JPH01214056A - Semiconductor device and usage thereof - Google Patents

Semiconductor device and usage thereof

Info

Publication number
JPH01214056A
JPH01214056A JP63039153A JP3915388A JPH01214056A JP H01214056 A JPH01214056 A JP H01214056A JP 63039153 A JP63039153 A JP 63039153A JP 3915388 A JP3915388 A JP 3915388A JP H01214056 A JPH01214056 A JP H01214056A
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
gate
active layer
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63039153A
Other languages
Japanese (ja)
Other versions
JPH0770733B2 (en
Inventor
Yoshihiro Kinoshita
木下 義弘
Yutaka Tomizawa
豊 冨澤
Shiyouichi Tanizen
谷全 祥市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63039153A priority Critical patent/JPH0770733B2/en
Priority to EP89102993A priority patent/EP0330142A3/en
Priority to KR1019890002088A priority patent/KR910010060B1/en
Publication of JPH01214056A publication Critical patent/JPH01214056A/en
Publication of JPH0770733B2 publication Critical patent/JPH0770733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8124Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with multiple gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device which can be used in two or more frequency bands, whose degree of freedom in circuit designing is large and which can comply with a multichannel, smallsized and multifunctional high-frequency circuit, by a method wherein a gate electrode of a MES-type or MOS-type FET is divided into two, and two FETs whose other electrodes are used commonly and a bias resistance film are integrated in one substrate. CONSTITUTION:The following (a) and (b) are integrated in one semiconductor substrate 1: (a) a field-effect transistor containing the following: an active layer 2 exposed on the surface on one side of the semiconductor substrate 1; a drain region 3 and a source region 4 sandwiching the active layer 2; a drain electrode 5 and a source electrode 6; a second gate electrode 7 which is situated near the drain electrode 5 between the drain electrode 5 and the source electrode 6 and is formed on the active layer 2 directly or via an insulating film; a first gate electrode G1a 18 and a first gate electrode G1b 19 which are situated near the source electrode 6 between the drain electrode 5 and the source electrode 6, are formed on the active layer 2 directly or via the insulating film and are obtained by dividing one electrode into two; (b) a branch source electrode 20 connected to the source electrode 20 connected to the source electrode 6 via a bias resistance film 16.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、MES型又はMOS型の電界効果トランジス
タと抵抗素子とを1つの半4体基板に集積した半導体装
置とその使用方法に関するもので、更に詳しくはゲート
電極を分割して複数の周波数帯域に対応可能とした半導
体装置とその使用方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Field of Industrial Application) The present invention relates to a semiconductor device in which a MES type or MOS type field effect transistor and a resistance element are integrated on one half-quadruple substrate; The present invention relates to a method of use, and more specifically, to a semiconductor device whose gate electrode is divided to support a plurality of frequency bands, and a method of use thereof.

(従来の技術) VHF帯ないしU HF帯で使用される高周波回路の性
能は不断の進歩を続けている。UHFの高周波回路で使
用される半導体デバイスの従来例として、T Vチュー
ナ用のGa ASデュアルゲートMES  FETを取
りあげ、図面を参照して以下説明する。第5図はこのM
ES  FETの電極配置を模式的に示す平面図、第6
図は第5図に示すx−x′断面図である。 第6図にお
いて、半絶縁性Ga As基板1上に動作層2が形成さ
れ、動作層2に連接してN4ドレイン領域3及びN4ソ
ース領域4か設けられる。 ドレイン電極5はN゛ ド
レイン領域3とオーミック接触をすると共にその一部は
基板上に延びドレイン電極パッド5a<第5図)を形成
する。 同様に符号6はソース電極、符号6aはソース
電極パッドである。
(Prior Art) The performance of high frequency circuits used in the VHF band or UHF band continues to improve. As a conventional example of a semiconductor device used in a UHF high frequency circuit, a Ga AS dual gate MES FET for a TV tuner will be described below with reference to the drawings. Figure 5 shows this M
Plan view schematically showing electrode arrangement of ES FET, No. 6
The figure is a sectional view taken along the line xx' shown in FIG. In FIG. 6, an active layer 2 is formed on a semi-insulating GaAs substrate 1, and an N4 drain region 3 and an N4 source region 4 are provided in connection with the active layer 2. The drain electrode 5 makes ohmic contact with the N2 drain region 3, and a portion thereof extends over the substrate to form a drain electrode pad 5a (FIG. 5). Similarly, numeral 6 is a source electrode, and numeral 6a is a source electrode pad.

ドレイン電極に近い側の動作層上に、動作層とショット
キー接合をする第2ゲート電極7が形成される。 第2
ゲート電極7は、例えばゲート長1μm、ゲート幅は6
00μmである。 ソース電極に近い側の動作層上に、
第2ゲート電楕7と等しいゲート幅とゲート長を有する
ショットキー接合の第1ゲート電極8を設ける。 第1
、第2ゲート電極の一部は基板上に延び第1ゲート電朽
パツド8a、第2ゲート電極パッド7aを設ける。
A second gate electrode 7 that forms a Schottky junction with the active layer is formed on the active layer closer to the drain electrode. Second
The gate electrode 7 has a gate length of 1 μm and a gate width of 6 μm, for example.
00 μm. On the active layer near the source electrode,
A Schottky junction first gate electrode 8 having the same gate width and gate length as the second gate electrode 7 is provided. 1st
A part of the second gate electrode extends over the substrate to provide a first gate electrode pad 8a and a second gate electrode pad 7a.

デュアルゲートMES  FETは第2ゲート′二極の
な位V g2により増幅度を制御できるので、チューナ
の高周波増幅用として用いられる場合には、第2ゲート
電極は自動利得側9p(AGC)に利用される。 ス第
2ゲート電極はドレイン電極と第1ゲート電極との間に
あるので、シングルゲートFETに比しドレイン電極と
第1ゲート電極間の静電容量CdQは小さくなり、ドレ
インから入力端の第1ゲート電極への!li’!還作用
は微弱で中和回路は不用となる。 デュアルゲートFE
Tは、低い雑音指数を有すると共に前記利点があるので
、゛r゛■チューナ回路の基#素子として用いられてい
る。
Since the amplification degree of the dual gate MES FET can be controlled by the second gate's polarity V g2, when used for high frequency amplification of a tuner, the second gate electrode can be used for automatic gain side 9p (AGC). be done. Since the second gate electrode is located between the drain electrode and the first gate electrode, the capacitance CdQ between the drain electrode and the first gate electrode is smaller than that of a single gate FET, and the capacitance CdQ from the drain to the input terminal To the gate electrode! li'! The reaction is weak and a neutralization circuit is not required. dual gate FE
Since it has a low noise figure and has the above-mentioned advantages, it is used as the basic element of the tuner circuit.

従来はUHF帯にはGa AsデュアルゲートMES 
 FET、VHF帯にはシリコンデュアルゲートMO3
FETが使用されることが多く、これだと回路が大きく
且つ複雑になる。
Conventionally, GaAs dual gate MES was used for UHF band.
Silicon dual gate MO3 for FET and VHF band
FETs are often used, which results in large and complex circuits.

(発明が解決しようとする課題) 最近のCATV、衛星放送等の情報伝達手段の多様化に
伴い、テレビ受像機、VTR等を代表とする民生用映像
機器に対するチャン木ル増加と多機能化についてのニー
ズは非常に大きい、 これら機器のVHFないしUHF
帯の高周波回路は、多数の周波帯の高周波信号を受信し
これを処理することが必要となり、これにより回路の小
型化、性能向上への要求は切実なものとなっている。
(Problem to be solved by the invention) With the recent diversification of information transmission means such as CATV and satellite broadcasting, the number of channels and multifunctionality of consumer video equipment, typified by television receivers and VTRs, has increased. There is a huge need for VHF or UHF for these devices.
2. Description of the Related Art High frequency circuits in high frequency bands are required to receive and process high frequency signals in a large number of frequency bands, and as a result, there is an urgent need for circuit miniaturization and improved performance.

本発明の目的は、複数の周波数帯に使用でき、回路設計
の自由度も多く、又従来の個別素子の一部を同一基板に
集積し、もって高周波回路の多チャンネル化、小型化、
多機能化に対応できる半導体装置とその使用方法を提供
するものである。
The object of the present invention is to be able to be used in multiple frequency bands, to have a large degree of freedom in circuit design, and to integrate some of the conventional individual elements on the same substrate, thereby increasing the number of channels and miniaturizing high frequency circuits.
The present invention provides a semiconductor device that can be multi-functionalized and a method for using the same.

[発明の構成] (課題を解決するための手段とその作用)本発明の第1
請求項に係る半導体装置は、デュアルゲートのMES型
又はMO3型電界効果トランジスタの第1ゲート電極を
2分割し、ドレイン電極、第2ゲート電極及びソース電
極は共通で、分割された第1ゲート電極G1a及び第1
ゲート=極Gtbをそれぞれの第1ゲート電極とする2
つのデュアルゲートFETを並設すると共にバイアス抵
抗膜を介してソース電極に接続する分岐ソース電極を具
備することを特徴とするものである。
[Structure of the invention] (Means for solving the problem and its effects) First aspect of the present invention
In the semiconductor device according to the present invention, a first gate electrode of a dual-gate MES type or MO3 field effect transistor is divided into two, a drain electrode, a second gate electrode, and a source electrode are common, and the divided first gate electrode is divided into two. G1a and 1st
2 with gate=pole Gtb as each first gate electrode
This device is characterized by having two dual-gate FETs arranged in parallel and a branch source electrode connected to the source electrode via a bias resistance film.

なおバイアス抵抗膜の抵抗値は、デバイス作動時に核層
を流れる電流により、ソース電極と分岐ソース電極との
間に発生する電圧が、(イ)第1ゲート電極G、a又は
G1b直下の動作層を十分ピンチオフできる大きさの電
圧になるようその抵抗値が決められる場合と、(o)安
定な動作特性が得られる適当な負帰還率の抵抗値とする
場合とある。
The resistance value of the bias resistance film is such that the voltage generated between the source electrode and the branch source electrode due to the current flowing through the core layer during device operation is determined by (a) the operating layer immediately below the first gate electrode G, a, or G1b; In some cases, the resistance value is determined so as to have a voltage large enough to pinch off the voltage, and (o) in other cases, the resistance value is determined to have an appropriate negative feedback rate that provides stable operating characteristics.

第2請求項の発明は、上記構成の半導体装11で、バイ
アス抵抗膜は前記(イ)項の場合の使用方法に関するも
のである。 即ち分岐ソース電極を接地点(又は共通電
位点)に結んだ状態で、外部切換回路により、第1ゲー
ト電極G、aスはG1bのいずれかの電極を分岐ソース
電極に直接又は接地部材を介して結ぶ、 この結ばれた
電極直下の動作層はピンチオフされるので、本半導体装
置は第1ゲート電極G、a又はGlbのうち結ばれない
電極を第1ゲート電極とするデュアルゲートFETとし
て使用できる。 又外部切換回路により第1ゲート電極
G、a及びGlbを互いに結べば、両ゲート電極を1つ
の第1ゲー1−141iとするデュアルゲートFETと
して使用できる。 又、第1ゲート電極G、a及びGt
bを分離した状態で使用し、それぞれを第1ゲー1〜電
極とする2つのデュアルゲートFETとして動作させる
こともできる。
The invention of claim 2 relates to the method of using the bias resistive film in the case of item (a) in the semiconductor device 11 having the above structure. That is, with the branch source electrodes connected to the ground point (or common potential point), the first gate electrode G, a is connected to the branch source electrode either directly or via a ground member by an external switching circuit. Since the active layer directly under the connected electrodes is pinched off, this semiconductor device can be used as a dual gate FET in which the unconnected electrode of the first gate electrodes G, a, or Glb is used as the first gate electrode. . If the first gate electrodes G, a, and Glb are connected to each other by an external switching circuit, it can be used as a dual gate FET in which both gate electrodes form one first gate 1-141i. Moreover, the first gate electrodes G, a and Gt
It is also possible to use the transistors b in a separated state and operate them as two dual-gate FETs, each of which serves as the first gate electrode.

−JRにデュアルゲートFETにおいて第1ゲート電極
のゲート幅は、該FETのゲート・ソース間の容量(ソ
ース接地増幅回路では入力容量となる)及びg、(又は
順方向アドミタンス)に影響する。 前述の本発明の半
導体装置とその使用方法によれば、第1ゲート電極G、
a、G1b及びこれらを結んだ第1ゲート電極の3種類
のゲート幅を持つF E ”l’が得られる。 即ち3
種類の入力容量と(J++ @を持つF E ′l’を
所望により選択することができる。 第1ゲート電[!
 G ta及びGtbのゲート幅の和と、その分割比は
、高周波回路に要求される周波数帯域、gll M等を
考慮してあらかじめ決定される。 これにより本発明の
FETは幅広い周波数帯に適応できると共に、種々の使
用方法があり、回II%設計の自由度は増加する。 又
第1ゲート電極G1a及びGtbを動作させるvi流バ
イアス回路は、同一基板にM槓形成しても、あるいは外
部に設けても良く、又1つの共用直流バイアス回路とし
ても良いし、所望により2つのバイアス回路を設け、異
なる動作点で使用しても差支えない。
-JR In a dual-gate FET, the gate width of the first gate electrode affects the gate-source capacitance (input capacitance in a source-grounded amplifier circuit) and g (or forward admittance) of the FET. According to the semiconductor device and method of using the same of the present invention described above, the first gate electrode G,
F E "l" having three types of gate widths of a, G1b, and the first gate electrode connecting these can be obtained. That is, 3
The type of input capacitance and F E 'l' with (J++ @ can be selected as desired. The first gate voltage [!
The sum of the gate widths of Gta and Gtb and the division ratio thereof are determined in advance in consideration of the frequency band, gllM, etc. required for the high frequency circuit. As a result, the FET of the present invention can be applied to a wide frequency band and can be used in various ways, increasing the degree of freedom in design. Further, the vi current bias circuit for operating the first gate electrodes G1a and Gtb may be formed in an M-shaped manner on the same substrate, or may be provided externally, or may be formed as one shared DC bias circuit, or may be formed into two if desired. Two bias circuits may be provided and used at different operating points.

第3請求項の半導体装置は従来のシングルゲー)−FE
Tに本発明を適用したものである。 即ちゲート電極を
2分割し、ドレイン電極、ソース電極は共通で、分割さ
れたゲート電極をそれぞれのゲート電極とする2つのF
 E Tを形成したものである。 前記第2請求項に準
する使用方法により従来のF E Tに比し、大幅に機
能が拡大され、主として低周波用回路に使用することが
できる。
The semiconductor device of the third claim is a conventional single game)-FE
The present invention is applied to T. In other words, the gate electrode is divided into two, the drain electrode and the source electrode are common, and the divided gate electrodes are used as the respective gate electrodes.
It was formed by ET. By using the method according to the second claim, the functions are greatly expanded compared to the conventional FET, and the device can be used mainly for low frequency circuits.

(実施例) 本発明の半導体装置の実施例の1つを第1図に示す、 
本実施例は、主要構成要素のGa ASデュアルゲート
M E S F E Tと、このFETの直流バイアス
回路とを半絶縁性Ga As基板に集積したリニアIC
である。 第1図(a)はこのICの模式的な平面図で
、主として電極及び抵抗膜の配置を示す、 同図(b)
はFETとこれに接続する抵抗膜との断面を模式的に示
す部分拡大断面図であり、同図(c)はこのリニアIC
の電気回路図である。 なお第5及び第6図と同一符号
は同一部分若しくは対応部分を表わす。 Ga As半
絶縁性基板1の一方の主面(図の上方)に露出するN型
動作層2と、動作層2を挟みこれに連接するN4ドレイ
ン領域3及びN4ソース領域4とが、Stイオン注入に
より選択的に形成される。
(Embodiment) One embodiment of the semiconductor device of the present invention is shown in FIG.
This example is a linear IC in which a Ga AS dual gate MESFET, which is the main component, and a DC bias circuit for this FET are integrated on a semi-insulating Ga As substrate.
It is. Figure 1 (a) is a schematic plan view of this IC, mainly showing the arrangement of electrodes and resistive films. Figure 1 (b)
is a partially enlarged sectional view schematically showing a cross section of an FET and a resistive film connected to it, and (c) is a partially enlarged sectional view of this linear IC.
FIG. Note that the same reference numerals as in FIGS. 5 and 6 represent the same or corresponding parts. An N-type active layer 2 exposed on one main surface (upper part of the figure) of the GaAs semi-insulating substrate 1, and an N4 drain region 3 and an N4 source region 4 connected to this with the active layer 2 interposed therebetween, are formed by St ions. Formed selectively by injection.

N′″ドレイン領域3及びN4ソース領域4とそれぞれ
オーミック接触をするドレイン電極5及びソース電極6
を設ける。  ドレイン電極5とソース″t1極6との
間のドレイン電極に近い側にあって前記動作層上に、こ
れとショットキー接合を形成する第2ゲートな極7を設
け、又ドレイン電極5とソース電極6との間のソース電
極に近い側にあって前記動作層上に、これとショットキ
ー接合を形成する1つのゲート電極(従来の第1ゲート
電極に対応する電極)を2つに分割して得られる第1ゲ
ート′@極G1a18及びG1b19を設ける。 以上
の構成によりドレイン電極5、第2ゲート電極7及びソ
ース電極6を共通とし、分割したゲート電極G 1a 
18及びG1b19をそれぞれ第1ゲート!極とする2
つのデュアルゲートMEs  FETが形成される。 
本実施例では、第1ゲート電極G、a及びGtbと第2
ゲート電極とのゲート長はいずれも1μmで、ゲート幅
は第1ゲート電極Gia及び、Glbのいずれも300
μmとし、第2ゲート電極のゲート幅は600μmとし
た。
A drain electrode 5 and a source electrode 6 make ohmic contact with the N′″ drain region 3 and the N4 source region 4, respectively.
will be established. A second gate electrode 7 is provided on the active layer on the side near the drain electrode between the drain electrode 5 and the source electrode 6, and forms a Schottky junction therewith. One gate electrode (an electrode corresponding to a conventional first gate electrode) that forms a Schottky junction with the active layer on the side near the source electrode between the electrode 6 and the active layer is divided into two. The first gate'@poles G1a18 and G1b19 obtained by the above structure are provided. With the above structure, the drain electrode 5, the second gate electrode 7, and the source electrode 6 are made common, and the divided gate electrodes G1a
18 and G1b19 respectively at the first gate! pole 2
Two dual gate MEs FETs are formed.
In this embodiment, the first gate electrodes G, a and Gtb and the second
The gate length with the gate electrode is 1 μm, and the gate width is 300 μm with the first gate electrode Gia and Glb.
μm, and the gate width of the second gate electrode was 600 μm.

又バイアス抵抗M16と、この膜を介してソース電極6
に接続する分岐ソース電極20が基板1に形成される。
Also, the bias resistor M16 and the source electrode 6 are connected via this film.
A branch source electrode 20 connected to the substrate 1 is formed on the substrate 1 .

 なお抵抗膜はGa As基板にSiイオンをドープし
てつくられる。 本実施例ではバイアス抵抗膜16の抵
抗値は、デバイス作動時にソース電極と分岐ソース電極
との間に発生する電圧が、第1ゲート電極G1a直下の
動作層を十分ピンチオフできる大きさの電圧になるよう
決められる。 又本実施例では、このバイアス抵抗11
!16と共にデバイスの動作点を決めるためのバイアス
抵抗J11113.14.15を設け、その一端を第1
ゲート電極Gib19に接続する。
Note that the resistive film is made by doping a GaAs substrate with Si ions. In this embodiment, the resistance value of the bias resistive film 16 is such that the voltage generated between the source electrode and the branch source electrode during device operation can sufficiently pinch off the active layer immediately below the first gate electrode G1a. It can be decided as follows. In addition, in this embodiment, this bias resistor 11
! 16 and a bias resistor J11113.14.15 for determining the operating point of the device, one end of which is connected to the first
Connected to gate electrode Gib19.

なお符号5a、6a、7a、18a、19a、及び20
aは、それぞれドレインti、ソース電極、第2ゲート
電極、第1ゲート電極Gia、第1ゲートな極Gtb及
び分岐電極Saに外部接続線をボンディングするための
電極パッドである。 又5b、6b及び19bはそれぞ
れドレイン電極、ソース電極及び第1ゲート重極G1b
の電極配線である。 又符号11及び12は、それぞれ
極性反対に直列接続された1組のPN接合ダイオードで
、第1ゲートな極G1b及び第2ゲート電極G2のショ
ットキー接合を保護するために設けられる。
Note that the codes 5a, 6a, 7a, 18a, 19a, and 20
Reference characters a are electrode pads for bonding external connection lines to the drain ti, the source electrode, the second gate electrode, the first gate electrode Gia, the first gate electrode Gtb, and the branch electrode Sa, respectively. Further, 5b, 6b and 19b are respectively a drain electrode, a source electrode and a first gate heavy pole G1b.
This is the electrode wiring. Reference numerals 11 and 12 denote a pair of PN junction diodes connected in series with opposite polarities, and are provided to protect the Schottky junction between the first gate electrode G1b and the second gate electrode G2.

以上の構造のリニアIC50では、第1ゲートt %の
ゲート幅が300μmの2つのF E ’r’と、互い
に結んだ時のゲート幅が600μrnのF E ’T”
とが得られる。 これらのF E Tは互いにゲート幅
が異なるが、それ以外のゲート長、動作層の不純物濃度
、厚さ等すべて等しい、 従って第1ゲート電極とソー
ス電極間の入力容量Cts、ドレイン電流I。及びhは
、デーl−幅にほぼ比例した値となり、又NFについて
は高周波になるに従い良好となる。 これらの電気的特
性は試行によっても確認された。
In the linear IC 50 having the above structure, two F E 'r' whose gate width of the first gate t% is 300 μm and F E 'T' whose gate width when connected to each other is 600 μrn.
is obtained. Although these FETs have different gate widths, the other gate lengths, impurity concentration of the active layer, thickness, etc. are all the same. Therefore, the input capacitance Cts between the first gate electrode and the source electrode, and the drain current I. and h have values almost proportional to the data width, and the NF becomes better as the frequency becomes higher. These electrical characteristics were also confirmed through trials.

第2図は、第1図の実施例のリニアICΣ旦の使用方法
の一例を示す電気回路図である。 同図において、分岐
ソース電極Saは接地され、第2ゲート電極G2は自動
利得制御<AGC)回路に接続される。 符号SW、及
びSW2は連動する外部切換器であって、通常スイッチ
ングダイオード等の電子デバイスを使用する。
FIG. 2 is an electrical circuit diagram showing an example of a method of using the linear IC Σ converter of the embodiment shown in FIG. In the figure, the branch source electrode Sa is grounded, and the second gate electrode G2 is connected to an automatic gain control (AGC) circuit. Symbols SW and SW2 are interlocked external switches, which typically use electronic devices such as switching diodes.

外部切換器SW2がUHF帯チューナ側に接続された状
態では、第1ゲート電極G、aは接地され、又ソースN
 [I Sの電位は、バイアス抵抗膜16により接地電
位より高電位側にレベルシフトされ、第1ゲート′@[
f G 1a面直下動作層はピンチオフされ、この部分
にはドレイン電流が流れずFETとしての動作をしない
。 従ってUHF帯チューナに接続する第1ゲート電極
G1bのFETのみ動作状態となる。 このFETはゲ
ート幅が300μmで短く、入力容量が小さく、NFも
良く、より高周波のUHF帯の増幅に適している。 次
に、外部切換器SW2がVHF帯入力同調泗局回路側に
接続された状態では、第1ゲート電極G1a及びG1b
は結ばれ、ゲート幅600μmのFETとして動作をす
る。 この場合はゲート幅が長く、入力容量は増加する
が、g、も大きくなりVHF帯の高周波増幅に適してい
る。 従来はVHF帯をシリコントランジスタでUHF
帯をGa ASデュアルゲートトランジスタでチューナ
回路を別々につくっていたが、本発明により簡単な外部
切換回路によりVHF帯及びUHF帯のチューナ回路の
一部を一体化でき、小型で高性能な回路をつくることが
できる。
When the external switch SW2 is connected to the UHF band tuner side, the first gate electrode G, a is grounded, and the source N
The potential of [IS is level-shifted to a higher potential side than the ground potential by the bias resistance film 16, and the potential of the first gate'@[
The active layer immediately below the f G 1a plane is pinched off, and no drain current flows through this portion, so it does not operate as an FET. Therefore, only the FET of the first gate electrode G1b connected to the UHF band tuner is in the operating state. This FET has a short gate width of 300 μm, a small input capacitance, and a good NF, making it suitable for amplification in the higher frequency UHF band. Next, when the external switch SW2 is connected to the VHF band input tuning/station circuit side, the first gate electrodes G1a and G1b
are connected and operate as a FET with a gate width of 600 μm. In this case, the gate width is long and the input capacitance increases, but g also becomes large, making it suitable for high frequency amplification in the VHF band. Conventionally, the VHF band was converted to UHF using silicon transistors.
Previously, tuner circuits for the VHF band and UHF band were made separately using Ga AS dual-gate transistors, but with the present invention, a part of the VHF band and UHF band tuner circuits can be integrated using a simple external switching circuit, making it possible to create a compact and high-performance circuit. You can make it.

第3図は、電気回路図で表わした第2の実施例である。FIG. 3 shows the second embodiment as an electrical circuit diagram.

 このリニアIC51が第1の実施例と異なる点は、直
流バイアス抵抗膜14と15との接続点21を第1ゲー
!・電極G1bから分離して、別に外部接続端子T、と
なるポンディングパッドを設けたことである。 これに
より第1ゲート電極G12、Glb及びこれらを結んだ
第1ゲー!・電極の3種類のゲート幅を持つデュアルゲ
ートMESFETのうち、使用する高周波回路に適した
FETを、簡≠な外部切換回路により選択できる。
The difference between this linear IC 51 and the first embodiment is that the connection point 21 between the DC bias resistance films 14 and 15 is connected to the first gate. - A bonding pad that serves as an external connection terminal T is provided separately from the electrode G1b. As a result, the first gate electrodes G12, Glb and the first gate electrodes connecting these! - Among dual-gate MESFETs with three types of electrode gate widths, the FET suitable for the high-frequency circuit to be used can be selected using a simple external switching circuit.

第1ゲート電極Gj&及びG1bのうちピンチオフする
電極を分岐ソース電極Saに、動作する電極を外部接続
端子T、にそれぞれ結んで使用する。
Of the first gate electrodes Gj& and G1b, the pinch-off electrode is connected to the branch source electrode Sa, and the operating electrode is connected to the external connection terminal T.

又第1ゲート電極G、δとG1bとを結んで使用すると
きには分岐ソースな極Saは使用しない。
Further, when the first gate electrodes G, δ and G1b are connected and used, the branch source pole Sa is not used.

第4図は、電気回路図で表わした本発明の半導体装置の
第3の実施例である。  FETの動作点を決める直流
バイアス回路は外付けとし、バイアス抵抗M22は主と
して安定な動作特性を得るための負帰還抵抗として作用
する。 外部切換回路により、第1ゲート電極のゲート
幅の異なる3種類のFETを所望により選択使用するこ
とができる。
FIG. 4 shows a third embodiment of the semiconductor device of the present invention represented by an electric circuit diagram. A DC bias circuit for determining the operating point of the FET is provided externally, and the bias resistor M22 mainly functions as a negative feedback resistor to obtain stable operating characteristics. An external switching circuit allows three types of FETs having different gate widths of the first gate electrodes to be selectively used as desired.

以上の実施例はGa ASデュアルゲートMESF E
 Tについて述べたが、シリコンデュアルゲ−1−MO
3F゛ETについてもほぼ同様の構成で、類似の作用と
効果か得られる。
The above embodiment is a Ga AS dual gate MESF E
As mentioned above, silicon dual game 1-MO
3FET has almost the same configuration and can obtain similar actions and effects.

又シングルゲートのMES型又はMO3型FE′rのゲ
ート電極を2分割した半導体装置においては 前記第1
ないし第3実施例とほぼ同様の構成とし、大幅にその機
能を拡大することができる。
In addition, in a semiconductor device in which the gate electrode of a single gate MES type or MO3 type FE'r is divided into two, the first
The configuration is substantially the same as that of the third embodiment, and its functions can be greatly expanded.

これら機能の応用については今後の技術開発を必要とす
る。
Application of these functions will require future technological development.

[発明の効果] これまで述べたように、本発明においては、MES型又
はMO8型FETのゲート電極を2分割し、その他の電
極を共通とする2つのF E ”r’とバイアス抵抗膜
とを1つの基板に集積し、外部切換回路によりデー1−
幅の異なるF E Tを選択できるようにした。 これ
により本発明の半導体装置と使用方法は複数の周波数帯
に使用でき、回F#1設計の自由度も多く、高周波回路
の多チャンネル化、多機能化に対応できる。 又従来例
えばUHF帯とVHF帯とで別々の半導体装置を使用し
ていたものを、簡単な外部切換回路を付加した1つの半
導体装置とすることが可能となり、又付設の直流バイア
ス回路等も1つでよく、高周波回路の小型化が可能とな
る。
[Effects of the Invention] As described above, in the present invention, the gate electrode of an MES type or MO8 type FET is divided into two, and two F E "r" and a bias resistance film having the other electrodes in common are used. are integrated on one board, and the data 1-
It is now possible to select FETs with different widths. As a result, the semiconductor device and method of use of the present invention can be used in a plurality of frequency bands, and there is a large degree of freedom in designing frequency F#1, making it possible to accommodate multi-channel and multi-functional high frequency circuits. In addition, whereas conventionally separate semiconductor devices were used for the UHF band and VHF band, it is now possible to use a single semiconductor device with a simple external switching circuit added, and additional DC bias circuits etc. This makes it possible to miniaturize high-frequency circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の実施例を示すもので同図
(a)はその平面図、同図(b)は部分拡大断面図、同
図(c)は本装置の電気回路図、第2図は本発明の半導
体装置の使用方法を説明するための電気回路図、第3図
及び第4図は本発明の半導体装置の第2及び第3の実施
例を示す電気回路図、第5図は従来のGa Asデュア
ルゲートMES  FETの平面図、第6図は第5図の
MES  FETの部分拡大断面図である。 1・・・半導体基板(Ga As半絶縁性基板)、2・
・・動作層、 3・・・ドレイン領域、 4・・・ソー
ス領域、  5・・・ドレイン電極(D)、  6・・
・ソース電極(S)、 7・・・第2ゲート電極(G2
)、16・・・バイアス抵抗膜、 18・・・第1ゲー
ト電桶G1a、  19・・・第1ゲート電’Ff2 
G 1b、  20 ・・・分岐ソース電極(Sa) 
。 特許出願人 株式会社 東  芝 第1図(1) 20 (Sa i  6 (S) 第1図(2) C 第3図    第4区 8ノ  7
FIG. 1 shows an embodiment of the semiconductor device of the present invention; FIG. 1(a) is a plan view thereof, FIG. 1(b) is a partially enlarged sectional view, and FIG. 1(c) is an electric circuit diagram of the device. FIG. 2 is an electric circuit diagram for explaining how to use the semiconductor device of the present invention, and FIGS. 3 and 4 are electric circuit diagrams showing second and third embodiments of the semiconductor device of the present invention. FIG. 5 is a plan view of a conventional GaAs dual-gate MES FET, and FIG. 6 is a partially enlarged sectional view of the MES FET shown in FIG. 1... Semiconductor substrate (GaAs semi-insulating substrate), 2...
...Active layer, 3...Drain region, 4...Source region, 5...Drain electrode (D), 6...
・Source electrode (S), 7... second gate electrode (G2
), 16... Bias resistance film, 18... First gate voltage G1a, 19... First gate voltage 'Ff2
G 1b, 20...Branch source electrode (Sa)
. Patent Applicant Toshiba Corporation Figure 1 (1) 20 (Sa i 6 (S) Figure 1 (2) C Figure 3 Section 4 Section 8-7

Claims (1)

【特許請求の範囲】 1 (a)半導体基板の一方の主面に露出する動作層と
、該動作層に挟接するドレイン領域及びソース領域と、
該ドレイン領域及びソース領域とそれぞれオーミック接
触をするドレイン電極及びソース電極と、ドレイン電極
とソース電極との間のドレイン電極に近い側にあって前
記動作層上に直接又は絶縁膜を介して設けられる第2ゲ
ート電極と、ドレイン電極とソース電極との間のソース
電極に近い側にあって前記動作層上に直接又は絶縁膜を
介して設けられる1つのゲート電極を2つに分割して得
られる第1ゲート電極G_1 _a及び第1 ゲート電極G_1_bとを、具備する電界効果トランジ
スタと、(b)バイアス抵抗膜を介して前記ソース電極
に接続する分岐ソース電極とを、前記半導体基板に集積
して成ることを特徴とする半導体装置。 2 外部切換回路により、第1ゲート電極G_1_aを
第1ゲート電極G_1_bに結び、第1ゲート電極G_
1_a及びG_1_bを1つの第1ゲート電極として使
用し、又は第1ゲート電極G_1_aを分岐ソース電極
に結び、第1ゲート電極G_1_a直下の動作層をピン
チオフし、第1ゲート電極G_1_bのみを第1ゲート
電極として使用し、又は第1ゲート電極G_1_bを分
岐ソース電極に結び、第1ゲート電極G_1_b直下の
動作層をピンチオフし、第1ゲート電極G_1_aのみ
を第1ゲート電極として使用する特許請求の範囲第1項
記載の半導体装置の使用方法。 3 特許請求の範囲第1項記載の半導体装置において、
第2ゲート電極を設けない半導体装置。
[Claims] 1 (a) an active layer exposed on one main surface of a semiconductor substrate, a drain region and a source region sandwiched between the active layer;
A drain electrode and a source electrode that make ohmic contact with the drain region and the source region, respectively; and a drain electrode and a source electrode that are located between the drain electrode and the source electrode on the side closer to the drain electrode and are provided directly or through an insulating film on the active layer. A second gate electrode and one gate electrode located on the side closer to the source electrode between the drain electrode and the source electrode and provided on the active layer directly or through an insulating film are obtained by dividing into two. A field effect transistor including a first gate electrode G_1_a and a first gate electrode G_1_b, and (b) a branch source electrode connected to the source electrode via a bias resistance film are integrated on the semiconductor substrate. A semiconductor device characterized by: 2 The external switching circuit connects the first gate electrode G_1_a to the first gate electrode G_1_b, and connects the first gate electrode G_1_a to the first gate electrode G_1_b.
1_a and G_1_b are used as one first gate electrode, or the first gate electrode G_1_a is connected to a branch source electrode, the active layer directly under the first gate electrode G_1_a is pinched off, and only the first gate electrode G_1_b is used as the first gate electrode. The first gate electrode G_1_b is used as an electrode, or the first gate electrode G_1_b is connected to a branch source electrode, the active layer directly under the first gate electrode G_1_b is pinched off, and only the first gate electrode G_1_a is used as the first gate electrode. A method of using the semiconductor device according to item 1. 3. In the semiconductor device according to claim 1,
A semiconductor device without a second gate electrode.
JP63039153A 1988-02-22 1988-02-22 Semiconductor device and method of using the same Expired - Fee Related JPH0770733B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63039153A JPH0770733B2 (en) 1988-02-22 1988-02-22 Semiconductor device and method of using the same
EP89102993A EP0330142A3 (en) 1988-02-22 1989-02-21 Multi-gate field-effect transistor
KR1019890002088A KR910010060B1 (en) 1988-02-22 1989-02-22 Semiconductor device and its using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039153A JPH0770733B2 (en) 1988-02-22 1988-02-22 Semiconductor device and method of using the same

Publications (2)

Publication Number Publication Date
JPH01214056A true JPH01214056A (en) 1989-08-28
JPH0770733B2 JPH0770733B2 (en) 1995-07-31

Family

ID=12545163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039153A Expired - Fee Related JPH0770733B2 (en) 1988-02-22 1988-02-22 Semiconductor device and method of using the same

Country Status (3)

Country Link
EP (1) EP0330142A3 (en)
JP (1) JPH0770733B2 (en)
KR (1) KR910010060B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224448A (en) * 1993-01-26 1994-08-12 Sumitomo Electric Ind Ltd Semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732611A1 (en) * 1987-09-28 1989-04-06 Siemens Ag Method for producing an implanted source/drain connection for a short-channel MOS transistor
EP0373803A3 (en) * 1988-12-16 1991-07-10 Raytheon Company R. f. switching circuits
US5313083A (en) * 1988-12-16 1994-05-17 Raytheon Company R.F. switching circuits
US5005059A (en) * 1989-05-01 1991-04-02 Motorola, Inc. Digital-to-analog converting field effect device and circuitry
DE4134176C2 (en) * 1991-10-16 1994-04-21 Telefunken Microelectron Semiconductor arrangement with a tetrode integrated in the semiconductor body and made up of two field effect transistors
GB9201004D0 (en) * 1992-01-17 1992-03-11 Philips Electronic Associated A semiconductor device comprising an insulated gate field effect device
EP0645822A1 (en) * 1993-08-30 1995-03-29 Motorola, Inc. High efficiency electrically adjustable width field effect transistor and method therefor
US5525819A (en) * 1994-07-06 1996-06-11 The Aerospace Corporation Microwave concentric mesfet with inherent electromagnetic shielding
US5616945A (en) * 1995-10-13 1997-04-01 Siliconix Incorporated Multiple gated MOSFET for use in DC-DC converter
DE10047168A1 (en) 2000-09-22 2002-04-18 Eupec Gmbh & Co Kg Controllable semiconductor device
US8222874B2 (en) 2007-06-26 2012-07-17 Vishay-Siliconix Current mode boost converter using slope compensation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470778A (en) * 1977-08-19 1979-06-06 Plessey Handel Investment Ag Fet transistor
JPS61110464A (en) * 1984-11-02 1986-05-28 Nec Corp Manufacture of semiconductor device
JPS61182268A (en) * 1985-02-08 1986-08-14 Hitachi Ltd Field-effect transistor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160259A (en) * 1976-12-27 1979-07-03 Zaidan Hojin Handotai Kenkyu Shinkokai Semiconductor device
JPS55108775A (en) * 1979-02-09 1980-08-21 Fujitsu Ltd Semiconductor device
NL8104414A (en) * 1981-09-25 1983-04-18 Philips Nv SEMICONDUCTOR DEVICE WITH FIELD-EFFECT TRANSISTOR.
JPS6155971A (en) * 1984-08-27 1986-03-20 Sumitomo Electric Ind Ltd Schottky gate field-effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470778A (en) * 1977-08-19 1979-06-06 Plessey Handel Investment Ag Fet transistor
JPS61110464A (en) * 1984-11-02 1986-05-28 Nec Corp Manufacture of semiconductor device
JPS61182268A (en) * 1985-02-08 1986-08-14 Hitachi Ltd Field-effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224448A (en) * 1993-01-26 1994-08-12 Sumitomo Electric Ind Ltd Semiconductor device

Also Published As

Publication number Publication date
EP0330142A3 (en) 1990-05-02
KR910010060B1 (en) 1991-12-12
KR890013797A (en) 1989-09-26
EP0330142A2 (en) 1989-08-30
JPH0770733B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US11606065B2 (en) Body tie optimization for stacked transistor amplifier
US6355961B1 (en) Structure and method for improved signal processing
US5734296A (en) Low voltage operational amplifier input stage and method
US5408198A (en) Semiconductor power amplifier integrated circuit
US8058694B2 (en) Semiconductor device
JPH01214056A (en) Semiconductor device and usage thereof
US6639446B2 (en) High linearity, high gain mixer circuit
JPH0738337A (en) Low distortion cascade circuit
JP3188346B2 (en) Field effect transistor
US3749985A (en) High frequency insulated gate field effect transistor for wide frequency band operation
US4709251A (en) Double Schottky-gate field effect transistor
KR100644980B1 (en) Compound semiconductor switch circuit device
JPH11168099A (en) Semiconductor device
JP2005340550A (en) Semiconductor device
US6577170B1 (en) CMOS transconductor with increased dynamic range
US4245231A (en) Combination capacitor and transistor structure for use in monolithic circuits
US7012285B2 (en) Semiconductor device
JPH11283994A (en) Multi-finger type field effect transistor
US6448616B1 (en) Adaptive biasing of RF power transistors
JP2007194412A (en) Active element and switching circuit device
JP3071985B2 (en) Switch device
EP0610564A2 (en) Dual gate fet and circuits using dual gate fet
JP3027883B2 (en) Microwave semiconductor amplifier
JPS60137071A (en) Schottky gate field effect transistor
JP3443367B2 (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees