JPH0121172B2 - - Google Patents

Info

Publication number
JPH0121172B2
JPH0121172B2 JP56125970A JP12597081A JPH0121172B2 JP H0121172 B2 JPH0121172 B2 JP H0121172B2 JP 56125970 A JP56125970 A JP 56125970A JP 12597081 A JP12597081 A JP 12597081A JP H0121172 B2 JPH0121172 B2 JP H0121172B2
Authority
JP
Japan
Prior art keywords
water
film
synthetic resin
liquid
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56125970A
Other languages
Japanese (ja)
Other versions
JPS5829831A (en
Inventor
Shin Takayama
Masayuki Egami
Yoshuki Funo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP56125970A priority Critical patent/JPS5829831A/en
Publication of JPS5829831A publication Critical patent/JPS5829831A/en
Publication of JPH0121172B2 publication Critical patent/JPH0121172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無滴性に優れた合成樹脂成形物、たと
えば合成樹脂フイルム、シート及び板等の製造法
に関するものである。なお、本明細書において
「無滴性」とは、合成樹脂成形物の表面に水滴が
付着しない性質をいう。 ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ル、ポリエステル及びポリメチルメタクリレート
等の合成樹脂成形物の表面は疎水性であり、水に
対する親和性が少ないので、水滴が付着しやす
い。たとえば、合成樹脂フイルムやシート等を農
業用ハウスに用いた場合には、土壌や作物から蒸
散する水蒸気がフイルムやシートの表面で凝縮し
て水滴が形成される。そのために、フイルムやシ
ートが曇り、日光の透過率が低下し、作物の成育
がさまたげられ、或いは水滴の落下により葉腐れ
等を起す。 従来、かかる合成樹脂成形物の水滴付着を防止
するためには、各種の界面活性剤や親水性高分子
化合物を、成形前の合成樹脂に練込んでおくと
か、或いは合成樹脂成形物の表面に塗布する方法
がとられている。これらの方法は、一般に無滴性
の持続性が短かく、数か月しかもたない欠点があ
り、かつ無滴性の良好なものは夕方から夜にかけ
て農業用ハウス内にもやが発生し、病害発生の原
因になる等の欠点があつた。そして、無滴性の良
好なものほどもやの発生が目立つことからして、
そのもやの発生原因は次のようなものと推定され
る。すなわち、夜間には地面の温度が周囲の空気
よりも高く、水分が地面より蒸発するが、その水
蒸気が周囲の空気に冷されて霧滴となる。他方、
ハウスに使用しているフイルムやシートの内側の
表面には無滴効果により水膜が形成されていて、
その水膜の表面には溶け込んだ界面活性剤が含ま
れていて、これが霧滴の水膜への凝縮を妨げるの
で、霧滴がハウス内に立ちこめ、もやとなる。 塗布型の無滴剤の一種として、無機質水性ゾル
と界面活性剤の混合物を用いることが既に提案さ
れた。たとえば、界面活性剤を主体とし、これに
少量のシリカゾルを加えたもの(特公昭50−
11348号公報)、アルミナゾルに界面活性剤を加え
たもの(特公昭49−32668号公報)、アルミナゾル
に界面活性剤と親水性ポリマーを加えたもの(特
開昭51−81877号公報)、コロイド状シリカに親水
性ポリマーと界面活性剤を加えたもの(特開昭50
−3832号公報)、シリカゾルに界面活性剤を加え
たもの(特開昭55−56177号及び特開昭54−20979
号公報)等がある。 これらの公知文献においては、界面活性剤の濃
度はかなり減少しているが、多くの場合に無滴剤
中になお0.1重量%以上の界面活性剤が含まれて
いて、そのためにもやの発生を解消されるに至ら
ない。すなわち、ポリエチレン等のような低エネ
ルギー表面を濡らすためには、塗布液の表面張力
を31ダイン/cm以下に下げることが必要である
が、上記公知文献においてもすべて無滴剤の表面
張力を下げることによりプラスチツク表面を濡ら
すようにして無滴剤のプラスチツク表面への塗布
を容易ならしめているものである。したがつて、
一般にこの種の無滴剤は0.1重量%以上の界面活
性剤の存在が不可欠であり、浸漬法やロールコー
テイング法等の工業的に有利な方法でプラスチツ
クフイルムやシート等に連続的高速かつ均一に塗
布するにはさらに高濃度の界面活性剤の存在が望
ましいとされていた。上記公知文献の実施例中に
は、界面活性剤濃度が0.1重量%以下のものもあ
るが、その場合の塗布方法はスプレー塗布に限ら
れ、工業的に有利な浸漬法やロールコーテイング
法が用いられていない。 また、水酸化鉄や水酸化スズの水性ゾル中にポ
リエチレンやテフロンフイルムを浸漬しておく
と、そのフイルム表面にコロイド粒子が沈着して
水で濡れるようになることも既に報告されている
〔「ジヤーナル・オブ・コロイド・アンド・インタ
ーフエース・サイエンス」第42巻第3号第589〜
596頁(1973)参照〕。しかし、同報文によれば、
ポリエチレンフイルムを水酸化鉄ゾル又は水酸化
スズゾル中に浸漬してフイルム表面にコロイド粒
子を沈着させて水で濡れるようになるまでには、
ポリエチレンフイルムの場合に2.0分間又は0.25
分間それぞれ浸漬しておく必要があるとされてい
る。また、本発明者等がかかる方法で実際にポリ
エチレンフイルムにコロイド粒子を沈着させたフ
イルムを製造し、それらを農業用ハウスに使用し
て性能を評価したところ、これらのフイルムは下
記の点において実用性がないことが判明した。す
なわち、これらのフイルムは液体の水には濡れる
が、農業用ハウスに用いて水蒸気と接触した場合
に曇りを生じた。特に、冬期のような水蒸気の蒸
散量の少ない季節にはその曇りが著しく長期間持
続した。 これは、フイルム表面のコロイド粒子の密度が
小さく、コロイド粒子と粒子間にポリエチレンフ
イルムの表面が露出していることに原因がある。
すなわち、かかるフイルムが液体の水と接触した
場合には、露出部がかなりあつても水は液膜状に
拡がりフイルムを濡らすことができるが、水蒸気
は小さい液滴となつてフイルム表面に凝縮し、露
出部でははじかれて液滴のままで存在するので曇
つて見える。そして、これを除くには、ポリエチ
レンフイルム表面に沈着したコロイド粒子の密度
を上げることが必要であり、水蒸気で曇らない無
滴性を付与するには、ポリエチレンフイルムを水
酸化鉄や水酸化スズの水性ゾル中に15分、望まし
くは30分程度浸漬しておく必要があり、到底、工
業的に実施できるものではないのである。 本発明者等は、もやの発生を抑えるために界面
活性剤を殆んど或いは全く使用せずに、しかも長
期間にわたつて優れた無滴性を有する合成樹脂成
形物を工業的に有利に製造すべく種々研究を重ね
た結果、本発明に到達したものである。 すなわち、本発明の無滴性に優れた合成樹脂成
形物の製造法は、コロイド状シリカを0.05〜20重
量%及び水溶性アルミニウム塩を液100ml当り
10-4〜0.1モル含む表面張力35〜75ダイン/cmの
水性液を用いて合成樹脂成形物を処理し、該合成
樹脂成形物の表面にコロイド状シリカ粒子を沈着
せしめることを特徴とする方法である。 従来、ガラスのような負電荷を帯びた表面に、
陽電荷を帯びたアルミナゾルが瞬間的に沈着する
報告がある。そして、ポリエチレン等の表面は、
中性に近いか、弱い負電荷を帯びていると推定さ
れるが、かかるポリエチレンフイルム等をアルミ
ナゾル中に浸漬してもアルミナ粒子の沈着速度が
極めておそく、1時間も浸漬してようやく不十分
な沈着が認められるにすぎなかつた。 また、シリカゾルも、そのままではポリエチレ
ン等の合成樹脂成形物表面に対し実際上全く沈着
を起さない。しかるに、シリカゾルに水溶性アル
ミニウム塩を微量加えたところ、コロイド状シリ
カの凝集が一部に起り白濁するものの、これにポ
リエチレン等の合成樹脂成形物を浸漬すると、殆
んど瞬間的に沈着を起すことが本発明において見
出されたのである。さらに、そのアルミニウム塩
の添加比率を増加させたところ、凝集が起らず、
むしろその添加比率が少ない場合よりも透明な水
性液が得られ、この水性液もやはり同様に瞬間的
な沈着を起すことが見出された。そして、かかる
沈着処理後の合成樹脂成形物を乾燥してから水蒸
気に露出せしめたところ、曇りを起さず、優れた
無滴性を示した。 コロイド状シリカに水溶性アルミニウム塩を添
加して得られたコロイド状シリカ粒子の表面には
アルミニウムイオン、又は水和アルミニウムイオ
ン等が吸着していると思われるが、陽電荷を帯び
たアルミナゾルがポリエチレンフイルム等に対す
る沈着速度が極めて小さいにかかわらず、かかる
コロイド状シリカに水溶性アルミニウム塩を添加
して得られるシリカ粒子の沈着速度が極めて大き
いことは全く予想外のことである。しかも、本発
明で用いるかかるアルミニウム塩を添加したコロ
イド状シリカ水性ゾルは保存安定性にも優れてい
て、1週間程度室温に放置しても凝集の進行が殆
んど認められないのである。 本発明において用いるコロイド状シリカを0.05
〜20重量%及び水溶性アルミニウム塩を液100ml
当り10-4〜0.1モル含む水性液(以下において
「沈着液」ということがある。)は、シリカゾルや
アルミナゾルに界面活性剤を添加してなる公知の
塗布型無滴剤と一見似ているようであるが、この
両者は下記の点において明確に区別できるもので
ある。 (i) 従来の塗布型無滴剤は、比較的多量の界面活
性剤を加えて表面張力を31ダイン/cm以下にま
で下げ、合成樹脂成形物の表面を濡らすように
して塗布するものである。これに対し、本発明
の沈着液は界面活性剤を全く含まないか、或い
は殆んど含まない(この場合の界面活性剤の含
有量は0.0001重量%未満である)もので、その
表面張力が35〜75ダイン/cmであつて、ポリエ
チレン等の合成樹脂成形物に刷毛塗り法やロー
ルコーター法で塗布しようとしてもはじかれて
しまつて塗布できず、浸漬法又はスプレー法等
によつてのみ塗布できる。 (ii) 従来の塗布型無滴剤を合成樹脂成形物の表面
に塗布し、直ちに水でリンスすると、コロイド
粒子が洗い落されてしまつて、水をはじく状態
にもどる。これに対し、本発明の沈着液に合成
樹脂成形物を数秒間程度浸漬し、次いで引き上
げて直ちに水でリンスしても、合成樹脂成形物
表面は依然として濡れており、沈着したコロイ
ド状シリカは水によつて洗い落されないことを
示す。 本発明の沈着液は、コロイド状シリカを0.05〜
20重量%、好ましくは0.5〜5重量%含み、かつ
水溶性アルミニウム塩を液100ml当り10-4〜0.1モ
ル、好ましくは10-3〜0.05モル含む水性液であ
り、その表面張力は35〜75ダイン/cmであるかか
る沈着液は、たとえば所望濃度のコロイド状シリ
カ水性液(すなわちシリカ水性ゾル)に固型の水
溶性アルミニウム塩を添加して調製することがで
きるし、或いはコロイド状シリカ水性液に、予め
水に溶かしたアルミニウム塩水溶液を添加して調
製することができる。 その水溶性アルミニウム塩は、水溶性のもので
あればその種類を問わない。たとえば硫酸アルミ
ニウム、硝酸アルミニウム、塩化アルミニウム、
各種明ばん、酢酸アルミニウム等があげられる。 本発明の沈着液は、そのシリカ濃度が低すぎる
とコロイド状シリカを有効に沈着せしめることが
できないし、そのシリカ濃度が高すぎると処理後
の合成樹脂成形物表面の平滑性が損われる。ま
た、水溶性アルミニウム塩濃度が高すぎると処理
後の合成樹脂成形物表面がざらつくし、その塩濃
度が低すぎると沈着速度がおそくなり、かつ得ら
れる成形物の無滴性の持続性も低下する。 本発明における合成樹脂成形物としては、たと
えばポリエチレン、ポリプロピレン、ポリ塩化ビ
ニル、ポリエステル、ポリメチルメタクリレート
等の種々の合成樹脂成形物があげられ、またその
成形物の形状としてはフイルム、シート及び板等
があげられる。 本発明を工業的に実施する方法としては、たと
えば沈着液を入れた液槽中に合成樹脂成形物、た
とえばフイルムやシートを連続的に通して、合成
樹脂成形物を連続的に浸漬処理する方法が能率的
で好ましい方法としてあげられる。その際の浸漬
処理時間、すなわち液槽中の滞留時間又は処理液
との接触時間は、沈着液組成や樹脂の種類等によ
つても多少異なるが、通常は数秒〜10秒間程度で
十分に均一なシリカ粒子の沈着が得られる。 なお、本発明の沈着液は界面活性剤を殆んど含
まないか(この場合の界面活性剤含有量は前記の
とおり0.0001重量%未満である。)、或いは全く含
まないので、表面張力が35〜75ダイン/cmと大き
いから、刷毛塗り法やロールコーテイング法で塗
布しようとしても液がはじかれてしまつて有効に
シリカ粒子を沈着せしめることができない。その
ために、上記の沈着処理方法が最も好ましいが、
小規模の実施であれば、たとえばスプレー法等の
使用も可能である。 本発明において沈着液による処理をした合成樹
脂成形物は、熱風等によつて乾燥して乾燥製品に
するのが取扱い上及び性能面等の点から望ましい
が、場合によつては未乾燥のままでも使用に供す
ることができる。 また、沈着液による処理をした合成樹脂成形物
は、沈着液濃度等によつては沈着したシリカ粒子
層上に過剰の沈着液が付着してきて、乾燥後の成
形物表面がざらつくことがある。これを防ぐに
は、沈着液処理後の合成樹脂成形物を引続いて水
槽中に通して水でリンス(洗浄)して余分に付着
した沈着液を洗い落してから乾燥すればよい。か
かる水によるリンス処理によつても無滴性になん
ら悪影響がないし、かえつて、沈着液中に界面活
性剤が含まれている場合には界面活性剤もリンス
処理でその大部分が除かれる結果、農業用ハウス
等に使用したときのもやの発生を防止でき、好ま
しい。 本発明の沈着液処理をした合成樹脂成形物は、
上記の水によるリンス処理の代りに、シリカゾル
のゲル化剤を含む水性液中を通してから乾燥して
もよい。かかるゲル化剤処理をすると、シリカ層
の乾燥後の塗膜強度が著しく向上し、たとえば指
等の摩擦による剥離抵抗性が大きくなるし、かつ
浸漬処理時の沈着液の濃度や温度、さらには乾燥
時の乾燥温度等に多少の変動があつても、製品の
無滴性や無滴性の持続性レベルの変動が少なくな
り、安定した操業が容易となり、工業的に極めて
有利となる。 上記のシリカゾルのゲル化剤としては、シリカ
ゾルのコロイド粒子を凝集させる作用を有する物
質をいう。一般に、シリカゾル中のコロイド状シ
リカ粒子は表面に負の電荷を有し、その電荷相互
の電気的反ぱつ力によつて粒子の凝集が妨げられ
安定なゾル状態が保たれているが、これにその電
荷を中和する作用をする物質を添加すると、粒子
の凝集が起り、ゲル化する。かかるシリカゾルの
ゲル化剤としては、酸類、アルカリ類、塩類、カ
チオン性界面活性剤類、両性界面活性剤類、アル
ミナゾル、さらにエタノールやアセトン等の有機
物質類等があげられる。そして、本発明において
用いるゲル化剤を含む水性液中のゲル化剤濃度
は、ゲル化剤の種類等によつても異なるが、通常
0.1〜30重量%、好ましくは0.5〜5重量%であ
る。 本発明の製法によつて得られる合成樹脂成形
物、たとえばフイルムやシート等は、これを農業
用ハウス等に使用した場合に、冬期でも曇りが発
生せず、極めて優れた無滴性を示し、かつその無
滴性を6か月以上の長期にわたつて持続できる。
また、無滴性に優れているにかかわらず、夜間に
おけるハウス内のもやの発生が殆んど認められな
い。さらに、そのフイルムやシート等は透明性が
良好で、べとつくこともなく、そのシリカ粒子沈
着塗膜は乾燥時及び湿潤時とも強度が大で、たと
えば指等によつて摩擦してもシリカ粒子が容易に
剥離することがない。 以下に、実施例及び比較例をあげて本発明をさ
らに詳述するが、本発明はこれらの例によつてな
んら制限されない。これらの例における%は、特
に記載しない限り重量基準による。 実施例 1〜8 市販シリカゾルの稀釈水性液に、各種の水溶性
アルミニウム塩を固体のままで添加して溶かし
て、表1に示す実施例1〜8の組成の沈着液を調
製した。用いたシリカゾルは、実施例1〜3では
日産化学工業社商品名スノーテツクス40、実施例
4〜5では同スノーテツクスO、実施例6〜7で
は同スノーテツクスC、実施例8では触媒化成工
業社商品名カタロイドSH−30であつた。また、
用いたアルミニウム塩はいずれも和光純薬工業社
の試薬特級であつた。 これらの各沈着液中に農業用低密度ポリエチレ
ンフイルムを、表1に示す種々の時間浸漬し、引
き上げてから水中で5秒間リンスして風乾した。
その際のリンス後水から引き上げた時のフイルム
表面の水による濡れ状態、及び風乾したフイルム
を50℃の温湯を満した水槽上の湯気に5秒間かざ
したときのフイルム表面の曇り状態を調べて評価
した。その結果は表1に示すとおりであつた。 比較例 1〜8 表1に示すように、コロイド状水酸化鉄(比較
例1)、コロイド状水酸化スズ(比較例2)、シリ
カゾル(比較例3)、アルミナゾル(比較例4)、
アルミニウム塩(比較例5)、シリカゾルやアル
ミナゾルにノニオン性界面活性剤やアニオン性界
面活性剤を比較的に多量加えて、液の表面張力を
30ダイン/cm以下にした水性液(比較例6〜8)
をそれぞれ処理液として用いて、実施例1〜8に
おけると同様にしてポリエチレンフイルムを浸漬
処理し、同時に水でリンスしてから風乾した。 比較例1のコロイド状水酸化鉄及び比較例2の
コロイド状水酸化スズは、上記文献の記載にした
がつて、FeCl3・6H2Oを用い、又はSnCl4
5H2OとSnCl2・2H2Oを用いて、これらを水に溶
かし、PHの調節及びエージング処理をしてそれぞ
れ調製した。また、比較例3のシリカゾルは日産
化学社商品名スノーテツクス40を、比較例4のア
ルミナゾルは日産化学社商品名アルミナゾル−
100をそれぞれ水で稀釈して用いた。また、比較
例6〜8では上記のそれぞれの市販ゾルにそれぞ
れの界面活性剤を添加して調製した。
The present invention relates to a method for producing synthetic resin molded articles having excellent drop-free properties, such as synthetic resin films, sheets, and plates. In this specification, "dropless property" refers to the property that water droplets do not adhere to the surface of a synthetic resin molded article. The surfaces of molded synthetic resins such as polyethylene, polypropylene, polyvinyl chloride, polyester, and polymethyl methacrylate are hydrophobic and have little affinity for water, so water droplets tend to adhere to them. For example, when a synthetic resin film or sheet is used for an agricultural greenhouse, water vapor evaporating from soil or crops condenses on the surface of the film or sheet to form water droplets. As a result, the film or sheet becomes cloudy, the transmittance of sunlight decreases, the growth of crops is hindered, or leaf rot occurs due to falling water droplets. Conventionally, in order to prevent water droplets from adhering to such synthetic resin moldings, various surfactants and hydrophilic polymer compounds have been kneaded into the synthetic resin before molding, or they have been applied to the surface of the synthetic resin molding. A coating method is used. These methods generally have short-lasting drip-free properties, lasting only a few months, and those with good drip-free properties tend to cause haze to form inside agricultural greenhouses from dusk to night. It had drawbacks such as causing disease outbreaks. And considering that the better the drip-free property is, the more noticeable the mist is,
The cause of the haze is presumed to be as follows. That is, at night, the temperature of the ground is higher than the surrounding air, and moisture evaporates from the ground, but the water vapor is cooled by the surrounding air and turns into mist droplets. On the other hand,
A water film is formed on the inner surface of the film or sheet used in the house due to the non-droplet effect.
The surface of the water film contains a dissolved surfactant, which prevents the mist droplets from condensing on the water film, causing the mist droplets to accumulate inside the greenhouse and form a mist. It has already been proposed to use a mixture of an inorganic aqueous sol and a surfactant as a type of spray-on type non-droplet agent. For example, a product containing a surfactant as its main ingredient and a small amount of silica sol added to it (Tokuko Kokko 1973-
11348), alumina sol with a surfactant added (Japanese Patent Publication No. 49-32668), alumina sol with a surfactant and a hydrophilic polymer added (Japanese Patent Laid-open No. 51-81877), colloidal A product made by adding a hydrophilic polymer and a surfactant to silica (Japanese Patent Application Laid-Open No.
-3832), silica sol with surfactant added (JP-A-55-56177 and JP-A-54-20979)
Publication No.) etc. In these known documents, although the concentration of surfactant is considerably reduced, in many cases the non-droplet still contains 0.1% by weight or more of surfactant, which may cause haze to occur. has not yet been resolved. In other words, in order to wet low-energy surfaces such as polyethylene, it is necessary to lower the surface tension of the coating liquid to 31 dynes/cm or less, but all of the above-mentioned known documents also discuss lowering the surface tension of the non-droplet agent. This wets the plastic surface, making it easier to apply the dropless agent to the plastic surface. Therefore,
In general, this type of dropless agent requires the presence of a surfactant of 0.1% by weight or more, and can be applied continuously, quickly and uniformly to plastic films, sheets, etc. using industrially advantageous methods such as dipping and roll coating. The presence of a higher concentration of surfactant was considered desirable for coating. Some of the examples in the above-mentioned known documents have a surfactant concentration of 0.1% by weight or less, but in that case, the coating method is limited to spray coating, and industrially advantageous dipping or roll coating methods are used. It has not been done. It has also been reported that when a polyethylene or Teflon film is immersed in an aqueous sol of iron hydroxide or tin hydroxide, colloidal particles are deposited on the film surface and the film becomes wet with water. Journal of Colloid and Interface Science, Volume 42, No. 3, No. 589~
See page 596 (1973)]. However, according to the bulletin,
Polyethylene film is immersed in iron hydroxide sol or tin hydroxide sol to deposit colloidal particles on the film surface until it becomes wet with water.
2.0 minutes or 0.25 for polyethylene film
It is said that it is necessary to soak each for a minute. In addition, the present inventors actually produced films in which colloidal particles were deposited on polyethylene films using the above method, and used them in agricultural greenhouses to evaluate their performance. These films were found to be practical in the following respects. It turned out that there was no sex. That is, these films were wetted by liquid water, but became cloudy when used in agricultural greenhouses and came into contact with water vapor. In particular, the cloudiness lasted for an extremely long time during seasons when the amount of water vapor transpiration was low, such as winter. This is because the density of the colloidal particles on the film surface is low and the surface of the polyethylene film is exposed between the colloidal particles.
That is, when such a film comes into contact with liquid water, the water spreads out as a liquid film and wets the film even if there is a large exposed area, but water vapor condenses on the film surface in the form of small droplets. In the exposed area, it is repelled and remains as a droplet, so it appears cloudy. To eliminate this, it is necessary to increase the density of the colloidal particles deposited on the surface of the polyethylene film, and in order to give the polyethylene film a droplet-free property that does not cloud with water vapor, the polyethylene film can be coated with iron hydroxide or tin hydroxide. It is necessary to immerse the material in an aqueous sol for 15 minutes, preferably 30 minutes, and this is by no means practical for industrial use. The present inventors have developed an industrially advantageous synthetic resin molded product that uses little or no surfactant to suppress the generation of mist and has excellent drip-free properties over a long period of time. The present invention was achieved as a result of various researches aimed at manufacturing the same. That is, the method for producing a synthetic resin molded product with excellent drop-free properties according to the present invention involves adding 0.05 to 20% by weight of colloidal silica and a water-soluble aluminum salt per 100ml of liquid.
A method characterized by treating a synthetic resin molded article with an aqueous liquid containing 10 -4 to 0.1 mol and having a surface tension of 35 to 75 dynes/cm to deposit colloidal silica particles on the surface of the synthetic resin molded article. It is. Conventionally, on a negatively charged surface such as glass,
There are reports of instantaneous deposition of positively charged alumina sol. And the surface of polyethylene etc.
It is estimated that the polyethylene film is close to neutral or has a weak negative charge, but even if such a polyethylene film is immersed in alumina sol, the deposition rate of the alumina particles is extremely slow, and it is not until immersed for an hour that it becomes insufficient. There was only evidence of deposition. In addition, silica sol does not actually deposit on the surface of a synthetic resin molded product such as polyethylene at all. However, when a small amount of water-soluble aluminum salt is added to silica sol, some of the colloidal silica aggregates and becomes cloudy, but when a synthetic resin molded product such as polyethylene is immersed in it, precipitation occurs almost instantaneously. This was discovered in the present invention. Furthermore, when the addition ratio of aluminum salt was increased, agglomeration did not occur,
In fact, it was found that a more transparent aqueous liquid was obtained than when the addition ratio was small, and that this aqueous liquid also caused instantaneous deposition. When the synthetic resin molded product after such deposition treatment was dried and then exposed to water vapor, it did not become cloudy and exhibited excellent drop-free properties. It is thought that aluminum ions or hydrated aluminum ions are adsorbed on the surface of colloidal silica particles obtained by adding a water-soluble aluminum salt to colloidal silica, but the positively charged alumina sol is It is completely unexpected that the deposition rate of silica particles obtained by adding a water-soluble aluminum salt to such colloidal silica is extremely high, even though the deposition rate on films and the like is extremely low. Furthermore, the aqueous colloidal silica sol to which such aluminum salts are added used in the present invention has excellent storage stability, with almost no progress of aggregation being observed even if it is left at room temperature for about a week. The colloidal silica used in the present invention is 0.05
~20% by weight and 100ml of water-soluble aluminum salt solution
At first glance, the aqueous liquid containing 10 -4 to 0.1 mol per mol (hereinafter referred to as "deposition liquid") is similar to the known spray-on type non-droplet agent, which is made by adding a surfactant to silica sol or alumina sol. However, the two can be clearly distinguished in the following points. (i) Conventional spray-on type non-drop agents add a relatively large amount of surfactant to lower the surface tension to 31 dynes/cm or less, and apply the product by wetting the surface of the synthetic resin molding. . In contrast, the deposition solution of the present invention does not contain any or almost no surfactant (in this case, the surfactant content is less than 0.0001% by weight), and its surface tension is 35 to 75 dynes/cm, and if you try to apply it to a synthetic resin molded product such as polyethylene using a brush coating method or a roll coater method, it will be repelled and cannot be applied, so it can only be applied by dipping or spraying methods. can. (ii) If a conventional spray-on type non-drop agent is applied to the surface of a synthetic resin molded product and immediately rinsed with water, the colloid particles will be washed away and the product will return to its water-repellent state. On the other hand, even if a synthetic resin molded article is immersed in the deposition solution of the present invention for several seconds, then taken out and immediately rinsed with water, the surface of the synthetic resin molded article remains wet, and the deposited colloidal silica remains wet. Indicates that it will not be washed away by water. The deposition solution of the present invention contains colloidal silica from 0.05 to
It is an aqueous liquid containing 20% by weight, preferably 0.5 to 5% by weight, and 10 -4 to 0.1 mol, preferably 10 -3 to 0.05 mol of water-soluble aluminum salt per 100 ml of liquid, and its surface tension is 35 to 75. Such a deposition solution of dynes/cm can be prepared, for example, by adding a solid water-soluble aluminum salt to an aqueous colloidal silica solution (i.e., an aqueous silica sol) at the desired concentration; It can be prepared by adding an aqueous solution of aluminum salt dissolved in water in advance. The water-soluble aluminum salt may be of any type as long as it is water-soluble. For example, aluminum sulfate, aluminum nitrate, aluminum chloride,
Examples include various alums and aluminum acetate. If the silica concentration of the deposition liquid of the present invention is too low, colloidal silica cannot be deposited effectively, and if the silica concentration is too high, the smoothness of the surface of the synthetic resin molded article after treatment will be impaired. In addition, if the water-soluble aluminum salt concentration is too high, the surface of the synthetic resin molded product will become rough after treatment, and if the salt concentration is too low, the deposition rate will be slow, and the persistence of the drop-free property of the resulting molded product will also be reduced. do. Examples of the synthetic resin molded product in the present invention include various synthetic resin molded products such as polyethylene, polypropylene, polyvinyl chloride, polyester, and polymethyl methacrylate, and the shapes of the molded products include films, sheets, plates, etc. can be given. A method for carrying out the present invention industrially includes, for example, a method in which a synthetic resin molded article, such as a film or sheet, is continuously passed through a liquid bath containing a deposition liquid, and the synthetic resin molded article is continuously immersed. is an efficient and preferable method. The immersion treatment time at that time, that is, the residence time in the liquid bath or the contact time with the treatment liquid, varies somewhat depending on the composition of the depositing liquid and the type of resin, but is usually sufficiently uniform within a few seconds to 10 seconds. Deposits of silica particles are obtained. The deposition solution of the present invention contains almost no surfactant (in this case, the surfactant content is less than 0.0001% by weight as described above), or does not contain any surfactant at all, so that the surface tension is 35%. Since it is large at ~75 dynes/cm, even if you try to apply it by brush coating or roll coating, the liquid will be repelled and you will not be able to effectively deposit silica particles. For this purpose, the above-mentioned deposition treatment method is most preferred, but
For small-scale implementation, it is also possible to use, for example, a spray method. In the present invention, it is desirable to dry the synthetic resin molded product treated with the deposition liquid using hot air to make a dry product from the viewpoint of handling and performance, but in some cases it may be left undried. However, it can also be used. Furthermore, in synthetic resin molded articles treated with a deposition liquid, depending on the concentration of the deposited liquid, excessive deposition liquid may adhere to the deposited silica particle layer, and the surface of the molded article may become rough after drying. In order to prevent this, the synthetic resin molded article treated with the depositing liquid may be subsequently rinsed (washed) with water by passing it through a water tank to wash off the excess depositing liquid, and then dried. Such rinsing treatment with water does not have any negative effect on the drop-free property, and on the contrary, if the deposited liquid contains surfactant, most of the surfactant is removed by rinsing treatment. This is preferable because it can prevent the generation of mist when used in agricultural greenhouses and the like. The synthetic resin molded product treated with the deposition liquid of the present invention is
Instead of the water rinsing treatment described above, the silica sol may be passed through an aqueous solution containing a gelling agent and then dried. Such gelling agent treatment significantly improves the coating strength of the silica layer after drying, increases resistance to peeling due to finger friction, etc., and also reduces the concentration and temperature of the deposited liquid during dipping treatment. Even if there are some fluctuations in the drying temperature, etc. during drying, there will be less fluctuation in the drop-free property of the product and the level of persistence of the drop-free property, facilitating stable operation, which is extremely advantageous industrially. The above gelling agent for silica sol refers to a substance that has the effect of coagulating colloidal particles of silica sol. In general, colloidal silica particles in a silica sol have a negative charge on their surface, and the electrical repulsion between the charges prevents the particles from agglomerating and maintains a stable sol state. When a substance that neutralizes the electric charge is added, particles agglomerate and gel. Examples of gelling agents for silica sol include acids, alkalis, salts, cationic surfactants, amphoteric surfactants, alumina sol, and organic substances such as ethanol and acetone. The concentration of the gelling agent in the aqueous liquid containing the gelling agent used in the present invention varies depending on the type of gelling agent, but usually
0.1-30% by weight, preferably 0.5-5% by weight. When the synthetic resin molded products obtained by the production method of the present invention, such as films and sheets, are used in agricultural greenhouses, etc., they do not become cloudy even in winter and exhibit extremely excellent drip-free properties. Moreover, the drip-free property can be maintained for a long period of 6 months or more.
Furthermore, despite its excellent drip-free properties, almost no mist is observed inside the greenhouse at night. Furthermore, the films and sheets have good transparency and are not sticky, and the silica particle-deposited coating has high strength both when dry and wet, and the silica particles remain even when rubbed with fingers, etc. Does not peel off easily. The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples in any way. The percentages in these examples are by weight unless otherwise stated. Examples 1 to 8 Various water-soluble aluminum salts were added and dissolved in solid form to diluted aqueous solutions of commercially available silica sol to prepare deposition solutions having the compositions of Examples 1 to 8 shown in Table 1. The silica sol used was Snotex 40 (trade name, manufactured by Nissan Chemical Industries, Ltd.) in Examples 1 to 3, Snotex O (trade name, manufactured by Nissan Chemical Industries, Ltd.) in Examples 4 to 5, Snotex C (trade name, manufactured by Catalysts & Chemicals, Ltd.) in Examples 6 to 7, and Snotex C (trade name, manufactured by Catalysts and Chemicals Industries, Ltd.) in Example 8. It was Cataloid SH-30. Also,
All of the aluminum salts used were special grade reagents manufactured by Wako Pure Chemical Industries, Ltd. Agricultural low-density polyethylene films were immersed in each of these deposition solutions for various times shown in Table 1, taken out, rinsed in water for 5 seconds, and air-dried.
At that time, we examined the wet state of the film surface due to water when it was removed from the water after rinsing, and the cloudy state of the film surface when the air-dried film was held over steam in a water tank filled with warm water at 50℃ for 5 seconds. evaluated. The results were as shown in Table 1. Comparative Examples 1 to 8 As shown in Table 1, colloidal iron hydroxide (Comparative Example 1), colloidal tin hydroxide (Comparative Example 2), silica sol (Comparative Example 3), alumina sol (Comparative Example 4),
By adding a relatively large amount of nonionic surfactant or anionic surfactant to aluminum salt (Comparative Example 5), silica sol, or alumina sol, the surface tension of the liquid can be adjusted.
Aqueous liquid with a concentration of 30 dynes/cm or less (Comparative Examples 6 to 8)
A polyethylene film was immersed in the same manner as in Examples 1 to 8 using each of these as a treatment liquid, and was simultaneously rinsed with water and air-dried. Colloidal iron hydroxide in Comparative Example 1 and colloidal tin hydroxide in Comparative Example 2 were prepared using FeCl 3 .6H 2 O or SnCl 4 .
Each was prepared using 5H 2 O and SnCl 2 .2H 2 O by dissolving them in water and subjecting them to pH adjustment and aging treatment. In addition, the silica sol of Comparative Example 3 was a product name of Nissan Chemical Co., Ltd., Snotex 40, and the alumina sol of Comparative Example 4 was alumina sol, a product name of Nissan Chemical Co., Ltd.
100 was diluted with water and used. Moreover, in Comparative Examples 6 to 8, each surfactant was added to each of the above-mentioned commercially available sols.

【表】【table】

【表】 表1に示された結果から明らかなように、実施
例1〜8で得られたフイルムは、水でリンスして
引き上げた状態で水に均一に濡れており、コロイ
ド状シリカが均一に沈着していることを示した。
そして、その各フイルムは風乾後に湯気にかざし
ても曇ることがなく、透明であつた。そして、か
かる無滴性を有するフイルムを得るのに要する沈
着液への浸漬時間はわずか20秒までで足り、中に
は数秒で足りるものもあつた。また、その各フイ
ルムはリンス後においもコロイド状シリカが沈着
しており、かつその沈着シリカ層中の界面活性剤
含有量が極めて少量であることは、X線マイクロ
アナライザー、X線電子分光(ESCA)及び電子
顕微鏡による解析によつて確認された。 これに対し、比較例1及び2で得られたフイル
ムは、水でリンスした後も水に濡れることからし
てコロイド状シリカの沈着が認められるものの、
風乾後のフイルムを湯気にかざして曇らなくする
のに15分(比較例1)又は5分(比較例2)を要
した。また、比較例3のコロイド状シリカのみで
は沈着が実際上起らないし、比較例4のコロイド
状アルミナのみでは沈着が起るものの、沈着速度
が極めておそかつた。比較例5の塩化アルミニウ
ム塩のみの場合も実際上全く沈着を起さなかつ
た。さらに、比較例6〜8のコロイド状シリカ又
はコロイド状アルミナに比較的多量の界面活性剤
を加えた従来の塗布型無滴剤は、液の表面張力が
小さいので、これにフイルムを浸漬して引き上げ
るとフイルム表面が濡れているが、そのフイルム
は水でリンスするとコロイド粒子が完全に洗い落
されてしまい、水をはじくようになり、湯気にか
ざすと全く無滴性を示さなかつた。 実施例 9〜14 比較例 9〜14 表2に示すように、上記の実施例及び比較例に
おいて用いた表1に記載の各種の処理液(沈着
液)及び各種の合成樹脂フイルム又はシートを使
用し、そのほかは実施例1〜8におけると同様に
して浸漬処理をし、同様に水でリンス処理し、風
乾して得たフイルム又はシートについて、同様の
評価をした。 その結果は表2に示すとおりであつた。
[Table] As is clear from the results shown in Table 1, the films obtained in Examples 1 to 8 were uniformly wet with water when they were rinsed with water and pulled up, and the colloidal silica was uniformly coated. It was shown that it was deposited on
Each film did not become cloudy and remained transparent even when exposed to steam after being air-dried. In order to obtain such a film with no droplet properties, the immersion time in the deposition solution was only 20 seconds, and in some cases, several seconds were sufficient. In addition, colloidal silica is deposited on each film after rinsing, and the surfactant content in the deposited silica layer is extremely small. This was confirmed by analysis using an electron microscope. On the other hand, the films obtained in Comparative Examples 1 and 2 remained wet even after rinsing with water, indicating that colloidal silica was deposited.
It took 15 minutes (Comparative Example 1) or 5 minutes (Comparative Example 2) to prevent the film from becoming foggy by holding it over steam after air drying. Furthermore, with only the colloidal silica of Comparative Example 3, no deposition actually occurred, and with only the colloidal alumina of Comparative Example 4, although deposition occurred, the rate of deposition was extremely slow. Comparative Example 5, in which aluminum chloride salt alone was used, practically caused no deposition at all. Furthermore, the conventional spray-on type non-drop agent prepared by adding a relatively large amount of surfactant to colloidal silica or colloidal alumina of Comparative Examples 6 to 8 has a low liquid surface tension, so it is difficult to immerse the film in it. When pulled up, the surface of the film was wet, but when the film was rinsed with water, the colloidal particles were completely washed away, and it began to repel water, but when held over steam, it showed no dripping properties at all. Examples 9 to 14 Comparative Examples 9 to 14 As shown in Table 2, various treatment liquids (deposition liquids) and various synthetic resin films or sheets listed in Table 1 used in the above Examples and Comparative Examples were used. Films or sheets obtained by immersion treatment in the same manner as in Examples 1 to 8, rinsing treatment with water in the same manner, and air drying were evaluated in the same manner. The results were as shown in Table 2.

【表】 表2に示されたように、実施例9〜14で得られ
た各フイルム又はシートは、20秒以内の浸漬処理
で湯気により曇らない優れた無滴性を示した。こ
れに対し比較例9〜14で得られた各フイルム又は
シートは、湯気で曇らないものとするのに長時間
の浸漬処理が必要であり、実用性に乏しかつた。 実施例 15〜18 比較例 15〜17 表3に示すように、実施例15〜18では実施例3
において用いたと同一の沈着液を入れた第1槽中
に農業用低密度ポリエチレンフイルムを連続的に
通して浸漬処理をした。その際の沈着液中の浸漬
(接触)時間はいずれも約20秒であつた。浸漬処
理後のフイルムは、実施例15ではそのまま80℃の
温風で連続的に乾燥した。また、実施例16では水
を入れた第2槽中を連続的に通して水でリンス
し、実施例17又は18ではゲル化剤としてエタノー
ル又はドデシルトリメチルアンモニウムクロライ
ドをそれぞれ添加した水性液を入れた第2槽中を
連続的に通してから、いずれも80℃の温風で連続
的に乾燥した。その際の第2槽の水性液中の滞留
(接触)時間はいずれも約6秒であつた。 また、比較例15又は16では、比較例6又は8で
用いたと同一の処理液をそれぞれ入れた第1槽中
に農業用低密度ポリエチレンフイルムを連続的に
通して浸漬処理をしてから、80℃の温風で連続的
に乾燥した。その際の処理液中の滞留時間はいず
れも約20秒であつた。そして比較例15及び16の場
合には、1回の浸漬及び乾燥では塗膜に塗りムラ
が生じたので、浸漬及び乾燥の各処理を2回繰返
して行なつた。また、比較例17では低密度ポリエ
チレンペレツトに、無滴剤としてソルビタンモノ
オレエートを0.3%練込んだものをインフレーシ
ヨン法によりフイルムに成形した。 以上のようにして製造された各フイルムを用い
て冬期(2月)に農業用ハウスを組立て、その無
滴性、無滴性持続性、ハウス組立時の傷の発生、
及び夜間におけるハウス内のもやの発生等を調べ
て評価した。その結果は表3に示すとおりであつ
た。
[Table] As shown in Table 2, the films or sheets obtained in Examples 9 to 14 exhibited excellent drop-free properties that did not cloud due to steam when immersed within 20 seconds. On the other hand, the films or sheets obtained in Comparative Examples 9 to 14 required long-time immersion treatment to prevent fogging due to steam, and were therefore impractical. Examples 15 to 18 Comparative Examples 15 to 17 As shown in Table 3, in Examples 15 to 18, Example 3
An agricultural low-density polyethylene film was continuously passed through a first tank containing the same deposition solution as used in the immersion treatment. The immersion (contact) time in the deposition solution was approximately 20 seconds in each case. In Example 15, the film after the immersion treatment was continuously dried with warm air at 80°C. Further, in Example 16, the water was continuously passed through a second tank containing water for rinsing, and in Examples 17 or 18, an aqueous solution containing ethanol or dodecyltrimethylammonium chloride as a gelling agent was added. After passing continuously through the second tank, both were continuously dried with warm air at 80°C. The residence (contact) time in the aqueous liquid in the second tank at that time was about 6 seconds. In Comparative Examples 15 or 16, the agricultural low-density polyethylene film was continuously passed through the first tank filled with the same treatment solution used in Comparative Examples 6 or 8, and subjected to immersion treatment for 80 minutes. Dry continuously with warm air at ℃. The residence time in the treatment liquid at that time was about 20 seconds in each case. In the case of Comparative Examples 15 and 16, coating unevenness occurred in the coating film after one immersion and drying, so the immersion and drying treatments were repeated twice. In Comparative Example 17, low-density polyethylene pellets mixed with 0.3% sorbitan monooleate as a dropless agent were formed into a film by an inflation method. Agricultural greenhouses were assembled in the winter (February) using each of the films produced as described above, and the results were as follows:
We also investigated and evaluated the occurrence of mist inside the greenhouse at night. The results were as shown in Table 3.

【表】 表3の結果から明らかなように、実施例15〜18
で得られたフイルムは、沈着液中の滞留時間が極
めて短かいにかかわらず、フイルム表面にコロイ
ド状シリカが均一に高密度に沈着していて、無滴
性及び無滴性持続性とも極めて良好であつた。こ
れに対し、比較例15及び16では浸漬及び乾燥を各
2回繰返したにかかわらず、そのフイルム性能は
実施例15〜18のものよりも著しく劣つた。また、
比較例17のフイルムも実施例15〜18のものより著
しく劣つた。 すなわち、実施例15〜18で得られた各フイルム
は、ハウス組立直後から曇りが認められず透明で
あり、もやの発生も認められなかつた。これに対
し、比較例15〜17で得られた各フイルムは最初は
水滴の付着により曇り現象を起したし、使用中に
水滴が成長して水滴どうしが連絡して連続した液
膜が形成されてはじめて(使用開始約1週間後)、
透明となつた。なお、比較例15〜17で得られた各
フイルムは、50℃の温湯を入れた水槽上にかざす
上記の方法によつて評価すると、最初から透明で
あつたが、これはかかる方法では水蒸気の発生量
が多いからであり、水蒸気の蒸散量の少ない冬期
にハウスに使用した場合には、表3に示すように
最初の1週間位は曇るのである。 もやの発生も、実施例15及び16が最も少なく、
次いで実施例17、実施例18の順に少なく、比較例
15〜17が最も多くもやを発生した。また、ハウス
組立時にはフイルムがこすられたり、曲げられた
りするため塗膜の一部が剥離して傷となり、部分
的に曇ることになるが、かかる組立時の傷の発生
は、実施例17、実施例18及び比較例17が最も少な
く、実施例15、比較例15及び16で多く認められ
た。このことからして、エタノールやドデシルト
リメチルアンモニウムクロライド等のゲル化剤含
有水性液で後処理することにより、コロイド状シ
リカの沈着膜は、その強度が向上することがわか
る。なお、実施例15、比較例15及び16で得られた
フイルムのハウス組立時に生じた傷にもとづく曇
りは、ハウス使用中に殆んど目立たなくなつた。 実施例 19 比較例 18 農業用軟質ポリ塩化ビニルフイルムでハウスを
組立て、次に内面に、実施例19ではシリカゾル及
び水溶性アルミニウム塩よりなる沈着液(組成は
実施例1のものと同一)、比較例18ではシリカゾ
ルの塗布液(組成は比較例3のものと同一)をそ
れぞれ噴霧し、直ちに無滴性の持続性を評価し
た。このテストでは、フイルム表面に付着したシ
リカを含む液は、乾燥することなしに水蒸気に露
されることになる。 その結果は、実施例19のものはコロイド状シリ
カがフイルム表面に沈着しており、透明な無滴の
状態が6ケ月程度持続したが、比較例18のものは
塗膜が簡単に洗い流されてしまうので、透明な状
態は1週間程度しか持続せず、その後は水滴付着
による曇りが顕著となつた。
[Table] As is clear from the results in Table 3, Examples 15 to 18
Despite the extremely short residence time in the deposition solution, the film obtained has colloidal silica deposited uniformly and densely on the film surface, and has extremely good drop-free properties and long-lasting drop-free properties. It was hot. On the other hand, in Comparative Examples 15 and 16, the film performance was significantly inferior to that of Examples 15 to 18, even though dipping and drying were repeated twice each. Also,
The film of Comparative Example 17 was also significantly inferior to those of Examples 15-18. That is, the films obtained in Examples 15 to 18 were transparent with no clouding observed immediately after the house was assembled, and no mist was observed. On the other hand, the films obtained in Comparative Examples 15 to 17 initially exhibited a cloudy phenomenon due to adhesion of water droplets, and during use, the water droplets grew and contacted each other to form a continuous liquid film. For the first time (about 1 week after starting use),
It became transparent. The films obtained in Comparative Examples 15 to 17 were transparent from the beginning when evaluated by the above-mentioned method in which they were held over a water tank containing hot water at 50°C; This is because the amount of water vapor generated is large, and when it is used in a greenhouse in the winter when the amount of water vapor transpiration is low, it becomes cloudy for about the first week as shown in Table 3. The generation of haze was also the least in Examples 15 and 16.
Next, Example 17, Example 18, followed by Comparative Example.
15 to 17 caused the most haze. In addition, when assembling the house, the film is rubbed or bent, so part of the coating peels off and becomes scratched, resulting in partial clouding. The smallest amount was observed in Example 18 and Comparative Example 17, and the largest amount was observed in Example 15, Comparative Examples 15 and 16. This shows that the strength of the colloidal silica deposited film is improved by post-treatment with an aqueous solution containing a gelling agent such as ethanol or dodecyltrimethylammonium chloride. Incidentally, the clouding of the films obtained in Example 15 and Comparative Examples 15 and 16 due to scratches that occurred during the assembly of the house became almost inconspicuous during use of the house. Example 19 Comparative Example 18 A greenhouse was assembled using agricultural soft polyvinyl chloride film, and then a depositing solution consisting of silica sol and water-soluble aluminum salt (composition was the same as that of Example 1) was applied to the inner surface in Example 19 for comparison. In Example 18, a silica sol coating solution (composition was the same as that of Comparative Example 3) was sprayed, and the durability of the droplet-free property was immediately evaluated. In this test, the silica-containing liquid deposited on the film surface is exposed to water vapor without drying. The results showed that in Example 19, colloidal silica was deposited on the film surface, and the transparent, dropless state lasted for about 6 months, but in Comparative Example 18, the coating was easily washed away. Because of this, the transparent state only lasted for about a week, after which it became noticeably cloudy due to adhesion of water droplets.

Claims (1)

【特許請求の範囲】[Claims] 1 コロイド状シリカを0.05〜20重量%及び水溶
性アルミニウム塩を液100ml当り10-4〜0.1モル含
む表面張力35×75ダイン/cmの水性液を用いて合
成樹脂成形物を処理し、該合成樹脂成形物の表面
にコロイド状シリカ粒子を沈着せしめることを特
徴とする無滴性に優れた合成樹脂成形物の製造
法。
1. A synthetic resin molded article is treated with an aqueous liquid having a surface tension of 35 x 75 dynes/cm containing 0.05 to 20% by weight of colloidal silica and 10 -4 to 0.1 mol of water-soluble aluminum salt per 100 ml of liquid. A method for producing a synthetic resin molded article with excellent drip-free properties, which comprises depositing colloidal silica particles on the surface of the resin molded article.
JP56125970A 1981-08-13 1981-08-13 Production of synthetic resin molding having excellent non-drippedness Granted JPS5829831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56125970A JPS5829831A (en) 1981-08-13 1981-08-13 Production of synthetic resin molding having excellent non-drippedness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56125970A JPS5829831A (en) 1981-08-13 1981-08-13 Production of synthetic resin molding having excellent non-drippedness

Publications (2)

Publication Number Publication Date
JPS5829831A JPS5829831A (en) 1983-02-22
JPH0121172B2 true JPH0121172B2 (en) 1989-04-20

Family

ID=14923487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125970A Granted JPS5829831A (en) 1981-08-13 1981-08-13 Production of synthetic resin molding having excellent non-drippedness

Country Status (1)

Country Link
JP (1) JPS5829831A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614673A (en) * 1985-06-21 1986-09-30 The Boeing Company Method for forming a ceramic coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420979A (en) * 1977-07-15 1979-02-16 Lion Corp Dew condensation inhibitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421172A (en) * 1987-07-14 1989-01-24 Shimizu Construction Co Ltd Rotary type automatic formwork device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420979A (en) * 1977-07-15 1979-02-16 Lion Corp Dew condensation inhibitor

Also Published As

Publication number Publication date
JPS5829831A (en) 1983-02-22

Similar Documents

Publication Publication Date Title
US3655129A (en) Slow release films and methods of making same
CN1318514C (en) Superabsorbent water-resistant coatings
CN104926156A (en) Preparation method of transparent and persistent form anti-fog glass and product thereof
JPS6345432B2 (en)
JP2013203774A (en) Antifog and antifouling agent for organic substrate, and method for coating organic substrate with the antifog and antifouling agent
US4181773A (en) Process for rendering surfaces permanently water wettable and novel products thus-produced
KR950013819B1 (en) Polyester film
JPH0121172B2 (en)
JPH0121173B2 (en)
JPS6069181A (en) Demisting agent composition
JPS6364459B2 (en)
US5723181A (en) Colloidal silica/zirconyl salt compositions as hydrophilizing coatings
GB2249041A (en) Application of colloidal particles of hydrous metal oxide to effect non-fogging of a modified plastic surface
JPS62283136A (en) Polyethylene terephthalate film for agriculture
JP2002179514A (en) Antifungal agent, method of producing the same and antifungal resin composition
JP3094296B2 (en) Agricultural film
JP3498986B2 (en) Antifogging agent and antifogging film-forming substrate
JPS6412297B2 (en)
JP3104404B2 (en) Antibacterial resin and method for producing the same
JPS6412300B2 (en)
JP7166361B2 (en) Water-soluble coating material and its coating method
JPS6025470B2 (en) anti-fog agent
JP4301061B2 (en) Anti-fogging article
Keshri et al. Superhydrophobic Coatings: Insights and Real‐World Applications
JPH11138015A (en) Photocatalytic hydrophilic composition