JPH01215734A - Mold member for forming optical element - Google Patents

Mold member for forming optical element

Info

Publication number
JPH01215734A
JPH01215734A JP4059388A JP4059388A JPH01215734A JP H01215734 A JPH01215734 A JP H01215734A JP 4059388 A JP4059388 A JP 4059388A JP 4059388 A JP4059388 A JP 4059388A JP H01215734 A JPH01215734 A JP H01215734A
Authority
JP
Japan
Prior art keywords
mold
optical element
forming
molding
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4059388A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamamoto
潔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4059388A priority Critical patent/JPH01215734A/en
Publication of JPH01215734A publication Critical patent/JPH01215734A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Abstract

PURPOSE:To obtain a mold member for forming an optical element, easily producible in high precision, causing little lowering of the accuracy in press- forming and having long life, by using a mold member for forming an optical element wherein at least the forming surface of a mold matrix is covered with WN. CONSTITUTION:A matrix material composed of e.g. a refractory metal or sintered SiC is used as a mold matrix 30 and the material is shaped to a desired outer shape by cutting, grinding, polishing, etc., and especially the forming surface is finished to a desired surface accuracy. A WN layer 31 is applied to the surface of the matrix material 30 by a physical vapor deposition process (PVD process) such as sputtering or ion plating or a chemical vapor deposition process (CVD process) such as plasma CVD process. Since the WN layer 31 has high oxidation resistance even at a high temperature, it has low adhesivity to molten glass and good mold-releasing property. Accordingly, optical elements having good accuracy can be produced even with a repeatedly used mold.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は光学素子成形装置に用いられる型部材に関し、
特に、容易に高精度を実境で@且つ耐久性良好な光学素
子成形用製部材に関する。この様な光学素子成形用製部
材はたとえば直接光学面を形成する高精度成形のための
型部材として好適に利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mold member used in an optical element molding device,
In particular, the present invention relates to a member for molding optical elements that can be easily manufactured with high precision and has good durability. Such a member for molding an optical element is suitably used, for example, as a mold member for high-precision molding to directly form an optical surface.

[従来の技術及びその問題点] 一般に、レンズ、プリズム、ミラー及びフィルタ等の光
学素子は、ガラス等の素材を研1’lljして外形を所
望の形状とした後に、機能面即ち光が透過及び/lたけ
反射するtfit研摩して光学面とすることによシ製造
されている。
[Prior art and its problems] In general, optical elements such as lenses, prisms, mirrors, and filters are manufactured by polishing a material such as glass to a desired external shape, and then polishing the functional surface, that is, the light transmitting surface. The optical surface is manufactured by polishing the optical surface to reflect tfit.

しかして、以上の様な光学素子の装造においては、研削
及び研摩によシPfT望の表面積置(即ち表面形状及び
表面粗さ等のn1k)を得るためには、熟練した作東者
が相当の時間加工を行なうことが処置でめった。また、
機能面が非球面である光字素子を製造する場合には、−
膚烏腿な研8u及び研摩の技術が要求され且つ加工時間
も長くならざるを得なかった、。
Therefore, in the fabrication of optical elements as described above, in order to obtain the desired surface area (i.e. n1k of surface shape and surface roughness) through grinding and polishing, a skilled fabricator is required. The treatment rarely required a considerable amount of processing time. Also,
When manufacturing an optical element whose functional surface is an aspherical surface, −
This required extensive polishing and polishing techniques, and the processing time had to be long.

そこで、最近では、上記の様な伝統的な光学素子製造方
法に代って、所定の表rHn度を有する成形用全屋内に
光学素子材料を収容して加熱及び加圧することKよジグ
レス成形にて直ちに機能面を含む全体的形状を形成する
方法が行なわれる様になってきている。これによれば、
機能面が非球面である場合でさえも比較的簡単且つ短時
間で光学素子を製造することができる。この様なプレス
成形法は光学素子の連続製造に適する。
Therefore, recently, in place of the traditional optical element manufacturing method as described above, jigless molding has been developed, in which the optical element material is housed in a molding room having a predetermined temperature and then heated and pressurized. Nowadays, methods of immediately forming the overall shape, including the functional aspects, are being used. According to this,
Even when the functional surface is an aspherical surface, the optical element can be manufactured relatively easily and in a short time. Such a press molding method is suitable for continuous production of optical elements.

以上の様なプレス成形において使用される盤部材に要求
される性質としては、十分な硬度、良好な耐熱性、良好
な鏡面加工性及び成形時において光学素子材料と融着を
起さないこと等があげられる。
The properties required of the plate member used in press molding as described above include sufficient hardness, good heat resistance, good mirror workability, and no fusion with the optical element material during molding. can be given.

そこで、従来、この様なブレス成形用製部材としては金
属、セラミックス、及びこれらに適宜の材料をコーティ
ングした材料等数多くの種類が提案されている。
Therefore, many kinds of materials have been proposed as such members for press molding, such as metals, ceramics, and materials coated with appropriate materials.

たとえば、特開昭49−51112号公報には13 C
rマルテンサイト鋼を用いた型部材が開示されておシ、
時開11fi52−45613号公報には炭化ケイ素(
StC)を用いた型部材及び窒化ケイ素(Si=、N4
)を用いた盤部材が開示されておシ、特開昭60−24
6230号公報には超硬合金に貴金属をコーティングし
た盤部材が開示されている・しかして、上記130Fマ
ルテンサイト鋼は酸化しゃすぐ更に高温のブレス成形時
においてFeがガラス材料中に拡散してガラスが着色す
る難点がある。また、上記SIC−? S、i、N4は
一般的には酸化されにくいのであるが、高温ではめる程
度の酸化が生じ製部材t1面にS10□の換が形成され
るためガラスとの融着を生じゃすく更に硬度が高ずき′
るため加工性が極めて悪いという難点がある。
For example, 13 C
r A mold member using martensitic steel is disclosed,
Jikai 11fi52-45613 publication describes silicon carbide (
Mold members using StC) and silicon nitride (Si=, N4
) has been disclosed in JP-A-60-24.
Publication No. 6230 discloses a board member made of a cemented carbide coated with a noble metal.However, the above-mentioned 130F martensitic steel does not oxidize, but during press forming at a higher temperature, Fe diffuses into the glass material and forms a glass. There is a problem with coloring. Also, the above SIC-? S, i, and N4 are generally hard to oxidize, but at high temperatures they oxidize to the extent that they fit, forming an S10 square on the t1 surface of the product, which prevents fusion with glass and increases the hardness. It's high
The problem is that the processability is extremely poor because of the

更に、表面に貴金属をコーティングした材料は硬度が低
いために傷付きやすく且つ変形しやすいという難点があ
る。
Furthermore, materials whose surfaces are coated with precious metals have low hardness and are therefore easily damaged and deformed.

そこで、本発明は、上記従来技術にmみ、容易に高精度
で!111!でき且つプレス成形に際し精度劣化の少な
い長寿命の光学素子成形用型部材を提供することを目的
とする。
Therefore, the present invention is based on the above-mentioned conventional technology and can be easily achieved with high precision! 111! It is an object of the present invention to provide a mold member for molding an optical element that can be formed easily and has a long life with little deterioration in accuracy during press molding.

[問題点を解決するための手段] 本発明によれば、以上の如き目的を達成するものとして
、 光学素子成形用型部材において、製部材の少なくとも成
形面が窒化タングステンで被榎されていることを特徴と
する、光学素子成形用製部材、が提供される。
[Means for Solving the Problems] According to the present invention, in order to achieve the above objects, in a mold member for molding an optical element, at least the molding surface of the member is coated with tungsten nitride. Provided is a member for molding an optical element, characterized by:

[実施例] 以下、図面を参照しながら本発明の具体的実施例′f:
説明する。
[Examples] Hereinafter, with reference to the drawings, specific embodiments of the present invention'f:
explain.

第1図は本発明による型部材の一実施例を示す概略断面
園である。本図において、30は製部材を示し、311
I′i該型母材の成形面に形成された窒化タングステン
被覆層を示す。
FIG. 1 is a schematic cross-sectional view showing one embodiment of a mold member according to the present invention. In this figure, 30 indicates a manufactured member, and 311
I'i shows a tungsten nitride coating layer formed on the molding surface of the mold base material.

本発明において母材材料としては、たとえば超硬合金や
焼結SICを用いることができる。これら母材材料は切
劇、研iI!u、研摩等の加工によシ所望の外形とし、
特に成形面は所望の表面精度に仕上げておく。
In the present invention, as the base material, for example, cemented carbide or sintered SIC can be used. These base materials are Kirigaku, Ken II! u. Processing such as polishing to obtain the desired external shape.
In particular, the molding surface is finished to the desired surface precision.

上記母材30の表面に窒化タングステン層31を形成す
るKは、たとえばスノ母ツタリング伝するいはイオング
レーティング法等の物理蒸着法(PVD法)やプラズマ
CVD法等の化学蒸着法(CVO法)を用いる。
K, which forms the tungsten nitride layer 31 on the surface of the base material 30, can be formed by, for example, a physical vapor deposition method (PVD method) such as a sludge or ion grating method, or a chemical vapor deposition method (CVO method) such as a plasma CVD method. Use.

窒化タングステン層31の厚さは製造条件によシ逼宜設
定されるが、使用時の所望の特性に鑑みて十分な耐久性
が得られる様な厚さとすればよい。
The thickness of the tungsten nitride layer 31 is appropriately set depending on the manufacturing conditions, but may be set to a thickness that provides sufficient durability in view of the desired characteristics during use.

窒化タングステン層は高温での耐酸化性も尚いのでガラ
スとの融着性が低く離屋性が良好であるので、繰返し使
用しても良好な精度の光学素子を得ることができる。
The tungsten nitride layer also has good oxidation resistance at high temperatures, has low fusion bonding with glass, and has good separation properties, so an optical element with good precision can be obtained even after repeated use.

以下、本発明による型部材の製造及びそれを用いたガラ
ス成形の実施例を示す。尚、同時に、比較のために、従
来の盤部材の製造及びそれを用いたガラス成形の例をも
示−j−0 製造及び成形の実施例: 超硬合金(WC(90%)+Co(10%)コ及び焼結
SIC型母材材料として戯母材を作シ、咳母材の成形1
iifK窒化タングステン層を形成して、以下の通ル本
発明による型部材を製造した。また、比較のために、上
記型母材の成形面に核種を行なわない型部材及び該成形
面K SiC層を形成した型部材を製造した。製造した
型部材の一覧表を第1表に示す。尚、第1表において、
41及びA2は本発明実施例であシ、43.44及びA
5は比較例である。
Hereinafter, examples of manufacturing a mold member according to the present invention and glass molding using the same will be shown. At the same time, for comparison, examples of conventional production of plate members and glass molding using the same are also shown. %) Producing a play base material as a sintered SIC type base material, forming the cough base material 1
An iifK tungsten nitride layer was formed to produce a mold member according to the invention as follows. For comparison, a mold member in which no nuclide was applied to the molding surface of the mold base material and a mold member in which a SiC layer was formed on the molding surface were manufactured. Table 1 shows a list of the manufactured mold members. Furthermore, in Table 1,
41 and A2 are examples of the present invention, 43.44 and A
5 is a comparative example.

第   1   表 先ず、型母材材料を切削加工し、次いで成形光学素子の
機能面(光学rfJ)に対応する成形面を所望の表面精
度に加工した。型母材の成形面は凹面であり、先ずダイ
ヤモンド砥石による研削で所望の曲単に加工し、次いで
粒径1μmのダイヤモンドノ4ウダーを用いた研摩を行
ない、ニュートンリング1木根度の表面形状精度及びR
m、xo、 02μm程度の弐面粗さ精度に仕上げた。
Table 1 First, the mold base material was cut, and then the molding surface corresponding to the functional surface (optical rfJ) of the molded optical element was processed to a desired surface accuracy. The molding surface of the mold base material is a concave surface, and it is first processed into the desired curve by grinding with a diamond grindstone, and then polished using a diamond grinder with a grain size of 1 μm to achieve a surface shape accuracy of Newton ring 1 degree. R
Finished with a surface roughness accuracy of approximately 0.02μm.

次に、上記A1及び42については、第2図に示される
装置を用いて反応性スパッタリング法によシ壓母材の成
形而上に窒化タングステン層を形成した。
Next, regarding A1 and 42 above, a tungsten nitride layer was formed on the molded base material by a reactive sputtering method using the apparatus shown in FIG.

第2図において、50はスパッタリング装置の気密室で
ある。気密室50には排気口51が接続されておシ、排
気口51は不図示の減圧源に接続されている。気密室5
0内の上部には加熱ヒータ52が配置されておシ、該ヒ
ータにはヒータ電源53が接続されている。ヒータ52
の下方に型母材支持体54が配置されておシ、該支持体
には型母材バイアス電源55が接続されている。支持体
54には型母材56が成形面を下向きにして支持される
。支持体54の下方に窒素ガスあるいはアンモニア導入
用パイf57、グロー放電発生用コイル58が配置され
ておシ、該コイルには整合回路59t−介して高周波電
源60が接続されている。
In FIG. 2, 50 is an airtight chamber of the sputtering apparatus. An exhaust port 51 is connected to the airtight chamber 50, and the exhaust port 51 is connected to a decompression source (not shown). Airtight room 5
A heater 52 is disposed at the upper part of the interior, and a heater power source 53 is connected to the heater. Heater 52
A mold base material support 54 is disposed below, and a mold base material bias power source 55 is connected to the support. A mold base material 56 is supported on the support body 54 with the molding surface facing downward. A piping f 57 for introducing nitrogen gas or ammonia and a coil 58 for generating glow discharge are arranged below the support 54, and a high frequency power source 60 is connected to the coil through a matching circuit 59t.

気密室50の下部にはカソード電極61が配置されてい
る。電極61の上部にはタングステンターゲット62が
設けられておシ、下部には冷却水用ノ4イグ63が接続
されている。電極61の上方にアルゴンガス導入用パイ
プ64が配置されている。
A cathode electrode 61 is arranged at the bottom of the airtight chamber 50. A tungsten target 62 is provided on the upper part of the electrode 61, and a cooling water source 63 is connected to the lower part. An argon gas introducing pipe 64 is arranged above the electrode 61.

窒化タングステン層の形成時には、上前の様にして得ら
れた型母材56を7七トンで洗浄し、支持体54によシ
支持した後気密室50内を2X10−’Torrまで減
圧した。次に%/4イア’64からアルゴンガスを導入
し、コイル58に高周波電界(13,56MHz 、 
0.2 kW−hr )を印m L 7 k f y 
(D / o −放電を発生させ、バイアス電源55に
よシ星母材56に負バイアス(−50V)を印加してア
ルゴンイオンによるスノJ?ツタクリーニングを行う。
When forming the tungsten nitride layer, the mold base material 56 obtained as above was washed with 77 tons, supported on the support 54, and the pressure inside the airtight chamber 50 was reduced to 2.times.10-' Torr. Next, argon gas is introduced from the %/4 ear '64, and a high frequency electric field (13,56MHz,
0.2 kW-hr) m L 7 k f y
(A D/o-discharge is generated, and a negative bias (-50V) is applied to the star base material 56 by the bias power supply 55 to perform snow J? ivy cleaning with argon ions.

その後、ノやイブ64からアルゴンガスを導入しながら
カソード電極61に高周波電界(13,56MHz。
Thereafter, a high frequency electric field (13.56 MHz) is applied to the cathode electrode 61 while introducing argon gas from the tube 64.

0、5 kW−hr )を印加しタングステンターゲッ
ト62の近傍にアルコ9ンのグロー放電を発生させ、タ
ングステンターゲットにアルゴンイオンの衝撃を与えて
スパッタリングを行う。同時に、パイプ57によシ窒素
ガスを型母材56の近傍に吹きっけ、コイル58に高周
波電界(13,56MHz 。
0.5 kW-hr) is applied to generate a glow discharge of argon ions near the tungsten target 62, and the tungsten target is bombarded with argon ions to perform sputtering. At the same time, nitrogen gas is blown into the vicinity of the mold base material 56 through the pipe 57, and a high frequency electric field (13.56 MHz) is applied to the coil 58.

0、5 kW−hr )を印加して窒素プラズマを形成
させ、バイアス電源55によりm母材56に負バイアス
(−SOW)を印加して窒素イオンを型母材56に引込
みながらタングステンの反応性スパッタリングを行って
型母材56の表1iiiiKial化タングステン層を
形成した。このとき型母材の温度は500℃であった。
0.5 kW-hr) is applied to form a nitrogen plasma, and a negative bias (-SOW) is applied to the m base material 56 by the bias power supply 55 to draw nitrogen ions into the mold base material 56 while reducing the reactivity of tungsten. Sputtering was performed to form a tungsten oxide layer of the mold base material 56. At this time, the temperature of the mold base material was 500°C.

得られた窒化タングステン層の厚さは1μmであった。The thickness of the obtained tungsten nitride layer was 1 μm.

前記実施例において、窒素ガスの代シにアンモニアガス
、あるいはカソード電極に高周波電界の代j5KDc電
圧を印加しても同様な輩化タングステン層が得られ九。
In the above embodiment, a similar thickened tungsten layer can be obtained by applying ammonia gas instead of nitrogen gas or by applying a voltage of 5 KDc to the cathode electrode instead of a high frequency electric field.

上記I65については、第2図に示される装置を用いて
同様にして型母材の成形而上に炭化ケイ素層を形成した
。この際に、窒素ガスの導入を行わず同じ撤のCH4ガ
スを導入し、かつタングステンターゲットの代シにケイ
素ターrットを用いた。
Regarding I65, a silicon carbide layer was formed on the mold base material in the same manner using the apparatus shown in FIG. At this time, the same amount of CH4 gas was introduced without introducing nitrogen gas, and a silicon tart was used in place of the tungsten target.

炭化ケイ素層の厚さはlRnでめった。The thickness of the silicon carbide layer was determined by lRn.

次に1以上の様にして製造された臘部材を用いて、光学
ガラスのプレス成形を行なった。
Next, optical glass was press-molded using the frame member manufactured as described above.

第3図はプレス成形に用いた装置を示す断面図である。FIG. 3 is a sectional view showing the apparatus used for press molding.

第3図において、lは密閉容器でろシ、2はその量であ
シ、3,4は光学素子(両凸レンズ)を成形するための
上記盤部材であ夛、3は上製部材でめり、4は下盤部材
である。5は上履押えであ)、6は網製部材であり、7
は履ホルダーで6シ、8はヒーターであシ、9は下温突
き上げ棒で69.10は線棒を駆動させるエアーシリン
ダーである。
In FIG. 3, 1 is a closed container for filtering, 2 is the amount, 3 and 4 are the above-mentioned plate members for molding the optical element (biconvex lens), 3 is a hollow member, 4 is a lower board member. 5 is a shoe presser), 6 is a net member, and 7
6 is the shoe holder, 8 is the heater, 9 is the lower temperature push-up rod, and 69.10 is the air cylinder that drives the wire rod.

11は油回転ポンプでろり、12.13,14はパルプ
で6’)、15は窒素ガス導入ノ9イグでめシ、16は
パルプであシ、17は排出ノ母イブでろシ、18はパル
プで69.19は温度センサーであシ、20は水冷パイ
プであシ、21は密閉容器lの台である。
11 is filtered with an oil rotary pump, 12, 13, and 14 are filtered with pulp (6'), 15 is filtered with nitrogen gas introduction 9, 16 is filtered with pulp, 17 is filtered with a discharge mother plate, and 18 is filtered with pulp. For pulp, 69.19 is a temperature sensor, 20 is a water cooling pipe, and 21 is a stand for the closed container l.

フリント系光学ガラス(8114、軟化点S。Flint optical glass (8114, softening point S.

=586℃、ガラス転移点T、=485℃)を所定重量
の球形状として成形のためのブランクを作成したO 密閉容器1の蓋2を開き、上型部材3及び上型押え5を
取外して下盤部材4上〈上記ブランクを載せて、上屋部
材3及び上製押え5を堰付けた。
= 586°C, glass transition point T, = 485°C) and a spherical shape with a predetermined weight to create a blank for molding. The above blank was placed on the lower plate member 4, and the shed member 3 and upper presser foot 5 were attached.

更に蓋2を閉じてから、水冷・皆イブ20に水を流し、
ヒーター8に通電した。この時、iji素ガス用パルプ
16.パルプ18及び排気系パルプ12゜13.14を
閉じておい友。次に、油回転ポンプ11を作動させ、パ
ルプ12を開き、容器1内を排気した。容器l内の真空
度が10”2Torrとなった後、パルプ12を閉じ、
パルプ16.18を開いて窒素ガスをボンベから密閉容
器1内へと尋人した。所定温度になった後にエアーシリ
ンダーlOを作動させて10 kcI / cm2の圧
力で5分間プレス成形を行なった。加圧力を除去し1.
約り℃/分の速度でガラス転移点以下になるまで冷却し
、その後20℃/分以上の速度で冷却を行ない、温度が
200℃以下に下り九俊に、パルプ16 # 18を閉
じ、リークパルプ13を開いて密閉容器1内に空気を尋
人した。次に、1lizを開き、上屋部材3及び上履押
え5を取外して成形済光学素子を取出した。
Furthermore, after closing the lid 2, pour water into the water cooling/Minaibu 20,
The heater 8 was energized. At this time, 16. Close the pulp 18 and exhaust system pulp 12, 13, and 14. Next, the oil rotary pump 11 was operated, the pulp 12 was opened, and the inside of the container 1 was evacuated. After the degree of vacuum in the container l reaches 10"2 Torr, the pulp 12 is closed,
Pulp 16.18 was opened and nitrogen gas was introduced from the cylinder into the closed container 1. After reaching a predetermined temperature, the air cylinder IO was activated and press molding was performed for 5 minutes at a pressure of 10 kcI/cm2. Remove the pressure 1.
Cool at a rate of approximately 16°C/min until the temperature drops below the glass transition point, then cool at a rate of 20°C/min or higher until the temperature drops to below 200°C, close Pulp 16 #18, and check for leakage. The pulp 13 was opened to vent air into the sealed container 1. Next, 1liz was opened, the shed member 3 and the shoe holder 5 were removed, and the molded optical element was taken out.

784図はプレス成形時のガラスの温度変化を示す図で
ある。
Figure 784 is a diagram showing the temperature change of glass during press molding.

以上の様なプレス成形の前後における盤部材3゜4の成
形面の表面粗さ及び成形された光学素子の光学面の表面
粗さ、ならびに成形光学素子と盤部材3.4との離型性
について第2餞に示す。
The surface roughness of the molded surface of the plate member 3.4, the surface roughness of the optical surface of the molded optical element, and the releasability of the molded optical element and the plate member 3.4 before and after press molding as described above. The details are shown in the second issue.

次に、融着発生のない41.7#l&2及びA3につい
て、同−盤部材を用いて10000回のプレス成形を行
ない、200回、1000回、5000回、10000
回後における盤部材3,4の成形−面の表面粗さ及び成
形された光学素子の光学面の表面粗さについて第3表に
示す。
Next, for 41.7 #l & 2 and A3 without any fusion, press molding was performed 10,000 times using the same plate member, 200 times, 1,000 times, 5,000 times, 10,000 times.
Table 3 shows the surface roughness of the molded surfaces of the plate members 3 and 4 after the molding and the surface roughness of the optical surface of the molded optical element.

以上の様に、本発明実施例においては、繰返しプレス成
形に使用しても良好な表面精度を十分に維持でき、良好
な表面精度の光学素子が成形できた。
As described above, in the examples of the present invention, good surface precision could be sufficiently maintained even when used in repeated press molding, and optical elements with good surface precision could be molded.

上記実施例では成形される光学ガラスとしてフリント系
のものが用いられているが、その他のクラウン系等のガ
ラスについても同様に良好なsiでの成形が可能である
In the above embodiments, a flint-based optical glass is used as the optical glass to be molded, but other types of glasses such as crown-based glasses can be similarly molded with good Si.

[発明の効果〕 以上の様な本発明によれば、型母材の成形面を窒化タン
グステンで被覆することによシ、繰返しプレス成形に際
し精度劣化が少なく寿命が長い光学素子成形用盤部材が
提供される。また、本発明型部材は、型母材としての加
工性の良好なものを選択することができるので、製造が
容易である。
[Effects of the Invention] According to the present invention as described above, by coating the molding surface of the mold base material with tungsten nitride, it is possible to obtain a plate member for molding optical elements that has a long life and less accuracy deterioration during repeated press molding. provided. Further, the mold member of the present invention is easy to manufacture because a material with good workability can be selected as the mold base material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるm部材の一実施例を示す概W&断
面図である。 第2図は本発明による型部材の製造において量化タング
ステン層の形成に使用される装fIILt−示す図であ
る。 第3図は光学素子のプレス成形装置の断面図である。 第4図はブレス成形時のガラスの温度変化を示す図であ
る。 3.4・・・型部材、30・・・型母材、31・・・窒
化タングステン層、56・・・型母材。
FIG. 1 is a schematic W& cross-sectional view showing an embodiment of the m member according to the present invention. FIG. 2 is a diagram illustrating the equipment used to form a quantified tungsten layer in the manufacture of a mold member according to the invention. FIG. 3 is a sectional view of a press molding apparatus for optical elements. FIG. 4 is a diagram showing the temperature change of glass during press molding. 3.4... Mold member, 30... Mold base material, 31... Tungsten nitride layer, 56... Mold base material.

Claims (1)

【特許請求の範囲】[Claims] (1)光学素子成形用型部材において、型母材の少なく
とも成形面が窒化タングステンで被覆されていることを
特徴とする、光学素子成形用型部材。
(1) A mold member for molding an optical element, characterized in that at least the molding surface of the mold base material is coated with tungsten nitride.
JP4059388A 1988-02-25 1988-02-25 Mold member for forming optical element Pending JPH01215734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059388A JPH01215734A (en) 1988-02-25 1988-02-25 Mold member for forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059388A JPH01215734A (en) 1988-02-25 1988-02-25 Mold member for forming optical element

Publications (1)

Publication Number Publication Date
JPH01215734A true JPH01215734A (en) 1989-08-29

Family

ID=12584806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059388A Pending JPH01215734A (en) 1988-02-25 1988-02-25 Mold member for forming optical element

Country Status (1)

Country Link
JP (1) JPH01215734A (en)

Similar Documents

Publication Publication Date Title
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
JP2004359481A (en) Method for manufacturing replica pattern for lens molding
JPH09301722A (en) Formation of release film
JP3273921B2 (en) Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold
JPH01215734A (en) Mold member for forming optical element
JPH0359016B2 (en)
JPS6221733B2 (en)
JP2505897B2 (en) Mold for optical element molding
JP2002274867A (en) Optical glass element press forming die and optical glass element
JP2571290B2 (en) Mold for optical element molding
JP2785888B2 (en) Mold for optical element molding
JP2612627B2 (en) Mold for optical element molding
JP2612621B2 (en) Mold for optical element molding
JPH10231129A (en) Mold for press molding and glass molded product by the mold
JP2004210550A (en) Molding mold
JPS63288924A (en) Die member for molding optical element
JP3308720B2 (en) Mold for optical element molding
JPS63151628A (en) Mold for forming optical element
JPH092827A (en) Production of glass lens
JP3341520B2 (en) Optical lens manufacturing method
JPH01108372A (en) Sputtering device
JPH09194216A (en) Die for forming optical element
JPH0372018B2 (en)
JPH08208245A (en) Production of forming mold for optical element
JPS63134527A (en) Method for forming optical glass element