JPH01210892A - Method for tracing water flow - Google Patents

Method for tracing water flow

Info

Publication number
JPH01210892A
JPH01210892A JP63035072A JP3507288A JPH01210892A JP H01210892 A JPH01210892 A JP H01210892A JP 63035072 A JP63035072 A JP 63035072A JP 3507288 A JP3507288 A JP 3507288A JP H01210892 A JPH01210892 A JP H01210892A
Authority
JP
Japan
Prior art keywords
water
tracer
sample
flow
tracers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63035072A
Other languages
Japanese (ja)
Other versions
JPH0547784B2 (en
Inventor
Takami Komae
小前 隆美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOGYO DOBOKU SHIKENJO
Original Assignee
NOGYO DOBOKU SHIKENJO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOGYO DOBOKU SHIKENJO filed Critical NOGYO DOBOKU SHIKENJO
Priority to JP63035072A priority Critical patent/JPH01210892A/en
Publication of JPH01210892A publication Critical patent/JPH01210892A/en
Publication of JPH0547784B2 publication Critical patent/JPH0547784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To enable safe and accurate tracing a long-distant water flow and to contrive the activation of a sample and the simplification of a measurement process by using the cyclohexanediaminetetraacetic acid compd. of scandium as a tracer. CONSTITUTION:Several mg of the cyclohexaned minediaminetetraacetic acid (CyDTA) of the scandium (Sc) is drawn as the tracer and is diluted with about 100ml distilled water. The soln. is then ejected to the up stream side of a water system on investigation site. Further, the tracer prepd. by dilution to a pre scribed aq. soln. to meet the purpose of the investigation is charged into the water flow. The tracers are so charged at this time that the initial concn. distri bution of the tracers in the water flow constitutes a square pulse shape. A prescribed observation point is provided on the down stream side by predicting the flow direction and velocity of the water. The sample water is drawn before and after the predicted arrival time of the tracers. The concn. of the tracers in the sample water is determined by a radioactivation analysis method. The loss in the process of the down flow in the water flow or by the lapse of the time is thus decreased and the tracers in the sample water drawn on the down stream side is detected with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、水資源の高度管理や環境保全を目的とした
地表水や地下水等の水流の追跡方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for tracking water flows such as surface water and underground water for the purpose of advanced management of water resources and environmental conservation.

〔従来の技術〕[Conventional technology]

従来、一般的な水の水流の追跡方法としては、食塩や色
素や無機塩類等が多用されているが、希土類元素の無機
塩やキレート化合物を用いる放射化分析法も一部では用
いられている。
Traditionally, common methods for tracking water flow have frequently used salt, dyes, and inorganic salts, but some activation analysis methods that use inorganic salts and chelate compounds of rare earth elements have also been used. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来法のうち、食塩、色素、無機塩類を使う追跡
方法は流下過程で土粒子への吸着損失が大きいうえ検出
限界が高濃度になるという欠点を有しており、一方、キ
レート化合物を使う方法は水に溶存するイオンとの置換
などで水中に安定して存在しにくいという欠点を有して
いる。これらの理由で、いずれの方法も長距離にわたっ
ての追跡が困難なうえ、化学物質の大量投入による環境
汚染も懸念されることから、適用条件が極めて限定され
る。さらに、一部で用いられている希土類元素のキレー
ト化合物を使う方法は、放射化で生成された核種の半減
期が短いため、照射直後のガンマ線計測が必要となり、
測定器を原子炉の近傍に持つ機関以外では取り扱えず、
一般的な利用は難しいという課題がある。
Among the conventional methods mentioned above, the tracking methods using common salt, dyes, and inorganic salts have the drawbacks of large adsorption loss to soil particles during the flow process and a high detection limit. The method used has the disadvantage that it is difficult to stably exist in water due to substitution with ions dissolved in water. For these reasons, both methods are difficult to track over long distances, and there is also concern about environmental pollution due to large amounts of chemical substances being introduced, so the conditions for application are extremely limited. Furthermore, the method using chelate compounds of rare earth elements, which is used in some cases, requires gamma ray measurement immediately after irradiation because the half-life of the nuclide produced by activation is short.
It can only be handled by institutions that have measuring instruments near the reactor.
The problem is that general use is difficult.

この発明はかかる課題を解決するためになされたもので
、簡便な操作で安全かつ高精度に水流を追跡することの
できる水流の追跡方法を得ることを目的とする。
The present invention has been made to solve this problem, and an object of the present invention is to provide a water flow tracing method that can safely and accurately trace water flow with simple operation.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る水流の追跡方法は、水系上流側に追跡子
としてスカンジウムのシクロヘキサンジアミン四酢酸化
合物を投入した後、下流側で試水を採取し、この試水を
放射化分析することにより該試水中の追跡子を検出する
ようにしたものである。
The water flow tracking method according to the present invention involves introducing a scandium cyclohexanediaminetetraacetic acid compound as a tracer into the upstream side of the water system, collecting sample water downstream, and subjecting the sample water to radioactive analysis. It is designed to detect trackers underwater.

(作用〕 この発明においては、追跡子としてスカンジウムのシク
ロヘキサンジアミン四酢酸化合物を採用したため、水流
中を流下する過程や時間の経過による損失が極めて少な
くなり、下流側で採取する試水中の追跡子を高精度で検
出することができる。
(Function) In this invention, since a scandium cyclohexanediaminetetraacetic acid compound is used as a tracer, the loss due to the process of flowing down the water stream or the passage of time is extremely small, and the tracer in the sample water collected downstream is extremely small. Can be detected with high accuracy.

〔実施例〕〔Example〕

この発明の特徴は水系上流側に投入する追跡子としてス
カンジウム(Sc)のシクロヘキサンジアミン四酢酸(
CyDTA)化合物を選定した点にある。即ち、追跡調
査が必要な水系の上流地点から微量の追跡子を水溶液状
で投入し、下流の観測点で採取した試水を放射化分析し
て追跡子の到達状況を把握することで水の流速や流向、
流下中の分散や混合等を解析するために、追跡子として
ScのCyDTA化合物を用いている。
The feature of this invention is that scandium (Sc) cyclohexanediaminetetraacetic acid (
The reason lies in the selection of the compound (CyDTA). In other words, by injecting a small amount of tracer in the form of an aqueous solution from an upstream point in the water system that requires tracking, and by radioactively analyzing sample water collected at a downstream observation point to understand the progress of the tracer, water can be traced. flow speed and direction,
In order to analyze dispersion, mixing, etc. during flow, a CyDTA compound of Sc is used as a tracer.

この追跡子を用いた水流の追跡方法を以下に詳述する。The method for tracking water flow using this tracker will be described in detail below.

上記スカンジウムのシクロヘキサンジアミン四酢酸化合
物は試薬として入手可能なものであり、この化合物を例
えば数mg分取して100m1程度の蒸溜水で溶解し、
調査現地の水系上流側に搬出する。この調査現地の水系
上流側では追跡する水系の水で目的に応じた希釈をして
所定の水溶液状とした後、この水溶液となった追跡子を
水流に投入する。この時、該追跡子は、水流中の追跡子
の初期濃度分布がなるべく矩形パルス状を形成するよう
に投入する。水の流向と流速を予測して下流側に所定の
観測点をいくつか配置し、この下流側観測点において、
予想される追跡子の到達時の前後で試水を採取し、これ
を試験室に持ち帰る。
The above-mentioned scandium cyclohexanediaminetetraacetic acid compound is available as a reagent, and for example, a few mg of this compound is collected and dissolved in about 100 ml of distilled water.
It will be transported to the upstream side of the water system at the survey site. On the upstream side of the water system at the site of this investigation, the tracer is diluted with water from the water system to be traced according to the purpose to form a predetermined aqueous solution, and the tracer in this aqueous solution is then thrown into the water stream. At this time, the tracer is introduced so that the initial concentration distribution of the tracer in the water stream forms a rectangular pulse shape as much as possible. Predict the flow direction and velocity of the water, place several predetermined observation points downstream, and at these downstream observation points,
Sample water is taken before and after the expected arrival of the tracer and taken back to the testing room.

この試水中の追跡子を検出して該追跡子濃度の定量を行
なうがこの定量には放射化分析法を用いる。
The tracer in this sample water is detected and the concentration of the tracer is quantified using the activation analysis method.

この放射化分析の方法について詳述すると、まず照射試
料の調製には、約2cm角のろ紙を小さく折り畳んで入
れた約1.5cm角のポリエチレン袋を準備し、これに
1+nlの試水をマイクロピペットで数回に分けて注入
し、電気炉で乾燥後、端を加熱圧着して封じる。放射化
は5 x 10” n / cm”・sec台(nは中
性子の個数を示す)の熱中性子束で約20分の照射を基
本とし、予想濃度が高い試料は照射時間を短縮する。な
お、この照射時間を20分としたのはろ紙が変質を起こ
さない限界の時間が20分であるからである。次いで生
成核種の定量にはゲルマニウム半導体検出器を用い、放
出ガンマ線のうち混在核種の影響を無視出来る889K
eV又は1121KeVのガンマ線についてその強度を
測定する。照射後少なくとも2日程度放置して混在核種
の減衰を待つと、測定はより容易になる。測定時間はl
O分程度を基本とし、この時の追跡子が約0.5μg/
nlの試料は測定濃度を±5%の精度で定量できる。予
想濃度が低い試料は照射試料調製時に加熱減容して濃縮
するか測定時間を長くする。またさらに高い感度にする
ことが必要な極めて低い濃度の試料は、高い線束密度で
照射するか又は照射時間を長くする。この場合は、濃縮
水をろ紙の代りに石英アンプルに直接封入して照射する
To explain in detail the method of this activation analysis, first, to prepare the irradiation sample, prepare a polyethylene bag of approximately 1.5 cm square containing a folded filter paper of approximately 2 cm square, and add 1+nl of sample water into the bag. Inject in several portions with a pipette, dry in an electric oven, and seal the ends by heating and crimping. Activation is basically irradiated for about 20 minutes with a thermal neutron flux on the order of 5 x 10''n/cm''·sec (n indicates the number of neutrons), and the irradiation time is shortened for samples with a high expected concentration. The irradiation time was set to 20 minutes because 20 minutes is the limit time in which the filter paper does not undergo deterioration. Next, a germanium semiconductor detector was used to quantify the generated nuclides, and 889K was used to quantify the generated nuclides.
The intensity of gamma rays of eV or 1121 KeV is measured. Measurement becomes easier if the sample is left for at least two days after irradiation to allow the mixed nuclides to decay. The measurement time is l
Basically, the tracer at this time is about 0.5μg/
The measured concentration of nl samples can be quantified with an accuracy of ±5%. Samples with low expected concentrations should be concentrated by heating to reduce the volume during irradiation sample preparation, or the measurement time should be lengthened. Also, samples with very low concentrations that require even higher sensitivity are irradiated with higher flux densities or with longer irradiation times. In this case, concentrated water is directly sealed in a quartz ampoule instead of a filter paper and irradiated.

第1図は放射化分析の過程で得られる所定のエネルギを
有するガンマ線スペクトルである。この図に示すデータ
の測定条件としては下記のとおりである。
FIG. 1 shows a gamma ray spectrum having a predetermined energy obtained in the process of activation analysis. The measurement conditions for the data shown in this figure are as follows.

試  料:実施例の野外採取地下水 測定時期:熱中性子束を照射後8日間放置径測定時間:
 1000秒 したがって、この第1図からも明らかなように、自然界
にはほとんど存在しないスカンジウムが下流側で検出さ
れたことは、水系上流側に投入された追跡子としてのス
カンジウムのシクロヘキサンジアミン四酢酸化合物が下
流側に到達したことを示している。また追跡子から生成
したスカンジウム−46(4B5c)の測定値は、自然
の水に含む元素から生成したナトリウム−24(”Na
)や臭素−82(”Br)等と明瞭に区別できるピーク
となり、その面積から存在量が定量できた。また、照射
終了時に存在していた多くの妨害核種はすでに減衰して
いる。ところで 465 cの889KeVと1121
KeVのガンマ線を比較すると、第1図に示すように8
89KeVのものの方が、他の妨害核種のガンマ線が少
なくてピーク線の下方がフラットになっているため測定
精度が良好であった。
Sample: Groundwater collected outdoors in the example Measurement period: Left for 8 days after irradiation with thermal neutron flux Diameter measurement time:
Therefore, as is clear from Figure 1, scandium, which hardly exists in nature, was detected on the downstream side because the cyclohexanediaminetetraacetic acid compound of scandium as a tracer was introduced into the upstream side of the water system. This indicates that the has reached the downstream side. In addition, the measured value of scandium-46 (4B5c) produced from the tracer is similar to that of sodium-24 ("Na") produced from elements found in natural water.
) and bromine-82 (Br), etc., and the abundance could be quantified from the area.Also, many of the interfering nuclides that were present at the end of irradiation had already attenuated.By the way, 465 889KeV and 1121 of c
Comparing KeV gamma rays, as shown in Figure 1, 8
89 KeV had better measurement accuracy because there were fewer gamma rays from other interfering nuclides and the area below the peak line was flat.

第2図は第1図に示したデータをより明確化するために
横軸、縦軸に数値を記入してスペクトルを表わしたグラ
フ図であり、上段の曲線aは下記の測定条件でのスペク
トルである。
Figure 2 is a graph showing the spectrum by writing numerical values on the horizontal and vertical axes in order to clarify the data shown in Figure 1, and the upper curve a shows the spectrum under the following measurement conditions. It is.

試  料:平均濃度の河川水にScを加えた仮想試料(
河川水の平均濃度は日本環境図譜 (1978、共立出版刊)より引用した)測定時期:熱
中性子束を照射後30分放置後(シミュレーション) 測定M間: 1000秒(シミュレーション)なお、こ
の曲線aに示すものは、河川水の平均濃度のものtmt
に照射した場合のスペクトルをコンピュータで作成した
ものである。下段の曲線すは上記第1図に示したスペク
トルと同じものである(試料、測定時期、測定時間のい
ずれも同一)。
Sample: A virtual sample in which Sc was added to river water with an average concentration (
The average concentration of river water is quoted from Japan Environmental Map (1978, published by Kyoritsu Shuppan)) Measurement time: 30 minutes after irradiation with thermal neutron flux (simulation) Measurement interval: 1000 seconds (simulation) Note that this curve a What is shown is the average concentration of river water tmt
This is a computer-generated spectrum obtained when irradiated with light. The lower curve is the same as the spectrum shown in FIG. 1 above (sample, measurement time, and measurement time are all the same).

したがフて、この第2図に示すように照射後30分では
曲線aのようにスペクトルが多数ありて測定が難しかっ
たものが、数日間(この図では8日間)放置することに
より、測定が容易になった。
Therefore, as shown in Figure 2, it was difficult to measure 30 minutes after irradiation because there were many spectra like curve a, but by leaving it for several days (8 days in this figure), it was possible to measure it. has become easier.

これはScの寿命が他の物質に比べて長いことによるも
のである。
This is because Sc has a longer lifespan than other substances.

この発明によれば、放射化分析法の採用で極めて低い濃
度までを高精度に定量することができ、追跡子の化学型
をCyDTA化合物としたことで流下過程での損失が極
めて少なくなる。その追跡能を、水分子の構成原子とし
て存在し追跡能が最も高いとされるトリチウム(3■)
と比較すると、飽和砂層の流れを対象とした室内、野外
の両実験において実験誤差の範囲で一致した。このため
、僅かの投入量で長距離の追跡が可能となる。また、追
跡子は放射性同位元素ではないため人畜無害であり、投
入量がわずかですむため環境汚染のリスクも無視するこ
とができ、さらに、試水は化学分離せずに放射化するこ
とができ、ガンマ線測定までに数日間放置しても測定精
度は低下しないなど、追跡子としての優れた特性を持つ
According to this invention, by employing the activation analysis method, it is possible to quantify down to extremely low concentrations with high precision, and by using a CyDTA compound as the chemical type of the tracer, loss during the flow process is extremely reduced. Tritium (3■), which exists as a constituent atom of water molecules and is said to have the highest tracing ability,
In comparison, both indoor and field experiments targeting flows in saturated sand layers showed agreement within experimental error. Therefore, long-distance tracking is possible with a small amount of input. In addition, since the tracer is not a radioactive isotope, it is harmless to humans and animals, and since only a small amount is required, the risk of environmental contamination can be ignored.Furthermore, the sample water can be radioactive without chemical separation. It has excellent characteristics as a tracer, such as the measurement accuracy does not decrease even if it is left for several days before measuring gamma rays.

ところで、照射(放射化)前の試水は追跡子を安定核種
で溶解しているが、この試水をろ紙に吸着乾固して固体
状となった試料に熱中性子束を照射することで追跡子は
放射性核種となる。このため、照射前の試水には、生物
の繁殖を除けば「寿命」といえるものがなく、長期間放
置しても大差ないが、照射後は、生まれた放射性核種が
それぞれ固有の寿命を持つこととなる。従来法ではこの
寿命が短寿命のものを用いていたので、直ちに測定しな
ければならず不便であったが、この発明に係る追跡方法
においては長寿命のものを用いているため試料を数日間
放置できることとなり、これは実用上の大きな利点であ
る。
By the way, in sample water before irradiation (activation), tracers are dissolved with stable nuclides, but by adsorbing this sample water onto filter paper and drying it to solidity, irradiating the sample with thermal neutron flux The tracer will be a radionuclide. For this reason, the sample water before irradiation has no "lifespan" other than the reproduction of living organisms, and there is no big difference even if it is left for a long time, but after irradiation, the radionuclides produced have their own unique lifespan. I will have it. In the conventional method, a sample with a short life was used, which was inconvenient because it had to be measured immediately.However, in the tracking method of this invention, a sample with a long life is used, so the sample can be measured for several days. This is a great practical advantage as it can be left alone.

以上からこの発明に係る追跡方法は、幅広い目的に対し
安全かつ高精度で、しかも放射化分析も比較的容易にな
り、実用的な調査方法として提供できる。
As described above, the tracking method according to the present invention is safe and highly accurate for a wide range of purposes, and furthermore, activation analysis is relatively easy, and it can be provided as a practical investigation method.

次に、水流の追跡方法を第3〜5図に示す具体例に基づ
いて説明する。水の流れの追跡調査が必要な課題は多い
が、ここでは、ダムの建設が予定されている地点で基礎
地盤の透水に対する安全性を評価する目的で、岩盤中の
地下水流を追跡した。第3図は、実施例として示した調
査地域の平面図であり、図中2点鎖線部はダムの堰の部
分を示し、破線部は堰のまわりの土砂を盛り上げる範囲
を示している。1印は追跡子の没入地点、・印は観測地
点のうち追跡子が到達した地点、モしてO印は追跡子が
認められなかった観測地点を示す。第4図(a)〜(c
)は、実施例として示した調査で、観測地点A−Cに現
われた追跡子の濃度観測例を示すグラフ図、第5図は、
実施例として示した調査で、観測地点Aに現われた・印
で示す追跡子の濃度を実線で示した理論曲線と対比した
グラフ図であり、第4図(a)中の7部に相当している
Next, a water flow tracking method will be explained based on specific examples shown in FIGS. 3 to 5. There are many issues that require tracking of water flow, but here we tracked groundwater flow in bedrock in order to assess the safety of foundation ground for water permeation at a site where a dam is planned to be constructed. FIG. 3 is a plan view of the survey area shown as an example, in which the dashed-dotted line indicates the weir of the dam, and the broken line indicates the area around the weir where earth and sand are piled up. The 1 mark indicates the immersion point of the tracer, the * mark indicates the point where the tracer reached among the observation points, and the O mark indicates the observation point where the tracer was not recognized. Figure 4(a)-(c)
) is a graph showing an example of the concentration observation of the tracer that appeared at observation points A-C in the survey shown as an example.
It is a graph diagram comparing the concentration of the tracer indicated by the mark ・ which appeared at observation point A in the investigation shown as an example with the theoretical curve indicated by the solid line, and corresponds to part 7 in Fig. 4(a). ing.

図に示すように地質調査のポーリング孔を用い、上流の
1地点から投入した追跡子の挙動を下流の14地点で観
測した。投入追跡子は河川水で希釈し、濃度を約0.1
μg/mlにした。下流側観測点での採水は没入開始よ
り1時間後から少しづつ間隔を広げながら5日後まで2
5回について毎回100m1づつ採取した。基準値より
低濃度の照射試料は、 100m1のコニカルビーカに
約50m1の試水をとって、電気炉を用い、60℃で約
15時間加熱減容し、約5倍に濃縮した。照射と計測は
基準の方法に準じた。さらに低濃度な試料は計測時間を
最大1日まで延長した。分析結果から、第3図に示すよ
うに14の観測地点のうち6地点に追跡子の到達が認め
られ、岩盤中の割れ目の連続性やその中を通る地下水の
流速、流下中の分散状態等が解析でき、ダムの基礎工事
に重要な指針を示すことができた。ところで、第4図(
a)〜(C)の縦軸の「観測井での追跡子濃度」とは、
上流側で追跡子を投入した時の濃度をriot、とした
とき、観測井で表われた追跡子の濃度の割合を示してい
る。この第4図(a)〜(C)に示されるグラフから、
C地点の方がB地点と比べて追跡子没入地点からの距離
は遠いから水流の到達は遅いが、分散は小さく、水流は
枝分れしていないことが分かる。
As shown in the figure, using a geological survey poling hole, the behavior of a tracker inserted from one upstream point was observed at 14 downstream points. The input tracer was diluted with river water to a concentration of approximately 0.1.
It was set to μg/ml. Water sampling at the downstream observation point begins 1 hour after the start of immersion, gradually increasing the interval until 5 days later.
One sample of 100 ml was collected each time for 5 times. For the irradiated sample with a concentration lower than the standard value, approximately 50 ml of sample water was placed in a 100 ml conical beaker, and the volume was reduced by heating at 60° C. for approximately 15 hours using an electric furnace, and concentrated approximately 5 times. Irradiation and measurement followed the standard method. For samples with even lower concentrations, the measurement time was extended to a maximum of one day. From the analysis results, it was confirmed that the tracer had arrived at 6 of the 14 observation points as shown in Figure 3, and it was confirmed that the tracer had arrived at 6 of the 14 observation points, and the continuity of the cracks in the rock, the flow rate of groundwater passing through them, the dispersion state during flow, etc. was able to be analyzed and provide important guidelines for dam foundation construction. By the way, Figure 4 (
The “tracer concentration in the observation well” on the vertical axis in a) to (C) is
When the concentration when the tracer is introduced on the upstream side is Riot, it shows the ratio of the concentration of the tracer appearing in the observation well. From the graphs shown in FIG. 4(a) to (C),
The distance from the tracer immersion point at point C is longer than that at point B, so the water flow reaches the point slower, but the dispersion is small and it can be seen that the water flow does not branch.

次に第5図について説明すると、6つの観測値について
、追跡子投入後の経過時間をR5観測濃度をCとおくと
(R+、C+)、(R2,(,2)、・・・(Ra、 
Ca)のデータが得られる。そして、最大の濃度C(観
測値そのものである場合もあれば、この例のように観測
値の中間をとることもある)をCma*、その時の時間
比RをR□aXとおいて、縦軸に濃度比C1/ Cma
t 、横軸に時間比RI/RIn1にの座標をとって理
論曲線と比較する。最も近似する理論曲線を遭定し、そ
の曲線を規定するパラメータの値から流れ条件を求める
。投入点からA地点までの距離と、追跡パルスの長さ(
投入に要する時間)と、A地点での観測パルス形から求
めた平均流速は8.7m/hとなり、次にこの第5図の
解析から分散係数を求める。図中の数字はS=D/υ丁
の値で混合パラメータと呼ばれるものであり、ここで平
均流速−r8.7m/h、投入点からA地点までの距離
z〜23mであるから軸分散係数りは約40m2/hト
算出される。このようにして地下水の流向と流速が求め
られ、第1図に示すような流速等高線Xを描くことがで
きることとなる。
Next, referring to FIG. 5, for the six observed values, let C be the observed concentration of R5, which is the elapsed time after the tracer was inserted, (R+, C+), (R2, (,2), ... (Ra ,
Ca) data is obtained. Then, the maximum concentration C (sometimes it is the observed value itself, and sometimes it is the middle of the observed values as in this example) is set as Cma*, the time ratio R at that time is set as R□aX, and the vertical axis is The concentration ratio C1/Cma
t, the time ratio RI/RIn1 is plotted on the horizontal axis and compared with the theoretical curve. The most approximate theoretical curve is found, and the flow conditions are determined from the values of the parameters that define that curve. The distance from the input point to point A and the length of the tracking pulse (
The average flow velocity determined from the observed pulse shape at point A is 8.7 m/h, and the dispersion coefficient is then determined from the analysis of Fig. 5. The numbers in the figure are the values of S = D / υ, which are called mixing parameters, and since the average flow velocity is - r8.7 m/h and the distance from the input point to point A is z ~ 23 m, it is the axial dispersion coefficient. The calculated amount is approximately 40m2/h. In this way, the flow direction and flow velocity of groundwater are determined, and flow velocity contour lines X as shown in FIG. 1 can be drawn.

したがってこの発明によって、今後益々増加すると考え
られる水資源の高度管理や環境保全を目的とした地表水
や地下水の流れの調査には、安全かつ高精度で実証的な
手法が提供できることとなる。
Therefore, this invention makes it possible to provide a safe, highly accurate, and empirical method for investigating the flow of surface water and underground water for the purpose of advanced management of water resources and environmental conservation, which are expected to increase in the future.

なお、この調査方法によれば、流れが速く追跡子の吸着
損失等が小さい地表流では、更に長距離の追跡が可能で
ある。
Note that, according to this investigation method, even longer distance tracking is possible in surface flows where the flow is fast and the absorption loss of the tracer is small.

〔発明の効果] 以上説明したとおり、この発明は追跡子にスカンジウム
のシクロヘキサンジアミン四酢酸化合物を用いるという
構成をとったことから、長距離の水流を安全かつ高精度
に追跡でき、しかも試料の放射化と測定の過程を簡便に
できるという効果がある。
[Effects of the Invention] As explained above, this invention uses a scandium cyclohexanediaminetetraacetic acid compound as a tracer, so long-distance water flow can be traced safely and with high precision, and the radiation of the sample can be traced. This has the effect of simplifying the process of conversion and measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図はこの発明の一実施例を示す図で、第1図は
放射化分析の過程で得られるガンマ線スペクトル図、第
2図は仮想試料と比較するためのスペクトル図、第3図
は調査地域の平面図、第4図(a)〜(c)はそれぞれ
各地点での追跡子の濃度を示すグラフ図、第5図は追跡
子の濃度比を示すグラフ図である。 なお、各図中同一符号は同−又は相当部分を示す。 特許出願人  農業土木試験場長 岸本良次部 ゛1″、−ニ・1− 第4図 (%) 止シか3投入Nh坩1支の廷Δし咋関 %S潰せ
Figures 1 to 5 are diagrams showing one embodiment of the present invention, in which Figure 1 is a gamma ray spectrum obtained in the process of activation analysis, Figure 2 is a spectrum diagram for comparison with a virtual sample, and Figure 3 is a diagram showing an embodiment of the present invention. 4 is a plan view of the survey area, FIGS. 4(a) to 4(c) are graphs showing the tracer concentration at each point, and FIG. 5 is a graph showing the tracer concentration ratio. Note that the same reference numerals in each figure indicate the same or corresponding parts. Patent Applicant Agricultural Civil Engineering Experiment Station Nagashishimoto Ryoji Department ``1'', -2・1- Figure 4 (%) Destroy %S by applying Δ to 3 inputs of Nh crucible to 1 load

Claims (1)

【特許請求の範囲】[Claims] 水系上流側に追跡子としてスカンジウムのシクロヘキサ
ンジアミン四酢酸化合物を投入した後、下流側で試水を
採取し、この試水を放射化分析することにより該試水中
の追跡子を検出することを特徴とする水流の追跡方法。
The feature is that after a scandium cyclohexanediaminetetraacetic acid compound is injected as a tracer into the upstream side of the water system, a sample water is collected downstream, and the tracer in the sample water is detected by radioactive analysis of the sample water. How to track water flow.
JP63035072A 1988-02-19 1988-02-19 Method for tracing water flow Granted JPH01210892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035072A JPH01210892A (en) 1988-02-19 1988-02-19 Method for tracing water flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035072A JPH01210892A (en) 1988-02-19 1988-02-19 Method for tracing water flow

Publications (2)

Publication Number Publication Date
JPH01210892A true JPH01210892A (en) 1989-08-24
JPH0547784B2 JPH0547784B2 (en) 1993-07-19

Family

ID=12431795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035072A Granted JPH01210892A (en) 1988-02-19 1988-02-19 Method for tracing water flow

Country Status (1)

Country Link
JP (1) JPH01210892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235547A (en) * 1999-12-13 2001-08-31 Japan Atom Energy Res Inst High sensitivity nuclear species analysis method by multiple gamma ray detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235547A (en) * 1999-12-13 2001-08-31 Japan Atom Energy Res Inst High sensitivity nuclear species analysis method by multiple gamma ray detection

Also Published As

Publication number Publication date
JPH0547784B2 (en) 1993-07-19

Similar Documents

Publication Publication Date Title
Muramatsu et al. Determination of 129 I and 127 I in environmental samples by neutron activation analysis (NAA) and inductively coupled plasma mass spectrometry (ICP-MS)
US3002091A (en) Method of tracing the flow of liquids by use of post radioactivation of tracer substances
Hao et al. Sources of plutonium isotopes and 137Cs in coastal seawaters of Liaodong Bay and Bohai Strait, China and its environmental implications
Timerbaev et al. Recent progress of capillary electrophoresis in studying the speciation of actinides
Jia et al. Sensitive and accurate methods for determination of low activity level of 90Sr and 137Cs in grass/vegetable samples
Shao et al. A review of anthropogenic radionuclide 236U: environmental application and analytical advances
Roussel-Debet Experimental values for 241Am and 239+ 240Pu Kd's in French agricultural soils
Degering et al. Gamma-spectrometric analysis of high salinity fluids–how to analyze radionuclides of the thorium decay chain far from radioactive equilibrium?
Smith et al. Field and laboratory methods used by the Geological Survey of Canada in geochemical surveys: no. 11. Uranium in soil, stream sediment and water
JPH01210892A (en) Method for tracing water flow
Bhangare et al. Method for determination of radium in seawater using MnO 2 co-precipitation technique
Misdaq et al. Study of the influence of the lithological and hydrogeological parameters of aquifers on the radon emanation from underground waters using solid state nuclear track detectors
Tirumalesh et al. Nuclear techniques to investigate source and origin of groundwater pollutants and their flow path at Indian Rare Earths Ltd., Cochin, Kerala
Degueldre Identification and Speciation of Actinides in the Environment
Qian et al. Measurement of 3 H, 36 Cl, 22 Na, 85 Sr and 133 Ba activities from synthetic groundwater
Li-Xing et al. A field study of tritium migration in groundwater
Johnson Examination of natural background sources of radioactive noble gases with CTBT significance
Rundberg et al. Radionuclide migration: laboratory experiments with isolated fractures
Barescut et al. Capability of the Kd model to predict radionuclides behaviour and transport in unsaturated columns under steady flow conditions
Zhou et al. The Age Dating of Deep Paleogroundwater in Jijicao Preselected Site for High Level Radioactive Waste Geological Disposal
Maslov et al. Trace Element Analysis of Actinides in Natural Waters and Soils Using (γ, f) Reaction
Jia et al. An innovative method for determination of uranium isotopes in soils by alpha-spectrometry coupled with Microthene-TOPO column separation
Warwick The determination of pure beta-emitters and their behaviour in a salt-marsh environment
Schumann et al. Radioanalytics–An Indispensable Tool for Radiological and Nuclear Safety
Birchard et al. Natural analogues—A way to increase confidence in predictions of long-term performance of radioactive waste disposal

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term