従来の成形手段である溶湯注入法や粉末冶金法を適用す
るためには、耐火金属繊維をそれの強度が劣化するまで
の高温度まで昇温する必要があり、実際上耐火金属繊維
と超合金の複合化は不可能であった。
In order to apply conventional molding methods such as molten metal injection and powder metallurgy, it is necessary to heat the refractory metal fiber to a high temperature until its strength deteriorates. It was impossible to combine them.

(発明が解決しようとする課題) 前述した様に、従来の耐火金属繊維の製造方法は耐火金
属繊維をそれの強度が劣化する程の高温に曝さざるを得
なく、1000℃以上の高温度に耐え得る耐火金属繊維
とニオブからなる合金を製造することが容易ではなかっ
た。
(Problems to be Solved by the Invention) As mentioned above, the conventional method for producing refractory metal fibers has no choice but to expose the refractory metal fibers to high temperatures that deteriorate their strength, and it is difficult to expose the refractory metal fibers to high temperatures of 1000°C or more. It has not been easy to produce alloys consisting of durable refractory metal fibers and niobium.

本発明の目的は1000℃以−トの高温における耐火金
属繊維および基材合金の間の相互拡散が生しにくく、ま
た、熱膨張係数の差により生じる熱応力をおさえること
により、高温における十分な強度と安定性を有する耐熱
複合材料の製造方法を提供することにある。
The purpose of the present invention is to prevent mutual diffusion between the refractory metal fiber and the base alloy at high temperatures of 1000°C or higher, and to suppress thermal stress caused by the difference in thermal expansion coefficients. An object of the present invention is to provide a method for producing a heat-resistant composite material having strength and stability.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)本発明は、耐
火金属繊維とニオブもしくはニオブ合金とからなる耐熱
複合基材をアルミニウムもしくはアルミニウム合金から
なる部材で挟持した後、不活性雰囲気中でアルミニウム
もしくはアルミニラム合金の融点以上の温度に加熱して
一体化する耐熱複合材料の製造方法である。また、本発
明は、耐熱複合基材をアルミニウムとニオブとの混合体
からなるアルミニウム合金の部材で挟持し、複合部材と
した後、この複合部材を不活性雰囲気中でこの合金の融
点以上の温度に加熱して一体化する耐熱複合材料の製造
方法である。
(Means and Effects for Solving the Problems) The present invention involves sandwiching a heat-resistant composite base material made of refractory metal fibers and niobium or niobium alloy between members made of aluminum or aluminum alloy, and then using aluminum or niobium alloy in an inert atmosphere. This is a method for producing a heat-resistant composite material in which aluminum ram alloy is heated to a temperature higher than its melting point and integrated. Further, the present invention involves sandwiching a heat-resistant composite base material between aluminum alloy members made of a mixture of aluminum and niobium to form a composite member, and then heating the composite member in an inert atmosphere to a temperature higher than the melting point of the alloy. This is a method for producing heat-resistant composite materials that are heated and integrated.

本発明は、シート状の耐熱複合基材を積層し接合してバ
ルク状の耐熱複合材料を得るのに適した方法である。ま
た、本発明は耐熱金属繊維を超合金でクラッドした複合
繊維を接合してシート状の耐熱複合材料を得るのにも適
している。即ち、本発明は耐熱複合基材あるいは耐熱複
合繊維相互をアルミニウムもしくはアルミニウム合金を
フィラーとして接合するものである。この接合はアルミ
ニウムの低融点およびアルミニウムがニオブと反応する
ことにより高融点の金属間化合物となることを利用した
ものであって、接合後はアルミニウム合金の融点に支配
されない特徴を有する。この金属間化合物はNb5AQ
とAQ、3Nbの混晶からなり、そ−4= の融点は約2000°Cにも達する。
The present invention is a method suitable for laminating and joining sheet-like heat-resistant composite substrates to obtain a bulk heat-resistant composite material. The present invention is also suitable for obtaining a sheet-like heat-resistant composite material by joining composite fibers made of heat-resistant metal fibers clad with a superalloy. That is, the present invention is to bond heat-resistant composite base materials or heat-resistant composite fibers to each other using aluminum or an aluminum alloy as a filler. This bonding takes advantage of the low melting point of aluminum and the fact that aluminum reacts with niobium to form an intermetallic compound with a high melting point, and has the characteristic that it is not controlled by the melting point of the aluminum alloy after bonding. This intermetallic compound is Nb5AQ
It consists of a mixed crystal of 3Nb, AQ, and 3Nb, and its melting point reaches approximately 2000°C.

フィラーとしてのアルミニウムもしくはアルミニウム合
金からなる部材はシート状のものや粉末状のものに樹脂
等のバインダーを加えたもの等その形態は耐熱複合基材
の形状により任意に選択し得る。特に、アルミニウム合
金がアルミニウムとニオブとの混合体の場合、アルミニ
ラ11とニオブとの混合割合は1:0.5〜1:2 の
範囲が望ましい。また、アルミニウム合金とは、アルミ
ニウムと耐熱複合基材料におけるニオブとの間で金属間
化合物が形成されるために、アルミニラl\が5すt%
以上含まれるものであれば良い。
The form of the member made of aluminum or aluminum alloy as a filler can be arbitrarily selected depending on the shape of the heat-resistant composite base material, such as a sheet-like material or a powder-like material with a binder such as a resin added thereto. In particular, when the aluminum alloy is a mixture of aluminum and niobium, the mixing ratio of aluminum 11 and niobium is preferably in the range of 1:0.5 to 1:2. In addition, aluminum alloys contain 5t% of aluminum because an intermetallic compound is formed between aluminum and niobium in the heat-resistant composite base material.
It is fine as long as it includes the above.

また、本発明の接合は真空中にやアルゴンガス等のニオ
ブないしニオブ合金の特性が劣化しない不活性雰囲気で
行われる。
Further, the bonding of the present invention is performed in a vacuum or in an inert atmosphere such as argon gas, which does not deteriorate the properties of niobium or niobium alloy.

本発明に用いられる耐熱複合基材は、耐火金属繊維の表
面にニオブもしくはニオブ合金を低圧不活性ガス雰囲気
中のプラズマ溶射により被覆し、一体化することにより
製造されるシートである。
The heat-resistant composite substrate used in the present invention is a sheet manufactured by coating the surface of refractory metal fibers with niobium or a niobium alloy by plasma spraying in a low-pressure inert gas atmosphere and integrating the coated materials.

また、本発明に用いられる耐熱複合基材は、耐火金属繊
維の表面にニオブもしくはニオブ合金をクララ1くによ
って被覆し、この被覆された耐火金属繊維を加熱し一体
化したシートでも良い。さらに、本発明に用いられる耐
熱複合基材は耐火金属繊維の表面にニオブまたはニオブ
合金をクラットした複合繊維それ自体であっても良い。
Furthermore, the heat-resistant composite substrate used in the present invention may be a sheet in which the surface of refractory metal fibers is coated with niobium or a niobium alloy using Clara 1, and the coated refractory metal fibers are heated and integrated. Furthermore, the heat-resistant composite base material used in the present invention may be a composite fiber itself, which is made by crating niobium or a niobium alloy on the surface of a refractory metal fiber.

また、本発明の耐熱複合材料はニオブもしくはニオブ合
金からなる合金を用いているので、使用条件によっては
、その表面を耐酸化および高温耐食性に優れた被膜で覆
うことが望ましい。この被膜はMCrAflXで表され
る化合物(ここで、Mはニッケル、鉄、コバル1へある
いはそれらの合金、またXはイツトリウム、ジルコニウ
ム、ハフニウム等の酸化物固定元素である。)あるいは
アルミニウム、クロム、シリコン等の耐酸化性材料から
なる。
Further, since the heat-resistant composite material of the present invention uses niobium or an alloy made of a niobium alloy, depending on the usage conditions, it is desirable to cover the surface with a film having excellent oxidation resistance and high-temperature corrosion resistance. This coating is made of a compound represented by MCrAflX (where M is nickel, iron, Kobal 1 or an alloy thereof, and X is an oxide fixed element such as yttrium, zirconium, hafnium, etc.) or aluminum, chromium, Made of oxidation-resistant material such as silicon.

この被膜として用いられるMCrAQXで表される化合
物として、10〜35tyt%のクロム、5〜2(ht
%のアルミニウム、0.3〜]、5wt%のイツトリウ
ム、O〜2(ht%のニッケル、および残部鉄からなる
FeCrAflYや1O−35tit%のクロム、 5
−20wt%のアルミニウム、0.3〜1.5wt%の
イツトリウム、0〜2(ht%のニッケル、0〜30w
t%の鉄、および残部コバルトからなるCoCrAlや
10〜4(ht%のクロム、5〜2(ht%のアルミニ
ウム、0.3〜1 、5tyt%のイツトリウム、O〜
2011t%のコバルト、0−3(ht%の鉱、および
残部ニッケルからなるN1CrAQ、Yが用いられる。
The compound represented by MCrAQX used as this coating includes 10 to 35 tyt% chromium, 5 to 2 (ht
% aluminum, 0.3~], 5 wt% yttrium, O~2 (ht% nickel, and the balance consists of FeCrAflY and 1O-35 tit% chromium, 5
-20wt% aluminum, 0.3-1.5wt% yttrium, 0-2 (ht% nickel, 0-30w
CoCrAl, which consists of t% iron and the balance cobalt, 10-4 (ht% chromium, 5-2 (ht% aluminum, 0.3-1), 5tyt% yttrium, O-
N1CrAQ,Y consisting of 2011t% cobalt, 0-3(ht%) ore, and the balance nickel is used.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 長さ100mm、直径0.3mmの寸法を有し、約1す
t%の酸化トリウム(ThO□)がドープされたW線を
30本用意し、これらを0.15mmの間隔ですだれ状
に横に並べてから枠に固定する。欧に、これらW線に低
圧雰囲気プラズマ溶射によりニオブを全体が厚さ0.5
mmになるまで吹付け、一体化して耐熱複合基材とした
。この耐熱複合基材を10層重ね積層体とした。この際
、各層の間には純アルミニウムのシー1へを挟んだ。こ
の積層体を真空炉中に配置し、1100°Cで10分間
保持することにより、厚さ] 1mmのバルクのW線強
化ニオブ耐熱複合材料を得た。各層間のアルミニウムは
ニオブと反応してNb5AQ、およびAQ3Nbを形成
して高融点の材料に変化した。
Example 1 Thirty W wires having dimensions of 100 mm in length and 0.3 mm in diameter and doped with approximately 1 t% thorium oxide (ThO Arrange them horizontally in a shape and then secure them to the frame. In Europe, these W wires are coated with niobium to a total thickness of 0.5 cm by low-pressure plasma spraying.
It was sprayed to a thickness of mm and was integrated to form a heat-resistant composite base material. This heat-resistant composite base material was made into a 10-layer laminate. At this time, a sheet 1 of pure aluminum was sandwiched between each layer. This laminate was placed in a vacuum furnace and held at 1100°C for 10 minutes to obtain a bulk W-wire reinforced niobium heat-resistant composite material with a thickness of 1 mm. Aluminum between each layer reacted with niobium to form Nb5AQ and AQ3Nb and changed into a material with a high melting point.

尚、この耐熱複合基材中に含まれるW線の体積含有率は
約31.4%であった。
The volume content of W wire contained in this heat-resistant composite base material was about 31.4%.

この様に成形した複合材料を真空中で1200℃に加熱
して30kg/mm2の負荷をかけたところ、1000
時間を超えても破断することはなかった。また、温度1
200℃と室温との昇降温を繰返す熱疲労負荷を300
0回以上加えても、この複合材料は変形することはなく
、高温での十分な強度と安定性を示した。
When the composite material formed in this way was heated to 1200°C in a vacuum and a load of 30kg/mm2 was applied, the
It did not break even after a long time. Also, temperature 1
A thermal fatigue load of 300°C with repeated temperature rises and falls between 200°C and room temperature.
Even after zero or more loadings, the composite did not deform and showed sufficient strength and stability at high temperatures.

実施例2 実施例1で作成した耐熱複合材料の表面を、コバルト2
2tyt%、クロム16wt%、アルミニウム6wt%
、イツトリウム0.45wt%および残部ニッケルから
なる合金を低圧雰囲気プラズマ溶射により0.1mmの
厚さに被覆した。この複合材料を大気中で温度1100
℃に加熱し、圧力40kg/mm2の負荷を加えたとこ
ろ、1000時間を超えても破断することがなく、この
複合材料は良好な強度を有することが分った。
Example 2 The surface of the heat-resistant composite material created in Example 1 was coated with cobalt 2
2tyt%, chromium 16wt%, aluminum 6wt%
An alloy consisting of 0.45 wt % yttrium and the balance nickel was coated to a thickness of 0.1 mm by plasma spraying in a low-pressure atmosphere. This composite material was heated to 1100℃ in the atmosphere.
℃ and applied a pressure of 40 kg/mm2, the composite material did not break even after more than 1000 hours, indicating that this composite material had good strength.

8一 実施例3 長さ1000mm、直径5mmの寸法を有し、約1%の
酸化トリウム(The2)がドープされたW線に、外径
91nlll、内径5+nmのニオブ製パイプを被せ全
体が直径0.5mmになるまで線引き加工し、ニオブク
ラッドW線を約280m得た。このクラッド線を長さ1
00+nmに切断したものの表面に、接合用フィラーを
厚さ約0.3mmに塗布した。この接合用フィラーは平
均粒径約325μmのアルミニウム粉末と同粒径のニオ
ブ粉末を重量比でアルミニウムとニオブとが1=2の割
合で混合し、この粉末をアクリル樹脂系のバインダーで
ペースト状にしたものである。表面に接合用フィラーが
塗布されたクラッド線を200本束ね、長さ100mm
、幅10mmの寸法に切られたアルミナ製の型に入れて
、真空中で1100°Cに加熱し、15分間保持した。
81 Example 3 A niobium pipe with an outer diameter of 91nllll and an inner diameter of 5+nm was covered with a W wire having dimensions of 1000 mm in length and 5 mm in diameter and doped with about 1% thorium oxide (The2) so that the entire diameter was 0. The wire was drawn to a thickness of .5 mm, and approximately 280 m of niobium clad W wire was obtained. This clad wire has a length of 1
A bonding filler was applied to the surface of the cut piece to a thickness of about 0.3 mm. This filler for joining is made by mixing aluminum powder with an average particle size of about 325 μm and niobium powder with the same particle size in a weight ratio of aluminum and niobium in a ratio of 1=2, and then making the powder into a paste using an acrylic resin binder. This is what I did. 200 clad wires with bonding filler applied to the surface are bundled to a length of 100 mm.
The sample was placed in an alumina mold cut to a width of 10 mm, heated to 1100°C in vacuum, and held for 15 minutes.

冷却後、型より取出したところ、長さ]、00mm、 
@10mm、厚さ5mmの寸法を有し、」%のThe2
がドープされたW線強化耐熱複合材料が得られた。
After cooling, when taken out from the mold, length], 00 mm,
It has dimensions of @10mm, thickness 5mm, and %The2
A W-line reinforced heat-resistant composite material doped with was obtained.

この様に成形した複合材料を真空中で1200℃に加熱
して30kg/mm2の負荷をかけたところ、1000
時間を超えても破断することはなかった。また、温度1
200℃と室温との昇降温を繰返す熱疲労負荷を300
0回以上加えても、この複合材料は変形することはなく
、高温での十分な強度と安定性を示した。
When the composite material formed in this way was heated to 1200°C in a vacuum and a load of 30kg/mm2 was applied, the
It did not break even after a long time. Also, temperature 1
A thermal fatigue load of 300°C with repeated temperature rises and falls between 200°C and room temperature.
Even after zero or more loadings, the composite did not deform and showed sufficient strength and stability at high temperatures.

実施例4 実施例3で作成した耐熱複合材料の表面を、コバルト2
2tyt%、クロム16wt%、アルミニウム6wt%
、イツトリウム0.45wt%および残部ニッケルから
なる合金を低圧雰囲気プラズマ溶射により0.1mmの
厚さに被覆した。この複合材料を大気中で温度1100
℃に加熱し、圧力40kg/mm2の負荷を加えたとこ
ろ、1000時間を超えても破断することがなく、この
複合材料は良好な強度を有することが分った。
Example 4 The surface of the heat-resistant composite material created in Example 3 was coated with cobalt 2
2tyt%, chromium 16wt%, aluminum 6wt%
An alloy consisting of 0.45 wt % yttrium and the balance nickel was coated to a thickness of 0.1 mm by plasma spraying in a low-pressure atmosphere. This composite material was heated to 1100℃ in the atmosphere.
℃ and applied a pressure of 40 kg/mm2, the composite material did not break even after more than 1000 hours, indicating that this composite material had good strength.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明によれば、高温での十分な強度と安
定性を有する耐熱複合材料の製造方法を提供できる。
As described above, according to the present invention, it is possible to provide a method for producing a heat-resistant composite material having sufficient strength and stability at high temperatures.

Claims (2)

【特許請求の範囲】[Claims] (1)耐火金属繊維と、この耐火金属繊維を取囲むニオ
ブもしくはニオブ合金とからなる耐熱複合基材をアルミ
ニウムもしくはアルミニウム合金からなる部材で挟持し
た後、不活性雰囲気中でアルミニウムもしくはアルミニ
ウム合金の融点以上の温度に加熱して一体化することを
特徴とする耐熱複合材料の製造方法。
(1) After sandwiching a heat-resistant composite base material consisting of a refractory metal fiber and niobium or a niobium alloy surrounding the refractory metal fiber between members made of aluminum or an aluminum alloy, the melting point of the aluminum or aluminum alloy is heated in an inert atmosphere. A method for producing a heat-resistant composite material, which comprises heating to a temperature above and integrating the material.
(2)アルミニウム合金がアルミニウムとニオブとの混
合体からなることを特徴とする請求項1記載の耐熱複合
材料の製造方法。
(2) The method for producing a heat-resistant composite material according to claim 1, wherein the aluminum alloy is a mixture of aluminum and niobium.
JP3965888A 1988-02-24 1988-02-24 Manufacture of heat-resistant composite material Pending JPH01215936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3965888A JPH01215936A (en) 1988-02-24 1988-02-24 Manufacture of heat-resistant composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3965888A JPH01215936A (en) 1988-02-24 1988-02-24 Manufacture of heat-resistant composite material

Publications (1)

Publication Number Publication Date
JPH01215936A true JPH01215936A (en) 1989-08-29

Family

ID=12559186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3965888A Pending JPH01215936A (en) 1988-02-24 1988-02-24 Manufacture of heat-resistant composite material

Country Status (1)

Country Link
JP (1) JPH01215936A (en)

Similar Documents

Publication Publication Date Title
EP0502426B1 (en) Synthesis of metal matrix composites by transient liquid consolidation
Stoloff An overview of powder processing of silicides and their composites
US5028495A (en) Composite foil brazing material and method of using
US6653608B1 (en) Oxidation protected susceptor
CN105063394B (en) A kind of preparation method of titanium or titanium alloy material
CN113046595A (en) High-strength and high-toughness titanium alloy with good additive manufacturing forming performance and used at high temperature of 600 DEG C
JPH01215937A (en) Heat resistant composite material
Feng et al. Joining SiC ceramic and metal Mo with AuPdCoMnNi alloy and interfacial reactions
US5229165A (en) Plasma sprayed continuously reinforced aluminum base composites
JPH01215936A (en) Manufacture of heat-resistant composite material
JPH0729859B2 (en) Ceramics-Metal bonding material
Kreider et al. Boron-reinforced aluminum
CN101429607B (en) Special particle reinforced high-temperature alloy and method for producing the same
US5508115A (en) Ductile titanium alloy matrix fiber reinforced composites
KR20110130930A (en) Method for diffusion bonding of nickel-based alloys
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
Liu et al. Universal solders for direct bonding and packaging of optical devices
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JPS62110863A (en) Production of tungsten wire reinforcing iron base alloy composite material
JPS5893834A (en) Manufacture of inorganic fiber reinforced metallic composite material
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JPH0569159A (en) Method for joining composite material composed of, at least, one part of intermetallic compound
JPS6313665A (en) Manufacture of tungsten wire reinforced iron base alloy composite material
JPH01252739A (en) Heat-resisting composite body
Shah et al. Feasibility study of intermetallic composites