JPH0121568B2 - - Google Patents

Info

Publication number
JPH0121568B2
JPH0121568B2 JP55088313A JP8831380A JPH0121568B2 JP H0121568 B2 JPH0121568 B2 JP H0121568B2 JP 55088313 A JP55088313 A JP 55088313A JP 8831380 A JP8831380 A JP 8831380A JP H0121568 B2 JPH0121568 B2 JP H0121568B2
Authority
JP
Japan
Prior art keywords
heat
paper
resistant
prepreg
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55088313A
Other languages
Japanese (ja)
Other versions
JPS5713623A (en
Inventor
Shohei Eto
Hiroyuki Nakajima
Norimoto Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8831380A priority Critical patent/JPS5713623A/en
Publication of JPS5713623A publication Critical patent/JPS5713623A/en
Publication of JPH0121568B2 publication Critical patent/JPH0121568B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Insulating Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な耐熱性プリプレグ絶縁体の製造
法に関する。さらに詳しくは、電気機器用コイル
の層間絶縁またはスロツト、リードなどの絶縁に
際し、半硬化状態で可撓性があり、加熱時に自己
融着性を示し、しかも耐熱性にすぐれ、とくに高
温域での電気的特性および機械的特性にすぐれた
硬化物を与える耐熱性プリプレグ絶縁体の製造法
に関する。 半硬化状のプリプレグ絶縁シートまたはプリプ
レグ絶縁テープを用いて電気機器用コイルなどを
絶縁する方法は、絶縁ワニスの刷け塗りや含浸処
理などの操作を必要としないので、コスト面およ
び製造時間の点からきわめて有利な方法であり、
これらのプリプレグ絶縁体の製造には、プリプレ
グ樹脂として硬化物の諸特性にすぐれたエポキシ
樹脂に三フツ化ホウ素アミン錯塩やジシアンジア
ミドなどの潜在性硬化剤を配合したエポキシ樹脂
組成物が広範に使用されている。またプリプレグ
絶縁体の基材としては、ガラスクロスなどの無機
質繊維基材、テトロンクロスなどの有機質繊維基
材、熱収縮フイルム類、紙、マイカシートなどが
使用されている。しかしながら、前記した従来の
エポキシ樹脂組成物を用いてえられるプリプレグ
絶縁体にあつては、室温での貯蔵寿命がせいぜい
3〜4カ月程度であり、プリプレグ絶縁体として
の性能を充分に具備しているとはいい難い。しか
もえられる硬化物は耐熱性、耐水性などの点で充
分に満足しうるものではなく、とくに高温域での
電気的特性および機械的特性に劣るという欠点が
ある。 本発明者らは叙上の欠点を排除し、貯蔵安定性
がよく、しかも耐熱性にすぐれ、とくに高温域で
の電気的特性および機械的特性にすぐれた硬化物
を与える耐熱性プリプレグ絶縁体の製造法を提供
するべく鋭意研究を重ねた結果、本発明を完成す
るにいたつた。 すなわち本発明は融着剤として高分子フイブリ
ツドを1〜5%(重量%、以下同様)含有する集
成マイカ紙と芳香族ポリアミド紙を熱融着により
二層構造にしたものを基材とし、それに多官能ビ
スマレイミド化合物とアルケニルフエノール類ま
たはアルケニルフエニルエーテル類とからなる耐
熱性樹脂組成物を塗布または含浸したのち、加熱
乾燥し、半硬化状にすることを特徴とする耐熱性
プリプレグ絶縁体の製造法に関するものであつ
て、電気機器用コイルなどの絶縁に際し前記特定
の基材および耐熱性樹脂組成物を用いて製造され
てなる耐熱性プリプレグ絶縁体を使用することに
より、従来の製造法によりえられるプリプレグ絶
縁体を用いるばあいにおけるごとくえられる硬化
物が熱的な安定性に欠け、高温域での電気的特性
および機械的特性に劣り、高温長時間の使用に耐
えないといつた叙上の欠点が完全に排除され、半
硬化状態で可撓性があり、加熱時に自己融着性を
示し、しかも耐熱性にすぐれ、とくに高温域での
電気的特性および機械的特性にすぐれた硬化物が
えられるというきわめて顕著な効果が奏される。 また本発明の製造法によりえられる耐熱性プリ
プレグ絶縁体にあつては、貯蔵寿命が長く、プリ
プレグ絶縁体としての性能を充分に具備しうるも
のである。 本発明の製造法に用いる耐熱性樹脂組成物は、
多官能ビスマレイミド化合物とアルケニルフエノ
ール類またはアルケニルフエニルエーテル類とか
らなり、多官能ビスマレイミド化合物100部(重
量部、以下同様)に対しアルケニルフエノール類
またはアルケニルフエニルエーテル類10〜200部
が配合されてなるものである。 本発明の製造法において、プリプレグ樹脂とし
て用いる前記耐熱性樹脂組成物は、該耐熱性樹脂
組成物の一成分である多官能ビスマレイミド化合
物単独においても、その多官能ビスマレイミド化
合物が加熱硬化されることにより耐熱性にすぐれ
た硬化物を与えるが、多官能ビスマレイミド化合
物が溶剤に対する溶解性や他のビニルモノマーな
どの反応性モノマーに対する相溶性に劣り、実用
上の欠点となることから、多官能ビスマレイミド
化合物をアルケニルフエノール類またはアルケニ
ルフエニルエーテル類と温度50〜150℃程度であ
らかじめ予備重合して調製したものである。この
耐熱性樹脂組成物は、各種溶剤に対する溶解性お
よび反応性モノマーに対する相溶性がよく、しか
も多官能ビスマレイミド化合物を主成分としてい
るので耐熱性にすぐれ、しかも電気的特性および
機械的特性にすぐれた硬化物を与える。アルケニ
ルフエノール類またはアルケニルフエニルエーテ
ル類の使用量が多官能ビスマレイミド化合物100
部に対し10部より少ないときは前記予備重合によ
る多官能ビスマレイミド化合物の各種溶剤および
反応性モノマーに対する溶解性および相溶性が向
上されえず、また200部より多いときはえられる
硬化物の耐熱性が低下し、いずれも好ましくな
い。 本発明の製造法において、耐熱性樹脂組成物に
用いる多官能ビスマレイミド化合物としては、た
とえばN,N′−(メチレン−ジ−p−フエニレ
ン)ジマレイミド、N,N′−(オキシジ−p−フ
エニレン)ジマレイミド、N,N′−2,4−ト
リレンジマレイミド、N,N′−2,6−トリレ
ンジマレイミド、N,N′−m−キシリレンジマ
レイミド、N,N′−p−キシリレンジマレイミ
ド、N,N′−ヘキサメチレンジマレイミドなど
があげられる。 本発明の製造法において、耐熱性樹脂組成物に
用いるアルケニルフエノール類としては、たとえ
ば2,2−(3,3′−ジアリル−4,4′−ジヒド
ロキシジフエニル)−プロパン、3,3′−ジアリ
ル−4,4′−ジヒロドキシジフエニルスルホン、
3,3′−ジアリル−4,4′−ジヒドロキシジフエ
ニルメタンなどが代表的なものであり、またアル
ケニルフエニルエーテル類としては、たとえば
2,2−(3,3′−ジアリル−4,4′−ジメトキ
シジフエニル)−プロパン、3,3′−ジアリル−
4,4′−ジエトキシジフエニルスルホン、3,
3′−ジアリル−4,4′−ジメトキシジフエニルメ
タンなどが代表的なものである。 前記多官能ビスマレイミド化合物とアルケニル
フエノール類またはアルケニルフエニルエーテル
類との重合触媒としては、たとえばジエチルアミ
ン、トリエチルアミンなどのアミン類、2−メチ
ル−4−エチルイミダゾール、ベンズイミダゾー
ルなどのイミダゾール類、アゾビスイソブチロニ
トリル、ジクミルパーオキサイドなどのパーオキ
サイド類などがあげられ、多官能ビスマレイミド
化合物とアルケニルフエノール類またはアルケニ
ルフエニルエーテル類との混合物の0.1〜5%が
用いられる。 しかして調製された耐熱性樹脂組成物は、たと
えばジオキサン、メチルエチルケトン、N,N−
ジメチルアセトアミド、N,N−ジメチルホルム
アミド、N−メチルピロリドンなどの有機溶媒に
溶解し、基材に塗布または含浸される。 本発明の製造法に用いる基材としては、プリプ
レグ絶縁体の機械的強度が大きいこと(コイルな
どに巻回できることなど)、プリプレグ樹脂とな
じみがよいこと、硬化後の熱的性質、電気的性質
および機械的性質にすぐれていることなどの特性
のすべてを満足しうるものであり、好適には融着
剤として高分子フイブリツドを1〜5%含有する
集成マイカ紙と芳香族ポリアミド紙を熱融着によ
り貼り合わせた二層構造を有する基材が使用され
る。基材における集成マイカ紙と芳香族ポリアミ
ド紙の構成比率としては、えられる耐熱性プリプ
レグ絶縁体の機械的強度および耐熱性プリプレグ
絶縁体の硬化物の諸特性の点から、集成マイカ紙
100部に対し芳香族ポリアミド紙20〜120部が採用
される。基材における芳香族ポリアミド紙の構成
比率が集成マイカ紙100部に対し20部より小さい
ときはプリプレグ絶縁体としての機械的強度に乏
しく、コイルなどに巻回するばあいに亀裂などが
生じて実用に供しえず、また120部より大きいと
きはコイルなどに巻回したのち加熱硬化する際に
基材間が強固に接着されず、いずれも好ましくな
い。 本発明の製造法に、用いる集成マイカ紙として
は、前記のごとく融着剤として高分子フイブリツ
ドを1〜5%含有する集成マイカ紙があげられ、
それらの代表的なものを例示すれば、たとえば30
〜5000μmのマイカ箔と高分子フイブリツドを水
中に分散させ、丸網または長網式抄紙機を用いて
抄紙し、集成マイカ紙としたものなどがあげられ
る。集成マイカ紙に融着剤として含有される高分
子フイブリツドとしては、たとえば芳香族ポリア
ミド、ポリアクリロニトリルなどの短繊維(すな
わちフイブリツド)があげられる。集成マイカ紙
中の高分子フイブリツドの含有量としては1〜5
%が採用され、それにより耐熱性樹脂組成物の含
浸性および芳香族ポリアミド紙との融着性が良好
であり、また電気的特性および機械的特性の良好
な硬化物を与える集成マイカ紙がえられる。集成
マイカ紙中の高分子フイブリツドの含有量が1%
より少ないときは芳香族ポリアミド紙と熱融着す
るばあいに熱融着が困難となり、また5%より多
いときは耐熱性樹脂組成物の含浸性がわるくな
り、その結果えられる硬化物の電気的特性および
機械的特性が低下し、いずれも好ましくない。 本発明の製造法において、前記集成マイカ紙と
熱融着される芳香族ポリアミド紙としては、たと
えばイソフタル酸−m−フエニレンジアミン共重
合体、テレフタル酸−p−フエニレンジアミン共
重合体などからなるものがあげられ、それらのも
のを例示すれば、たとえばアラミツド紙〔三菱製
紙(株)製、商品名〕、ノーメツクス紙(デユポン社
製、商品名)などである。 しかして、融着剤として高分子フイブリツドを
1〜5%含有する集成マイカ紙と芳香族ポリアミ
ド紙を熱融着により二層構造とした基材に、前記
耐熱性樹脂組成物の有機溶媒溶液を塗布または含
浸せしめたのち加熱乾燥せしめて、半硬化状にす
ることにより、目的の耐熱性プリプレグ絶縁体が
えられる。えられる耐熱性プリプレグ絶縁体は貯
蔵寿命が長く、また機械的強度が大きく、コイル
などに巻回しても亀裂やシワが生じないものであ
る。 本発明の製造法において、基材に塗布または含
浸される前記耐熱性樹脂組成物の塗布量(または
含浸量)としては、基材100gに対し2〜20gが
採用され、それにより融着性が良好であり、また
電気的特性および機械的特性の良好な硬化物を与
える耐熱性プリプレグ絶縁体がえられる。前記耐
熱性樹脂組成物の塗布量が基材100gに対し2g
より少ないときはえられる耐熱性プリプレグ絶縁
体の融着性が不充分となり、また120gより多い
ときは締り性がわるくなり、いずれも好ましくな
い。また前記耐熱性樹脂組成物の有機溶媒溶液が
塗布または含浸された基材の加熱乾燥条件として
は乾燥温度60〜350℃、乾燥時間1.0〜60分が採用
され、それにより電気的特性、機械的特性および
耐熱性にすぐれた硬化物を与える半硬化状の耐熱
性プリプレグ絶縁体がえられる。乾燥温度が350
℃より高くかつ乾燥時間が60分より長いときはえ
られる耐熱性プリプレグ絶縁体の硬化が進行しす
ぎることにより、コイルに巻回後に亀裂やシワが
生じたり、融着が不充分となり、また乾燥温度が
60℃より低くかつ乾燥時間が1.0分より短いとき
は溶剤の揮発が不充分で粘着性が大きく、プリプ
レグとしての作業性に欠け、いずれも好ましくな
い。 しかしてえられる耐熱性プリプレグ絶縁体は、
コイルなどの導体に巻回されたのち加熱加圧する
ことにより硬化物とされる。えられる硬化物は耐
熱性にすぐれ、とくに高温域での電気的特性およ
び機械的特性にすぐれ、高温長時間の使用に耐え
うるものである。 つぎに実施例および比較例をあげて本発明の耐
熱性プリプレグ絶縁体の製造法を具体的に説明す
る。 実施例 1 N,N′−(メチレン−ジ−p−フエニレン)ジ
マレイミド35.8gと2,2−(3,3′−ジアリル
−4,4′−ジヒドロキシジフエニル)−プロパン
15.4gをN,N−ジメチルアセトアミド500gに
溶解し、温度150℃で30分間予備重合して耐熱性
樹脂組成物の有機溶媒溶液をえた。 ついで芳香族ポリアミド紙〔三菱製紙(株)製、厚
さ:0.2mm〕と集成マイカ紙〔高分子フイブリツ
ドの含有量:2%、高分子フイブリツドの構成成
分:イソフタル酸−ジアミノジフエニルメタン共
重合体(ポリアミド)、厚さ:0.2mm〕(1m2あた
りの重量比:芳香族ポリアミド紙/集成マイカ紙
=20/100)を熱融着して二層構造の耐熱マイカ
紙(すなわち基材)をえ、この基材に前記耐熱性
樹脂組成物の有機溶媒溶液を基材100gあたり耐
熱性樹脂組成物80gの割合で塗布し、温度150℃
で30分間乾燥処理して半硬化状の耐熱性プリプレ
グシートを製造した。 えられた耐熱性プリプレグシートの機械的性質
を把握するために、25mm×25mmに切り出した耐熱
性プリプレグシート4枚を25mm×25mmの鉄ブロツ
クの間に重ね、温度200℃、加圧圧力10Kg/cm2
加圧時間30分の条件下に加熱プレスを行なつて試
料をえ、この試料を用いてえられれた耐熱性プリ
プレグシートの接着強度を測定した。その測定結
果を第1表に示す。なお接着強度は、えられた試
料(初期)および該試料を220℃×20日間熱劣化
処理した試料(劣化後)を温度25℃においてイン
ストロン引張り試験機を用いて測定した。 またえられた耐熱性プリプレグシートを2mm×
5mm×500mmのホルマール平角銅線10本を1束と
したコイル導体上にラツパー巻き(すなわちちス
シ巻き)に4回巻回したのち、温度200℃、加圧
圧力10Kg/cm2、加圧時間30分の条件下に加熱プレ
スして絶縁層の厚さ0.3mmを有する絶縁コイルを
製造し、この絶縁コイルの電気的特性〔誘電正接
(tanδ)温度特性、絶縁破壊電圧〕および外観の
良否をそれぞれ測定した。それらの測定結果を第
1表に示す。なお誘電正接温度特性は、えられた
絶縁コイルを温度20℃および200℃において測定
電圧0.5kVで高電圧シエーリングブリツジ法にて
測定〔(株)横河電機製作所製のシエーリングブリツ
ジを使用〕した。絶縁破壊電圧は、えられた絶縁
コイル(初期)および該絶縁コイルを220℃×20
日間熱劣化処理した絶縁コイル(劣化後)を温度
25℃において1kV/secの一定昇圧速度で油中で
測定〔愛国電機(株)製の耐電圧試験装置を使用〕し
た。また絶縁コイルの外観の良否は目視観察によ
り評価した。 実施例 2 芳香族ポリアミド紙〔三菱製紙(株)製、厚さ:
0.2mm〕と集成マイカ紙〔高分子フイブリツドの
含有量:5%、高分子フイブリツドの構成成分:
イソフタル酸−ジアミノジフエニルメタン共重合
体(ポリアミド)、厚さ:0.2mm〕(1m2あたりの
重量比:芳香族ポリアミド紙/集成マイカ紙=
40/60)を熱融着して二層構造の基材をえた。 ついでえられた二層構造の基材を用いたほかは
実施例1と同様にして半硬化状の耐熱性プリプレ
グシートを製造し、かつえられた耐熱性プリプレ
グシートの接着強度を測定した。その測定結果を
第1表に示す。 またえられた耐熱性プリプレグシートを用いた
ほかは実施例1と同様にして絶縁層の厚さ0.3mm
を有する絶縁コイルを製造し、かつえられた絶縁
コイルの電気的特性および外観の良否をそれぞれ
測定した。それらの測定結果を第1表に示す。 実施例 3 芳香族ポリアミド紙〔三菱製紙(株)製、厚さ0.1
mm〕と集成マイカ紙〔高分子フイブリツドの含有
量:1%、高分子フイブリツドの構成成分:アク
リロニトリル−メチルメタクリレート共重合体、
厚さ:0.1mm〕(1m2あたりの重量比:芳香族ポリ
アミド紙/集成マイカ紙=60/60)を熱融着して
二層構造の基材をえた。 ついでえられた二層構造の基材を用いたほかは
実施例1と同様にして半硬化状の耐熱性プリプレ
グシートを製造し、かつえられた耐熱性プリプレ
グシートの接着強度を測定した。その測定結果を
第1表に示す。 またえられた耐熱性プリプレグシートを用いた
ほかは実施例1と同様にして絶縁層の厚さ0.2mm
を有する絶縁コイルを製造し、かつえられた絶縁
コイルの電気的特性および外観の良否をそれぞれ
測定した。それらの測定結果を第1表に示す。 実施例 4 N,N′−(オキシジ−p−フエニレン)ジマレ
イミド36.0gと3,3′−ジアリル−4,4′−ジヒ
ドロキシジフエニルメタン28.0gを重合触媒とし
て2−メチル−4−エチルイミダゾール0.64gを
用いてN,N−ジメチルアセトアミド140g中で
温度150℃、30分間予備重合して耐熱性樹脂組成
物の有機溶媒溶液をえた。 ついでえられた耐熱性樹脂組成物の有機溶媒溶
液および実施例3で用いたと同じ二層構造の基材
をそれぞれ用いたほかは実施例1と同様にして半
硬化状の耐熱性プリプレグシートを製造した。 えられた耐熱性プリプレグシートの接着強度を
実施例1と同様にして測定した。その測定結果を
第1表に示す。 またえられた耐熱性プリプレグシートを用いた
ほかは実施例1と同様にして絶縁層の厚さ0.3mm
を有する絶縁コイルを製造し、かつえられた絶縁
コイルの電気的特性および外観の良否をそれぞれ
測定した。それらの測定結果を第1表に示す。 比較例 1 DEN438(ダウケミカル社製のエポキシ樹脂、
商品名)60g、ECN1273(チバガイギー社製のエ
ポキシ樹脂、商品名)40gおよび三フツ化ホウ素
モノエチルアミン錯塩3gをアセトン45gとトル
エン55gからなる混合溶媒に溶解して、エポキシ
樹脂組成物の有機溶媒溶液をえた。ついで実施例
1で用いたと同じ二層構造の基材に、前記エポキ
シ樹脂組成物の有機溶媒溶液を基材100gあたり
エポキシ樹脂組成物80gの割合で塗布し、温度
100℃で5分間ついで温度110℃で8分間乾燥して
プリプレグシートを製造した。 ついでえられたプリプレグシートの接着強度を
実施例1と同様にして測定した。その測定結果を
第1表に示す。 またえられたプリプレグシートを用いたほかは
実施例1と同様にして絶縁層の厚さ0.3mmを有す
る絶縁コイルを製造し、かつえられた絶縁コイル
の電気的特性および外観の良否をそれぞれ測定し
た。それらの測定結果を第1表に示す。 比較例 2 比較例1でえたエポキシ樹脂組成物の有機溶媒
溶液を芳香族ポリアミド紙(デユポン社製、商品
名「ノーメツクス紙」、厚さ:0.2mm)100gあた
りエポキシ樹脂組成物80gの割合に塗布し、温度
105℃で10分間乾燥してプリプレグシートを製造
した。 ついでえられたプリプレグシートの接着強度を
実施例1と同様にして測定した。その測定結果を
第1表に示す。 またえられたプリプレグシートを用いたほかは
実施例1と同様にして絶縁層の厚さ0.2mmを有す
る絶縁コイルを製造し、かつえられた絶縁コイル
の電気的特性および外観の良否をそれぞれ測定し
た。それらの測定結果を第1表に示す。
The present invention relates to a novel method for producing heat resistant prepreg insulation. More specifically, it is used for interlayer insulation of coils for electrical equipment or insulation of slots, leads, etc. It is flexible in a semi-cured state, exhibits self-bonding properties when heated, and has excellent heat resistance, especially in high temperature ranges. This invention relates to a method for producing a heat-resistant prepreg insulator that provides a cured product with excellent electrical and mechanical properties. The method of insulating coils for electrical equipment using semi-cured prepreg insulating sheets or prepreg insulating tapes does not require operations such as brushing or impregnating with insulating varnish, so it is effective in terms of cost and manufacturing time. This is an extremely advantageous method,
In the production of these prepreg insulators, epoxy resin compositions are widely used as prepreg resins, which are made by blending latent curing agents such as boron trifluoride amine complex salts and dicyandiamide with epoxy resins that have excellent properties when cured. ing. In addition, as base materials for prepreg insulators, inorganic fiber base materials such as glass cloth, organic fiber base materials such as Tetron cloth, heat shrink films, paper, mica sheets, etc. are used. However, the prepreg insulator obtained using the conventional epoxy resin composition described above has a shelf life of about 3 to 4 months at room temperature at most, and does not have sufficient performance as a prepreg insulator. It's hard to say that there are. Moreover, the resulting cured product is not fully satisfactory in terms of heat resistance, water resistance, etc., and has the drawback of poor electrical and mechanical properties, particularly in a high temperature range. The present inventors have developed a heat-resistant prepreg insulator that eliminates the above-mentioned drawbacks and provides a cured product that has good storage stability, excellent heat resistance, and particularly excellent electrical and mechanical properties at high temperatures. As a result of extensive research in order to provide a manufacturing method, we have completed the present invention. That is, the present invention uses as a base material a two-layer structure made by thermally fusing laminated mica paper and aromatic polyamide paper containing 1 to 5% (by weight, the same applies hereinafter) of polymeric fibrils as a fusing agent, and A heat-resistant prepreg insulator characterized in that it is coated or impregnated with a heat-resistant resin composition consisting of a polyfunctional bismaleimide compound and alkenyl phenols or alkenyl phenyl ethers, and then heated and dried to make it semi-cured. It relates to a manufacturing method, and by using a heat-resistant prepreg insulator manufactured using the above-mentioned specific base material and a heat-resistant resin composition when insulating coils for electrical equipment, etc., it can be made by conventional manufacturing methods. It has been reported that when using prepreg insulators obtained from heat exchangers, the resulting cured product lacks thermal stability, has poor electrical and mechanical properties at high temperatures, and cannot withstand long-term use at high temperatures. The above disadvantages have been completely eliminated, and the cured product is flexible in a semi-cured state, exhibits self-bonding properties when heated, has excellent heat resistance, and has excellent electrical and mechanical properties, especially in high temperature ranges. The extremely remarkable effect of gaining something is achieved. Furthermore, the heat-resistant prepreg insulator obtained by the manufacturing method of the present invention has a long shelf life and can sufficiently exhibit the performance as a prepreg insulator. The heat-resistant resin composition used in the production method of the present invention is
Consisting of a polyfunctional bismaleimide compound and alkenyl phenols or alkenyl phenyl ethers, 10 to 200 parts of alkenyl phenols or alkenyl phenyl ethers are blended to 100 parts (parts by weight, the same applies hereinafter) of the polyfunctional bismaleimide compound. It is something that has been done. In the production method of the present invention, the heat-resistant resin composition used as the prepreg resin is such that even if the polyfunctional bismaleimide compound alone is a component of the heat-resistant resin composition, the polyfunctional bismaleimide compound is cured by heating. However, polyfunctional bismaleimide compounds have poor solubility in solvents and poor compatibility with reactive monomers such as other vinyl monomers, which is a practical drawback. It is prepared by prepolymerizing a bismaleimide compound with alkenyl phenols or alkenyl phenyl ethers at a temperature of about 50 to 150°C. This heat-resistant resin composition has good solubility in various solvents and compatibility with reactive monomers, and since it has a polyfunctional bismaleimide compound as its main component, it has excellent heat resistance and excellent electrical and mechanical properties. Give a cured product. The amount of alkenyl phenols or alkenyl phenyl ethers used is 100% of the polyfunctional bismaleimide compound.
When the amount is less than 10 parts, the solubility and compatibility of the polyfunctional bismaleimide compound in various solvents and reactive monomers cannot be improved by the prepolymerization, and when it is more than 200 parts, the heat resistance of the resulting cured product is impaired. Both are unfavorable. In the production method of the present invention, examples of the polyfunctional bismaleimide compound used in the heat-resistant resin composition include N,N'-(methylene-di-p-phenylene) dimaleimide, N,N'-(oxydi-p-phenylene), and N,N'-(oxydi-p-phenylene). ) dimaleimide, N,N'-2,4-tolylene dimaleimide, N,N'-2,6-tolylene dimaleimide, N,N'-m-xylylene dimaleimide, N,N'-p-xylylene dimaleimide , N,N'-hexamethylene dimaleimide, and the like. In the production method of the present invention, examples of alkenylphenols used in the heat-resistant resin composition include 2,2-(3,3'-diallyl-4,4'-dihydroxydiphenyl)-propane, 3,3'- diallyl-4,4'-dihydroxydiphenyl sulfone,
3,3'-diallyl-4,4'-dihydroxydiphenylmethane is a typical example, and alkenyl phenyl ethers include, for example, 2,2-(3,3'-diallyl-4,4 '-dimethoxydiphenyl)-propane, 3,3'-diallyl-
4,4'-diethoxydiphenyl sulfone, 3,
A typical example is 3'-diallyl-4,4'-dimethoxydiphenylmethane. Examples of the polymerization catalyst for the polyfunctional bismaleimide compound and alkenyl phenols or alkenyl phenyl ethers include amines such as diethylamine and triethylamine, imidazoles such as 2-methyl-4-ethylimidazole and benzimidazole, and azobis. Examples include peroxides such as isobutyronitrile and dicumyl peroxide, and 0.1 to 5% of a mixture of a polyfunctional bismaleimide compound and alkenyl phenols or alkenyl phenyl ethers is used. The heat-resistant resin composition prepared in this way is, for example, dioxane, methyl ethyl ketone, N,N-
It is dissolved in an organic solvent such as dimethylacetamide, N,N-dimethylformamide, or N-methylpyrrolidone, and applied or impregnated onto a substrate. The base material used in the manufacturing method of the present invention requires that the prepreg insulator has high mechanical strength (can be wound into a coil, etc.), is compatible with the prepreg resin, and has thermal and electrical properties after curing. It is preferable to heat-fuse laminated mica paper and aromatic polyamide paper containing 1 to 5% of polymer fibrils as a fusing agent. A base material having a two-layer structure bonded together by bonding is used. Regarding the composition ratio of laminated mica paper and aromatic polyamide paper in the base material, from the viewpoint of the mechanical strength of the resulting heat-resistant prepreg insulator and the various properties of the cured product of the heat-resistant prepreg insulator, laminated mica paper and aromatic polyamide paper are preferred.
For each 100 parts, 20 to 120 parts of aromatic polyamide paper are used. If the composition ratio of aromatic polyamide paper in the base material is less than 20 parts per 100 parts of laminated mica paper, the mechanical strength as a prepreg insulator will be poor, and cracks will occur when wound around a coil etc., making it impractical for practical use. Moreover, if it is larger than 120 parts, the base materials will not be firmly bonded when heated and cured after being wound around a coil, etc., which are both undesirable. Examples of the laminated mica paper used in the production method of the present invention include laminated mica paper containing 1 to 5% of polymer fibrids as a fusion agent as described above,
For example, 30 representative examples are
For example, mica foil of ~5000 μm and polymeric fibrids are dispersed in water, and paper is made using a circular wire or fourdrinier paper machine to make a laminated mica paper. Examples of the polymer fibrils contained in the laminated mica paper as a fusing agent include short fibers (ie, fibrids) of aromatic polyamide, polyacrylonitrile, and the like. The content of polymer fibrids in the laminated mica paper is 1 to 5.
% is adopted, which allows the heat-resistant resin composition to have good impregnation properties and fusion properties with aromatic polyamide paper, and also provides a cured product with good electrical and mechanical properties. It will be done. The content of polymer fibrids in laminated mica paper is 1%
If the amount is less than 5%, it will be difficult to heat-fuse the aromatic polyamide paper, and if it is more than 5%, the impregnating property of the heat-resistant resin composition will be poor, and the resulting cured product will have poor electrical properties. physical properties and mechanical properties are deteriorated, both of which are unfavorable. In the production method of the present invention, the aromatic polyamide paper to be heat-sealed to the laminated mica paper is made of, for example, isophthalic acid-m-phenylenediamine copolymer, terephthalic acid-p-phenylenediamine copolymer, etc. For example, aramid paper (manufactured by Mitsubishi Paper Mills, trade name), Nomex paper (manufactured by DuPont, trade name), and the like. Then, an organic solvent solution of the heat-resistant resin composition was applied to a base material that had a two-layer structure formed by heat-sealing laminated mica paper containing 1 to 5% of polymeric fibrils as a fusion agent and aromatic polyamide paper. The desired heat-resistant prepreg insulator can be obtained by coating or impregnating it and then heating and drying it to make it semi-cured. The resulting heat-resistant prepreg insulator has a long shelf life, high mechanical strength, and will not crack or wrinkle when wound into a coil or the like. In the production method of the present invention, the amount of the heat-resistant resin composition to be applied or impregnated onto the base material is 2 to 20 g per 100 g of the base material, thereby improving the fusion properties. A heat-resistant prepreg insulator is obtained which provides a cured product with good electrical and mechanical properties. The amount of the heat-resistant resin composition applied is 2g per 100g of the base material.
If the amount is less than 120 g, the heat-resistant prepreg insulation obtained will have insufficient fusion properties, and if it is more than 120 g, the tightness will be poor, both of which are undesirable. In addition, as the heating drying conditions for the substrate coated or impregnated with the organic solvent solution of the heat-resistant resin composition, a drying temperature of 60 to 350°C and a drying time of 1.0 to 60 minutes are adopted. A semi-cured heat-resistant prepreg insulator is obtained that provides a cured product with excellent properties and heat resistance. Drying temperature is 350
℃ and the drying time is longer than 60 minutes, the resulting heat-resistant prepreg insulation will harden too much, resulting in cracks and wrinkles after being wound into a coil, insufficient fusion, and drying. temperature
When the temperature is lower than 60° C. and the drying time is shorter than 1.0 minutes, the solvent evaporates insufficiently, resulting in high stickiness and poor workability as a prepreg, both of which are unfavorable. However, the heat-resistant prepreg insulator that can be obtained is
After being wound around a conductor such as a coil, it is heated and pressurized to form a cured product. The resulting cured product has excellent heat resistance, particularly excellent electrical and mechanical properties at high temperatures, and can withstand long-term use at high temperatures. Next, the method for producing the heat-resistant prepreg insulator of the present invention will be specifically explained with reference to Examples and Comparative Examples. Example 1 35.8 g of N,N'-(methylene-di-p-phenylene) dimaleimide and 2,2-(3,3'-diallyl-4,4'-dihydroxydiphenyl)-propane
15.4g was dissolved in 500g of N,N-dimethylacetamide and prepolymerized at a temperature of 150°C for 30 minutes to obtain an organic solvent solution of a heat-resistant resin composition. Next, aromatic polyamide paper [manufactured by Mitsubishi Paper Mills Co., Ltd., thickness: 0.2 mm] and laminated mica paper [polymer fibrid content: 2%, polymer fibrid component: isophthalic acid-diaminodiphenylmethane copolymer. Combined (polyamide), thickness: 0.2 mm] (weight ratio per 1 m2 : aromatic polyamide paper/laminated mica paper = 20/100) is heat fused to create a two-layer structure heat-resistant mica paper (i.e. base material) Then, an organic solvent solution of the heat-resistant resin composition was applied to this base material at a ratio of 80 g of the heat-resistant resin composition per 100 g of the base material, and the temperature was 150°C.
A semi-cured heat-resistant prepreg sheet was produced by drying for 30 minutes. In order to understand the mechanical properties of the heat-resistant prepreg sheet obtained, four heat-resistant prepreg sheets cut out to 25 mm x 25 mm were stacked between 25 mm x 25 mm iron blocks, and the temperature was 200°C and the pressure was 10 kg/kg. cm2 ,
A sample was prepared by hot pressing for 30 minutes, and the adhesive strength of the heat-resistant prepreg sheet obtained using this sample was measured. The measurement results are shown in Table 1. The adhesive strength was measured using an Instron tensile tester at a temperature of 25°C for the obtained sample (initial stage) and a sample (after aging) obtained by subjecting the sample to heat aging treatment at 220°C for 20 days. The obtained heat-resistant prepreg sheet is 2mm x
A bundle of 10 formal rectangular copper wires of 5 mm x 500 mm was wound 4 times in wrapper winding (that is, sushi winding) on a coil conductor, and then the temperature was 200°C, the pressure was 10 Kg/cm 2 , and the time was applied. An insulated coil with an insulating layer thickness of 0.3 mm was manufactured by hot pressing under conditions of 30 minutes, and the electrical properties [dissipation tangent (tan δ) temperature characteristics, dielectric breakdown voltage] and appearance quality of this insulated coil were evaluated. Each was measured. The measurement results are shown in Table 1. The dielectric loss tangent temperature characteristics were measured using the high-voltage shearing bridge method at a measurement voltage of 0.5 kV using the obtained insulated coil at temperatures of 20°C and 200°C (using a shearing bridge manufactured by Yokogawa Electric Corporation). did. The dielectric breakdown voltage is the obtained insulated coil (initial) and the insulated coil at 220℃×20
Temperature
Measurement was carried out in oil at a constant pressure increase rate of 1 kV/sec at 25°C (using a withstand voltage test device manufactured by Aikoku Denki Co., Ltd.). In addition, the appearance of the insulated coil was evaluated by visual observation. Example 2 Aromatic polyamide paper [manufactured by Mitsubishi Paper Mills, thickness:
0.2mm] and laminated mica paper [Polymer fibrids content: 5%, Polymer fibrs constituents:
Isophthalic acid-diaminodiphenylmethane copolymer (polyamide), thickness: 0.2 mm (weight ratio per 1 m2 : aromatic polyamide paper/laminated mica paper =
40/60) was thermally fused to obtain a base material with a two-layer structure. A semi-cured heat-resistant prepreg sheet was then produced in the same manner as in Example 1, except that the obtained two-layer structure base material was used, and the adhesive strength of the thus-obtained heat-resistant prepreg sheet was measured. The measurement results are shown in Table 1. The thickness of the insulating layer was 0.3 mm in the same manner as in Example 1 except that the obtained heat-resistant prepreg sheet was used.
An insulated coil was manufactured, and the electrical characteristics and appearance of the obtained insulated coil were measured. The measurement results are shown in Table 1. Example 3 Aromatic polyamide paper [manufactured by Mitsubishi Paper Mills, thickness 0.1
mm] and laminated mica paper [polymer fibrid content: 1%, polymer fibrid constituents: acrylonitrile-methyl methacrylate copolymer,
Thickness: 0.1 mm] (weight ratio per 1 m2 : aromatic polyamide paper/laminated mica paper = 60/60) was heat-sealed to obtain a base material with a two-layer structure. A semi-cured heat-resistant prepreg sheet was then produced in the same manner as in Example 1, except that the obtained two-layer structure base material was used, and the adhesive strength of the thus-obtained heat-resistant prepreg sheet was measured. The measurement results are shown in Table 1. The thickness of the insulating layer was 0.2 mm in the same manner as in Example 1 except that the obtained heat-resistant prepreg sheet was used.
An insulated coil was manufactured, and the electrical characteristics and appearance of the obtained insulated coil were measured. The measurement results are shown in Table 1. Example 4 2-methyl-4-ethylimidazole 0.64 using 36.0 g of N,N'-(oxydi-p-phenylene) dimaleimide and 28.0 g of 3,3'-diallyl-4,4'-dihydroxydiphenylmethane as a polymerization catalyst g was prepolymerized in 140 g of N,N-dimethylacetamide at a temperature of 150 DEG C. for 30 minutes to obtain an organic solvent solution of a heat-resistant resin composition. Then, a semi-cured heat-resistant prepreg sheet was produced in the same manner as in Example 1, except that the organic solvent solution of the obtained heat-resistant resin composition and the same two-layer base material as used in Example 3 were used. did. The adhesive strength of the obtained heat-resistant prepreg sheet was measured in the same manner as in Example 1. The measurement results are shown in Table 1. The thickness of the insulating layer was 0.3 mm in the same manner as in Example 1 except that the obtained heat-resistant prepreg sheet was used.
An insulated coil was manufactured, and the electrical characteristics and appearance of the obtained insulated coil were measured. The measurement results are shown in Table 1. Comparative example 1 DEN438 (epoxy resin manufactured by Dow Chemical Company,
(trade name) 60g, ECN1273 (epoxy resin manufactured by Ciba Geigy, trade name) 40g and boron trifluoride monoethylamine complex salt 3g are dissolved in a mixed solvent consisting of 45g of acetone and 55g of toluene to prepare an organic solvent solution of an epoxy resin composition. I got it. Next, an organic solvent solution of the epoxy resin composition was applied to the same two-layer structure base material used in Example 1 at a ratio of 80 g of the epoxy resin composition per 100 g of the base material, and the temperature was increased.
A prepreg sheet was produced by drying at 100°C for 5 minutes and then at 110°C for 8 minutes. Then, the adhesive strength of the prepreg sheet obtained was measured in the same manner as in Example 1. The measurement results are shown in Table 1. An insulated coil having an insulating layer thickness of 0.3 mm was manufactured in the same manner as in Example 1 except that the obtained prepreg sheet was used, and the electrical characteristics and appearance quality of the obtained insulated coil were measured. . The measurement results are shown in Table 1. Comparative Example 2 The organic solvent solution of the epoxy resin composition obtained in Comparative Example 1 was applied at a ratio of 80 g of the epoxy resin composition per 100 g of aromatic polyamide paper (manufactured by DuPont, trade name "Nomex Paper", thickness: 0.2 mm). and temperature
A prepreg sheet was produced by drying at 105°C for 10 minutes. Then, the adhesive strength of the prepreg sheet obtained was measured in the same manner as in Example 1. The measurement results are shown in Table 1. An insulated coil having an insulating layer thickness of 0.2 mm was manufactured in the same manner as in Example 1 except that the obtained prepreg sheet was used, and the electrical characteristics and appearance quality of the obtained insulated coil were measured. . The measurement results are shown in Table 1.

【表】 (注) プリプレグシート中の耐熱性樹脂組成物ま
たはエポキシ樹脂組成物の含有率である。
比較例 3 集成マイカ紙(高分子フイブリツド含有量0
%、厚さ0.2mm)100g当り実施例1でえられた耐
熱性樹脂組成物の有機溶媒溶液を固形分で40gに
なるように含浸させ、140℃で5分間乾燥させて
半硬化樹脂含浸マイカ層をえたのち、芳香族ポリ
アミド紙(三菱製紙(株)製、厚さ0.2mm)に5Kg/
cm2接触圧で140℃の加圧ロールを通して接着させ、
半硬化状のプリプレグシートを製造した。 えられたプリプレグシートを実施例1と同様に
して評価したところ、接着強度が初期で110Kg/
cm2、220℃×20日間処理後で40Kg/cm2、誘電正接
が20℃で1.5%、200℃で>30%、絶縁破壊電圧が
初期で25.0kV/mm、220℃×20日間処理後で
15.0kV/mmであつた。 実施例 5〜7 実施例1〜3で製造した耐熱性プリプレグシー
トを巾25mmに截断して耐熱性プリプレグテープを
それぞれえた。 ついでえられた耐熱性プリプレグテープを2mm
×5mm×500mmのホルマール平角銅線10本を1束
としたコイル導体上に半重ね巻きに5回巻回した
のち、170℃×4時間ついで200℃×12時間加熱処
理して絶縁層の厚さ0.3mmを有する絶縁コイルを
それぞれ製造した。 えられた絶縁コイルの電気的特性を実施例1と
同様にしてそれぞれ測定した。それらの測定結果
を第2表に示す。 えられた絶縁コイルの外観はいずれも良好であ
り、ウキやハガレはみられなかつた。
[Table] (Note) Content of heat-resistant resin composition or epoxy resin composition in prepreg sheet.
Comparative Example 3 Laminated mica paper (polymer fibrid content 0)
%, thickness 0.2 mm) per 100 g of the organic solvent solution of the heat-resistant resin composition obtained in Example 1 was impregnated to a solid content of 40 g, and dried at 140°C for 5 minutes to form semi-cured resin-impregnated mica. After layering, 5 kg/g was applied to aromatic polyamide paper (manufactured by Mitsubishi Paper Mills, thickness 0.2 mm).
Bonded through a pressure roll at 140℃ with a contact pressure of cm2 ,
A semi-cured prepreg sheet was manufactured. When the obtained prepreg sheet was evaluated in the same manner as in Example 1, the initial adhesive strength was 110 kg/
cm 2 , 40Kg/cm 2 after treatment at 220℃ for 20 days, dielectric loss tangent 1.5% at 20℃, >30% at 200℃, breakdown voltage 25.0kV/mm at the initial stage, after treatment at 220℃ for 20 days in
It was 15.0kV/mm. Examples 5 to 7 The heat resistant prepreg sheets produced in Examples 1 to 3 were cut to a width of 25 mm to obtain heat resistant prepreg tapes. Then, the obtained heat-resistant prepreg tape is 2mm
A bundle of 10 x 5 mm x 500 mm formal rectangular copper wires was wound 5 times in a half-overlap manner on a coil conductor, and then heated at 170°C for 4 hours and then at 200°C for 12 hours to increase the thickness of the insulating layer. Insulated coils with a diameter of 0.3 mm were each produced. The electrical characteristics of the obtained insulated coils were measured in the same manner as in Example 1. The measurement results are shown in Table 2. The appearance of the insulated coils obtained was good, and no flaking or peeling was observed.

【表】 第1〜2表から、本発明の製造法によりえられ
た耐熱性プリプレグ絶縁体にあつては、比較例で
えられたプリプレグシートに比べて耐熱性、電気
的特性および機械的特性にすぐれた絶縁組織を与
えることが明らかである。 また本発明の製造法によりえられた耐熱性プリ
プレグ絶縁体を用いてえられる絶縁コイルにあつ
ては、外観がきわめて良好であり、ウキやハガレ
はみられなかつた。なお本発明の製造法によりえ
られた耐熱性プリプレグ絶縁体にあつては、コイ
ルなどの導体上に巻回したのち加熱プレス成形ま
たは加熱処理を施すのみで、前記諸特性にすぐれ
た絶縁組織がえられ、工業上きわめて有利であ
る。
[Table] Tables 1 and 2 show that the heat-resistant prepreg insulator obtained by the production method of the present invention has better heat resistance, electrical properties, and mechanical properties than the prepreg sheet obtained in the comparative example. It is clear that this provides an excellent insulating structure. Furthermore, the insulated coil obtained using the heat-resistant prepreg insulator obtained by the manufacturing method of the present invention had an extremely good appearance, and no flaking or peeling was observed. It should be noted that the heat-resistant prepreg insulator obtained by the manufacturing method of the present invention can be formed into an insulating structure with excellent properties as described above simply by winding it around a conductor such as a coil and then subjecting it to hot press molding or heat treatment. It is extremely advantageous industrially.

Claims (1)

【特許請求の範囲】 1 融着剤として高分子フイブリツドを1〜5重
量%含有する集成マイカ紙と芳香族ポリアミド紙
を熱融着により二層構造にしたものを基材とし、
それに多官能ビスマレイミド化合物とアルケニル
フエノール類またはアルケニルフエニルエーテル
類とからなる耐熱性樹脂組成物を塗布または含浸
したのち、加熱乾燥し、半硬化状にすることを特
徴とする耐熱性プリプレグ絶縁体の製造法。 2 集成マイカ紙と芳香族ポリアミド紙の構成比
率が集成マイカ紙100重量部に対し芳香族ポリア
ミド紙20〜120重量部である特許請求の範囲第1
項記載の製造法。
[Scope of Claims] 1. The base material is a two-layer structure made by thermally fusing laminated mica paper containing 1 to 5% by weight of polymeric fibrils as a fusing agent and aromatic polyamide paper,
A heat-resistant prepreg insulator characterized by coating or impregnating it with a heat-resistant resin composition consisting of a polyfunctional bismaleimide compound and alkenyl phenols or alkenyl phenyl ethers, and then heating and drying it to make it into a semi-cured state. manufacturing method. 2. Claim 1, wherein the composition ratio of laminated mica paper and aromatic polyamide paper is 20 to 120 parts by weight of aromatic polyamide paper to 100 parts by weight of laminated mica paper.
Manufacturing method described in section.
JP8831380A 1980-06-27 1980-06-27 Refractory prepreg insulator Granted JPS5713623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8831380A JPS5713623A (en) 1980-06-27 1980-06-27 Refractory prepreg insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8831380A JPS5713623A (en) 1980-06-27 1980-06-27 Refractory prepreg insulator

Publications (2)

Publication Number Publication Date
JPS5713623A JPS5713623A (en) 1982-01-23
JPH0121568B2 true JPH0121568B2 (en) 1989-04-21

Family

ID=13939434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8831380A Granted JPS5713623A (en) 1980-06-27 1980-06-27 Refractory prepreg insulator

Country Status (1)

Country Link
JP (1) JPS5713623A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967154A (en) * 1972-11-02 1974-06-28
JPS50104302A (en) * 1974-01-26 1975-08-18
JPS52994A (en) * 1975-06-19 1977-01-06 Ciba Geigy Ag Imide grouppcontaining crosslinked polymer and preparation thereof
JPS54101200A (en) * 1978-01-27 1979-08-09 Toshiba Corp Heat-resisting insulating meterial

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967154A (en) * 1972-11-02 1974-06-28
JPS50104302A (en) * 1974-01-26 1975-08-18
JPS52994A (en) * 1975-06-19 1977-01-06 Ciba Geigy Ag Imide grouppcontaining crosslinked polymer and preparation thereof
JPS54101200A (en) * 1978-01-27 1979-08-09 Toshiba Corp Heat-resisting insulating meterial

Also Published As

Publication number Publication date
JPS5713623A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
US4105984A (en) High voltage device containing a flexible prepreg
US5464949A (en) Heat resistant resin compositions, articles and method
US3845438A (en) Tape insulated conductor
JPS63250010A (en) Conductor with surrounded insulation
US3666615A (en) Composite layer sheet material
US4418241A (en) Insulated coil
KR100610321B1 (en) Method for producing insulating tapes containing mica
EP1769510A1 (en) Mica tape having maximized mica content
US3930915A (en) Method of making an electrical article
JPH0121568B2 (en)
US20070089899A1 (en) Mica tape having maximized mica content
JPS6366011B2 (en)
US4399191A (en) Thin insulating mica sheet and insulated coil
US4026872A (en) Epoxy resin compositions
CA1292412C (en) Process for impregnated insulation of electrical wires
JPS6235410B2 (en)
JPS6136330B2 (en)
JPS6331489B2 (en)
JPS6144367B2 (en)
US4087578A (en) Heat sealable sheet materials
JPS625453B2 (en)
CA1051294A (en) Heat sealable sheet materials
JPS6351321B2 (en)
JPS625451B2 (en)
JPS625452B2 (en)